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Abstract: This deliverable (D3.4) presents the outcomes of Work Package 3 “Hardware and 

Software Platforms for Enhanced Security” of the SERRANO project, which comprises the 

work by 5 partners and an investment of 65 PMs. The WP has ran for 23 months and comprises 

3 concurrent tasks. Each task has developed different aspects of the SERRANO platform: the 

storage system in itself, a scalable secure storage system and workload isolation of processes, 

respectively. This deliverable owes to be read in conjunction with the previous three 

deliverables within this WP: D3.1 Accelerated encrypted storage architecture, D3.2 Secure 

cloud storage system and D3.3 Trust and isolated execution on untrusted physical tenders. 

This deliverable provides an overview of the final release of the SERRANO secure 

infrastructure layer, which is then used in the final demonstrators of the project.  

 

Keywords: SERRANO platform, secure storage, distributed storage, secure boot, trusted 

execution, confidential computing 

 

 

 

 

 

 

 

 

 

 

 

  



D3.4 – Final release of SERRANO secure infrastructure layer  

   

ict-serrano.eu  4/56 

 

Disclaimer: The information, documentation and figures available in this deliverable are written by the 

SERRANO Consortium partners under EC co-financing (project H2020-ICT-101017168) and do not 

necessarily reflect the view of the European Commission. The information in this document is provided 

“as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The 

reader uses the information at his/her sole risk and liability. 
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1 Executive Summary 

This deliverable entitled “D3.4 Final release of SERRANO secure infrastructure layer” presents 

the final results of Work Package 3 in SERRANO, entitled “Hardware and software platforms 

for enhanced security”. The primary objective of this WP was to develop innovative 

mechanisms to enhance the security in disaggregated cloud and edge infrastructures. 

Specifically, this WP aimed to: (i) develop tools for acceleration of encrypted storage, (ii) 

develop a scalable secure storage system, enabling massive storage deletion by crypto-key 

handling, (iii) enable edge nodes to support heterogeneous data streams from diverse digital 

services, and (iv) provide strong isolation and security guarantees for workloads executing at 

edge nodes. 

This document summarizes the efforts and working system solution developed within this 

work package, which includes a solution for distributed storage that employs acceleration 

engines in distributed infrastructures, as well as orchestration tools that rely on trusted 

execution environments and hardware security mechanisms.  

The work presented in this deliverable, in conjunction with previous deliverables from this 

work package, will be transferred to the final test bed demonstrators for further 

benchmarking.  
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2 Introduction 

SERRANO targets the efficient and transparent integration of heterogeneous resources, 

providing an infrastructure that goes beyond the scope of the “typical” cloud and realizes a 

true computing continuum. The project aims to define an intent-based paradigm of operating 

federated infrastructures consisting of edge, cloud, and HPC resources, which will be realized 

through the SERRANO platform (Figure 1). SERRANO automates the application deployment 

process across various computing technologies, translating applications’ high-level 

requirements to infrastructure-aware configuration parameters. Next, the SERRANO platform 

will determine the most appropriate resources of the cloud continuum to be used by an 

application and then transparently deploy workloads and coordinate data movement. Also, 

SERRANO will continuously adapt the deployed applications, based on the observe, decide, 

act approach. 

 
Figure 1: The SERRANO platform, utilizing edge, cloud and HPC resources and empowering the Everything as 

a Service (EaaS) notion towards the cloud continuum 

 

2.1 Purpose of this document 

The present deliverable (D3.4) presents the outcomes of WP3 and its tasks “Hardware and 

Software Platforms for Enhanced Security” of the SERRANO project, during the first iteration 

of the incremental implementation plan. WP3 is associated with designing and implementing 

the secure boot and trusted execution mechanisms enabling workload isolation in the 

SERRANO platform and the development of a secure storage system for an edge-cloud 

continuum.  

The deliverable provides an overview of the enhanced secure storage service developed 

within the SERRANO project. The service encompasses geographically diverse storage facilities 

accessed from a user interface. In addition, the system capitalizes on the availability of 

network interface cards (NICs) containing the SERRANO-developed encryption accelerators. 

Such accelerators improve the user experience by reducing end-to-end latency and freeing up 

local processing resources, which allows the network and storage fabric to scale up graciously. 
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Moreover, the implemented platform, along with the required backend mechanisms, provides 

the appropriate public secure and storage APIs and a developer portal. The main building 

blocks are described in this document as well as different performance tests. The results are 

fairly promising, as many optimizations, which are also described, are introduced, such as 

reducing the number of edge-cloud HTTP calls (edge-cloud continuum) and file caching. The 

deliverable also provides visibility on S3 authentication, pre-signer URLs policies, and random 

linear network coding (RLNC) techniques. 

D3.4 also provides the final SERRANO developments on the trust and isolation execution on 

untrusted physical tenders. The current trend is to seek technologies that enable the isolation 

of processes, not only in the form of SW but also at the HW layer. This is particularly relevant 

with confidential AI approaches, where tens of thousands of AI processes (small and large) are 

distributed throughout the fabric for processing. 

2.2 Document structure 

This deliverable builds upon the previous three deliverables generated within WP3 in 

SERRANO (D3.1, D3.2, and D3.3), each defining, describing, and providing benchmark results 

on different building blocks. It has been an active and federated decision by the partners 

involved in these developments to avoid duplicating much content from these previous 

deliverables into the current one and limit ourselves to repeating content necessary to 

understand new developments. Hence, this document owes to be read and considered in 

conjunction with previous deliverables. 

The present deliverable is split into the following major chapters: 

● Section 3 provides an extensive overview of the SERRANO-enhanced storage service 

developed within the project. This section includes performance measurements on the 

storage solution under different conditions.  

● Section 4 provides an extensive description of the SERRANO-enhanced mechanisms to 

provide trust and isolation execution on untrusted physical tenders.  

Following the mid-term review outcome guidelines, we have reduced repeating 

documentation from previous deliverables. This means an overview of the accelerated 

encryption storage system and SERRANO platform is available in D3.1, D3.2, and D3.2 from 

M15. Essentially, the platform has been developed over MLNX hardware (i.e., a DPU). The 

hardware system for testing purposes is located in MLNX in Israel and consists of 2 servers 

with 2 DPUs for which CC has remote access and has tested the SERRANO secure storage 

service. In addition, Section 4 provides an overview that is described in deep in previous 

deliverables. The SW platform by MLNX is also described in previous deliverables – such SW 

APIs have been essentially co-designed MLNX-CC, and then CC have used them for testing the 

results discussed in Section 3.     
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2.3 Audience 

This document is publicly available and helpful to anyone interested in accelerated storage, 

network interface cards, orchestration of storage resources, privacy and security in storage 

systems, edge-cloud continuum from a storage perspective, and confidential computing and 

trusted execution environments.  
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3 SERRANO-enhanced Storage Service 

This Section includes a selection of results originally reported in Deliverable 3.2 and 3.3. The 

material is taken from these deliverables and updated to reflect progress made since their 

initial submission. 

3.1 Overview 

The SERRANO-enhanced Storage Service (Storage service in short and also referred to in some 

deliverables as ‘Secure Storage Service’) is the SERRANO project’s file storage solution that 

uses object storage semantics. It exposes an S3-compatible API and, where possible, follows 

industry standards.  

It is a distributed storage system that differentiates itself by providing support for both a large 

number of cloud locations as well as user-deployed edge locations. This makes it possible to 

meet a wide range of user requirements, bringing the benefits of both cloud and edge storage 

as part of a single solution. Before distribution, files are erasure coded for optimal cost-

effectiveness and high reliability. A novel erasure code called Random Linear Network Coding 

(RLNC) with additional security benefits is employed. Files are encrypted at the edge and 

compressed for better storage efficiency. A file caching solution improves performance, 

especially when data is stored on the cloud storage locations. The Storage service is simple to 

configure and highly customizable. Each S3 bucket has a storage policy associated with it, 

specifying how and where the files are stored. 

The Storage service is a core enabler of the project’s first use case, UC1: Secure Storage. Its 

main features have been derived from the requirements of both the project and the use case, 

as has been described in Work Package 2 deliverables. 

3.2 Architecture and Implementation 

3.2.1 Architecture 

The SERRANO-enhanced Storage Service (Storage service) has three main components, each 

with a well-defined role. The On-premises storage gateway (Gateway) is deployed on edge, 

close to the applications that use the service. It performs all the data processing tasks: 

compression, encryption, and erasure coding. It also acts as a gateway to the storage locations 

and a mediator towards the Skyflok.com backend (Backend). It exposes all the APIs that are 

described in Section 3.3 to the users of the SERRANO platform and its services. A fourth 

component, the Cloud Benchmarker Service, has been added to provide cloud telemetry. 

The Skyflok.com backend has been developed by Chocolate Cloud over the last few years. It is 

in charge with maintaining the metadata related to the stored files and provides many of the 

complementary services needed by a storage solution such as authentication and 
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authorization, management of storage locations and so on. The users of the service do not 

access it directly. 

The SERRANO-enhanced devices provide the service with edge storage locations. These are 

easy to deploy resources that provide performance that is not achievable through cloud-based 

services, especially in terms of latency. Like the Gateway, they are deployed on the customer’s 

premises. 

An overview of the core components and their connection can be seen in Figure 2. 

  

 

Figure 2: The core components of the SERRANO-enhanced Storage Service. 

 

Monitoring cloud locations requires the ability to reliably schedule measurements that 

ascertain both the availability of each location and its performance characteristics regarding 

uploading and downloading files. The Skyflok.com backend provides the scheduling while the 

Cloud Benchmarker Service performs the measurements and stores the results. The Backend 

stores the results and are accessible to users of the Storage service through the Cloud 

Telemetry API. An overview of these separate responsibilities is shown below in Figure 3. 

 

Figure 3: The components of the cloud monitoring features of the SERRANO-enhanced Storage Service. 
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3.2.2 The On-premises storage gateway 

The On-premises storage gateway is the key new development of the SERRANO-enhanced 

Storage Service as well as its most important on-

premises component. It is implemented in Python 3.8 

using the FastAPI1, a modern ASGI framework. Unlike 

traditional WSGI-based solutions like Flask, FastAPI has 

been developed with the goal of improving 

performance through asynchronous operations. The Gateway makes use of this by 

implementing all network and disk operations asynchronously, greatly improving the 

efficiency of the service and increasing the number of concurrent requests it can serve. 

The Gateway runs as a containerized application deployed by the SERRANO orchestrator. 

Multiple instances can be deployed simultaneously since it features no state beyond caching 

some data for performance reasons. This makes it possible to tailor the performance of the 

SERRANO-enhanced Storage Service to the current workload by scaling horizontally. Its 

statelessness is a key design principle meant to ensure that the Gateway does not become a 

single point of failure or a performance bottleneck. 

A key consideration related to performance is CPU use. Since all data processing operations 

are performed by the Gateway, acceleration techniques developed in Work Packages 3 and 4 

are used to remove some of the burden from the CPU. These occur if specialised hardware 

(Nvidia DPU, GPU, FPGA) is available. The Gateway performs these tasks on the CPU if they 

are unavailable. 

The second significant performance-related metric is memory usage. Given that the Gateway 

must be able to serve a large number of requests concerning large files, careful thought went 

into making this component memory-efficient. This design goal is achieved through a 

combination of techniques that make it possible to constrain the memory used when 

uploading and downloading files. First, larger files are divided into chunks called generations. 

Each generation is compressed, encrypted, erasure-coded, and distributed to the storage 

locations separately. The memory use of the component can be tuned by modifying the size 

of each generation. Second, file upload requests and file download responses are streamed. 

This is achieved using the TCP protocol’s varying sized transmission window. This technique 

ensures that very little data beyond the generation being processed is kept in memory. 

The Gateway features another performance-enhancing feature in the form of a local cache. 

Thus, files accessed recently or very popular are kept in their original, uncompressed, 

unencrypted, non-erasure-coded form on local, ephemeral storage. Like the other design 

decisions made when developing the service, the cache aims to improve performance beyond 

what a purely cloud-based solution can achieve. 

 

 
1 FastAPI framework: https://fastapi.tiangolo.com/ 
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3.2.3 SERRANO edge devices 

The SERRANO edge devices provide storage locations at the edge, on the customer’s premises. 

Like the storage service itself, they provide an S3 interface. However, the client applications 

of the service do not access the devices directly. Instead, the Gateway is in charge of all file 

uploads and downloads to the storage locations. Details on how this is performed using pre-

signed URLs is described in Section 3.7.2. 

Each SERRANO edge device is a containerized 

application deployed by the SERRANO 

orchestrator. Each is a separate instance of 

MinIO2, a high-performance, highly customizable object storage solution. It was selected 

because it is designed from the ground-up to be deployed in a container, it exposes the 

relevant S3 endpoints and includes a telemetry agent. The former is used to provide the 

platform’s Telemetry Service with information regarding the status of the edge storage 

resource.  

When deployed using Kubernetes (K8s), MinIO can use a wide range of 

available storage resources through K8s Persistent Volumes3. All 

information required to run MinIO, as well as all data that it stores, can 

be mounted using this technique. Thus, it is easy to tailor MinIO to the 

storage resources available on the customer’s premises. For example, 

in most cases a local file system can be mounted to provide the 

necessary storage. However, through the use of plugins, a storage 

resource can be anything from an NFS share, an iSCSI drive/service, a Microsoft Azure disk, an 

Amazon Elastic Block Store, or even a local object storage solution such as Ceph.  

Finally, while MinIO is a very competent multi-cloud solution with a wide range of features, 

we deploy it in its simplest, one instance configuration. Instead of relying on MinIO for security 

and reliability, we use the techniques offered by SkyFlok. 

3.2.4 The Skyflok.com backend 

SkyFlok is a next-generation file sharing and storage 

solution for users who care deeply about privacy 

and security. It is a multi-cloud platform that 

distributes data across a wide range of 

commercially available clouds. Beyond the big three 

of Amazon, Google, and Microsoft, SkyFlok supports most major EU cloud providers and can 

be configured to be GDPR compliant (42 out of a total of 59 cloud locations are GDPR-

compliant). A key enabler of this is the ability provided to users to select the cloud providers 

that will store their data as well as the actual locations down to the city level. Internally, 

SkyFlok’s secret sauce is RLNC, an erasure code that provides reliable service even if a cloud 

 
2MinIO: https://min.io/ 
3Kubernetes Persistent Volumes:  https://kubernetes.io/docs/concepts/storage/persistent-volumes/ 
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provider becomes unavailable. It also offers protection from data loss and gives privacy 

benefits beyond those provided by conventional encryption.  

SkyFlok was launched in February 2018. Since then, over 750 SME teams have used the 

service. Chocolate Cloud launched in 2020 its reseller portal for resellers in multiple countries 

(incl. Canada, Italy, Denmark, UK) to commercialise SkyFlok.  

The SERRANO-enhanced storage service relies on the software infrastructure behind SkyFlok, 

the Skyflok.com backend, for a wide range of features. These can be grouped as follows: 

● File system management 

● Storage location management 

● Generating pre-signed upload and download links 

● Storage policy management 

● File and metadata consistency checking 

● Authentication and authorization 

● User and team management 

The Skyflok.com backend uses a micro-service-based architecture. Each of the 17 services is 

in charge of a particular platform aspect. Most are also in charge of managing and persisting 

a set of business entities stored in either a traditional relational database or a NoSQL data 

store. Every service exposes a RESTful API and must perform authorization on the entities it 

manages itself. A separate service handles authentication. Almost all changes to business 

entities are recorded in an audit log and a consistency checking service periodically inspects 

that data and metadata are consistent with each other. 

The Backend is written in Python and designed to be deployed to Google App Engine. This 

platform provides the scalability, security, and reliability necessary for the service to function. 

Business entities are persisted to either CloudSQL or Google Cloud Datastore, depending on 

their characteristics and access requirements.  

3.2.5 Cloud Storage locations 

The SERRANO-enhanced storage service provides access to all cloud locations supported by 

SkyFlok. This includes the locations offered by the three large US-based cloud operators: 

Amazon, Google, and Microsoft, as well as many smaller EU operators: CloudSigma, Deutsche 

Telekom, OVH, City Cloud, Exoscale, Scaleway, IONOS, Outscale, Leaseweb, Orange Business 

Cloud and Ventus Cloud. More are being added continuously in an effort to cover as much of 

Europe as possible. The 42 EU-based locations allow for fully-GDPR-compliant storage, 

exceeding the target value of 10 for SIR.3 KPI, defined in Deliverable 6.6 (M27). 
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The following table shows the list of supported cloud locations as of June 2023. 

Table 1: Supported cloud locations in SERRANO Secure Storage Service (June 2023) 

Cloud provider Location GDPR-compliance 

Google Iowa  

Google Oregon  

Google Belgium YES 

Google South Carolina  

Google Northern Virginia  

Google London YES 

Amazon Ohio  

Amazon Canada YES 

Amazon Oregon  

Amazon North Virginia  

Amazon North California  

Amazon Ireland YES 

Amazon Frankfurt YES 

Amazon London YES 

Microsoft Virginia  

Microsoft Iowa  

Microsoft Chicago  

Microsoft San Antonio  
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Microsoft Wyoming  

Microsoft California  

Microsoft Seattle  

Microsoft Quebec City YES 

Microsoft Toronto YES 

Microsoft Dublin YES 

Microsoft Amsterdam YES 

Microsoft Cardiff YES 

Microsoft London YES 

OVH Beauharnois YES 

OVH Gravelines YES 

OVH Strasbourg YES 

Google Frankfurt YES 

Amazon Paris YES 

Google Los Angeles  

Google Hamina YES 

Google Montreal YES 

Microsoft Paris YES 

Amazon Stockholm YES 

Microsoft Oslo YES 

Microsoft Frankfurt YES 

Microsoft Zurich YES 

OVH Frankfurt YES 

OVH London YES 

OVH Warsaw YES 

City Cloud Frankfurt YES 

City Cloud Karlskrona YES 

City Cloud Buffalo, NY  

Exoscale Frankfurt YES 

Exoscale Geneva YES 

Exoscale Zürich YES 

Exoscale Munich YES 

Exoscale Vienna YES 
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Exoscale Sofia YES 

Scaleway Amsterdam YES 

Scaleway Paris YES 

Scaleway Warsaw YES 

IONOS Frankfurt YES 

Deutsche Telekom Magdeburg YES 

Ventus Cloud Vienna YES 

Ventus Cloud St. Gallen  

Ventus Cloud Marchtrenk YES 

3.2.6 Cloud Benchmarker Service 

The Cloud Benchmarker Service was introduced to measure the performance characteristics 

of cloud storage locations in a repeatable way. While QoS metrics are collected anonymously 

for SkyFlok users, these are quite heterogeneous. Users' physical location and internet 

connection characteristics vary greatly and significantly affect the perceived performance of 

storage locations. To remove this variability, the Cloud Benchmarker Service performs 

measurements from a single location in Romania, using fly.io infrastructure. This removes any 

variability resulting from different geographic locations and, to some degree, from the 

connection’s characteristics. Measurements are scheduled so that all locations are covered. A 

random selection of results is shown in Figure 4. 

Figure 4: A random selection of Cloud Storage Location performance characteristics, averaged over 7 days. 

Each cloud location was measured once a day. 
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The decision to deploy to Romania was made in an effort to estimate cloud resource 

characteristics better, as observed from the K8s cluster of UVT. We plan to extend the 

deployment of the Cloud Benchmarker Service to different locations within Europe. This will 

make it possible to provide a more exact estimation of cloud location performance for a 

broader geographic user pool. For example, by also measuring in Western (e.g., Paris) and 

Northern Europe (e.g., Copenhagen), we could use interpolation to estimate expected 

performance results for users in Central Europe (e.g., Prague). Moreover, we are exploring the 

possibility of disseminating these results to the general public through a simple website as 

part of Work Package 7. 

The Skyflok.com backend provides the scheduling for performing the above measurements. 

To this end, using a Google App Engine cron job that runs once every 24 hours, the Backend 

creates a list of measurements that should be performed in the subsequent 24 hours, 

distributing them evenly over time. Measurements are bundled in small batches for practical 

and cost reasons and are defined as Google Cloud Tasks. The tasks provide a callback 

mechanism through which the Skyflok.com backend issues the measurements to the Cloud 

Benchmarker Service. 

The Cloud Benchmarker Service authenticates that the request comes from the Skyflok.com 

backend using a pre-shared key and then executes it. The results are returned to the Backend, 

which stores them for future queries. Whenever an application like the SERRANO Telemetry 

Service calls the Storage Service’s Cloud Telemetry API, the Gateway fetches these results 

from the Backend. 

3.3 Public APIs 

The SERRANO-enhanced storage service exposes three distinct APIs to the users of the 

SERRANO platform as well as the other platform services. The Secure Storage API exposes the 

core storage-related features. The Storage Policy API allows for the management of storage 

policies. The Telemetry API provides information about the storage locations. All three are 

documented using OpenAPI 3.0. The JSON-formatted file4 is uploaded to the Gateway’s 

SERRANO Github.com repository.  

3.3.1 Secure Storage API 

The Secure Storage API provides SERRANO users with a way to store and retrieve files. It is 

based on what can be considered the industry standard for object storage: Amazon Web 

Services S3. The decision to use a well-known API brings significant benefits, as it allows users 

to integrate their existing software solutions with the SERRANO platform seamlessly. There 

are S3 client libraries for most programming languages, along with countless tools for all 

common operating systems. 

 
4 OpenAPI 3.0 definition of services offered by the SERRANO-enhanced Storage Service https://github.com/ict-
serrano/On-Premise-Storage-Gateway/blob/master/openapi.json  

https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/openapi.json
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/openapi.json
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Amazon’s S3 service offers object storage. Objects are immutable, versioned entities with a 

key as a unique identifier and may have other associated metadata. Objects are organised into 

buckets, which have a name that is unique across the system and may also have metadata 

associated with them. There are several distinctions between file systems and object storage 

solutions. However, cloud storage solutions like Dropbox and Google Drive have shown that 

object storage semantics and characteristics, while being somewhat less permissive than 

those of file systems, are suitable for file storage. Indeed, SkyFlok also builds on this 

observation to offer its users a file system that is built on top of object storage. 

The Secure Storage API supports all major Create, Read, Update, Delete (CRUD) features of 

both objects and buckets in their simplest form. Thus, the project achieved the target value of 

100% for SIR.2 KPI, defined in Deliverable 6.6 (M27). 

Buckets 

● CreateBucket 

● DeleteBucket 

● ListBuckets 

Objects 

● GetObject 

● PutObject 

● ListObjectsV2 

● DeleteObject 

 An API reference can be found on Amazon’s website:  

https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Stora

ge_Service.html 

Amazon Web Services S3 provides two URL schemas to access buckets and their contents. The 

Secure Storage API adopts the first one. The second scheme was created by Amazon to 

address the bottlenecks related to routing requests through DNS on a global scale. Given that 

the SERRANO-enhanced Storage Service operates at a much more modest scale, the second 

schema does not bring any benefits. 

1 http://s3.amazonaws.com/[bucket_name]/ 

2 http://[bucket_name].s3.amazonaws.com/ 

The Secure Storage API uses the same parameters for each endpoint and maintains the error 

handling of AWS S3, both in terms of the format of error messages as well as the different 

codes that identify the cause. 

Development of the SERRANO-enhanced Storage Service will continue based on the three use 

cases' requirements. Some S3 features, such as Access Control Lists (ACL) and multi-part 

uploads, are planned and will be executed if needed. In all cases, compatibility with the S3 API 

as used by Amazon will be maintained. 

https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Service.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Service.html
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3.3.2 Storage Policy API 

The Storage Policy API allows the platform’s users as well as the SERRANO Resource 

Orchestrator to create, update and retrieve storage policies. These are the recipes used to 

translate an application’s storage task’s requirements to a storage resource allocation. The 

ARDIA framework developed in Work Package 5 contains both the Application and the Unified 

Resource Model definitions.   

Figure 5 shows an example of a JSON configuration file for a storage policy. It contains the list 
of cloud storage locations (backends) and SERRANO edge device locations (edge_devices). It 
also defines the compression and encryption policy in use as well as the method used to add 
redundancy to the data. The mechanism can be tailored using parameters. 

 

 

 

 

 

"name": "S3_test_storage_policy_hybrid", 
 
"description": "Used to run integration tests in INTRAsoft K8s         
cluster and locally using Docker.", 
             
"edge_devices": [1,2,3], 
             
"backends": [144], 

 
"redundancy":
            { 
                "scheme": "RLNC", 
                "redundant_packets": 1 
            }, 
 
"compression": 
            { 
                "scheme": " DEFLATE", 
      “wbits": -15, 

            “level”: 9 

            }, 
 
"encryption": 
            { 
                "scheme": "AES", 
                "key_size": 256, 
                "block_mode": "GCM" 
            } 
        } 
 

Figure 5: Example storage policy definition that uses compression, encryption and erasure 

coding. Erasure coded fragments are distributed to both cloud and edge locations with a 

redundancy factor of 100%.  
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The storage policy API is RESTful and exposes the following endpoints: 

Storage policy 

● CreateStoragePolicy 

● ListStoragePolicies 

● GetStoragePolicyOfBucket 

● EditStoragePolicy 

● DeleteStoragePolicy 

 

3.3.3 Cloud and Edge Telemetry API 

The Telemetry API is used to expose information about cloud storage locations. This 

information is used by the SERRANO Resource Orchestrator as input when automatically 

creating storage. It is also used by the SERRANO Telemetry Service to monitor the state of the 

cloud storage locations as resources of the SERRANO platform. 

One endpoint (/cloud_locations) exposes the following static characteristics for each cloud 

location: 

● unique identifier used in storage policies 

● provider name: Google, Amazon, …. 

● url 

● geographic location – longitude and latitude coordinates 

● country 

● city/region 

● jurisdiction 

● GDPR compliance 

● storage cost in $ / GB / month 

● ingress cost in $ / GB 

● egress cost in $ / GB 

as well as several dynamically measured parameters: 

● Round-trip times of uploading 1B of data 

● Round-trip times of uploading 1MB of data 

● Round-trip times of downloading 1B of data 

● Round-trip times of downloading 1MB of data 

● list of cases when the cloud location was unavailable. 
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The dynamic parameters are provided for the last 30 days, except for reports on unavailability. 

These are included for the entire duration of measurements and can be used to estimate the 

expected availability of each cloud. The measurements performed for 1B of data can be used 

to estimate the latency of accessing the storage. The measurements performed for 1MB of 

data, together with estimations on access latency, can be used to calculate an estimation for 

the upload and download throughput offered by each cloud location. Details on how the 

measurements are carried out can be found in Section 3.2.6. 

The characteristics of edge locations are exposed using a separate mechanism. A second 

endpoint (/edge_locations) provides a list of SERRANO devices along with their static 

characteristics: 

● unique identifier used in storage policies 

● name 

● description 

● cluster identifier 

● storage URL of S3 endpoints 

● team identifier 

● S3 region 

Dynamic characteristics are collected through a standard, Prometheus-compatible interface 

exposed by MinIO5. This provides a way to both monitor performance characteristics as well 

as configure alert rules for certain types of abnormal events. 

The SERRANO orchestration uses the unique and the cluster identifier to establish the 

connection between the two sets of information. The identifiers can then be used to create 

storage policies. 

3.4 Developer Portal 

To enhance the usability (non-functional requirement NF_GR4 defined in Deliverable 6.6 

(M27) of the SERRANO-enhanced Storage Service, we created a web portal to cater to the 

needs of the developers who will use the service. The features have been selected by studying 

the online interfaces of object storage providers and based on the project’s requirements with 

particular emphasis on the use cases. The developer portal will also play an essential role in 

the exploitation of the project’s outcomes. 

  

 
5 Monitoring and Alerting using Prometheus: https://min.io/docs/minio/linux/operations/monitoring/collect-
minio-metrics-using-prometheus.html 
 

https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-prometheus.html
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-prometheus.html
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3.4.1 Managing S3 buckets 

The first category of features on the developer portal relates to the management of S3 buckets 

and their contained files. These features offer a graphical interface for some of the Secure 

Storage API’s endpoints. This makes it possible for team members without technical training 

to use some of the service’s main features. Buckets can be listed as shown in Figure 6. 

The details of a bucket can also be examined (e.g., CORS configuration, selected storage policy, 

ACL, etc.) and the list of objects (files) visualized as show in Figure 7. 

 

Figure 7: Developer portal- listing the contents of an S3 buckets. 

Figure 6: Developer portal - listing S3 buckets. 
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New buckets can also be created using a simple wizard. 

3.4.2 Managing storage policies 

Storage policies are not a part of the S3 interfaces. As such, a graphical UI greatly enhances 

the experience of first-time SERRANO platform users. Policies can be listed (shown in Figure 

8) and created using a simple wizard (shown in Figure 9). 

 

Figure 8: Developer portal - listing Storage policies. 

 

 

Figure 9: Developer portal - creating a new storage policy. 
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3.4.3 Managing API keys 

API keys are used similarly to Amazon AWS keys for authenticating requests. In fact, they are 

a natural part/extension of the S3 interface and are adopted in some form by most, if not all, 

S3-compatible object storage solutions. 

 

Figure 10: Developer portal - listing API keys. 

 

The portal provides a way to list keys, as shown in Figure 10. New keys can also be added 

(Figure 11). We provide a way to limit the keys’ capabilities by scoping them per-bucket to 

have full, read-only, or no access to a bucket. This feature closely resembles AWS S3’s canned 

ACLs. 
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Figure 11: Developer portal - creating a new API key. 

 

3.5 Performance Considerations 

3.5.1 Reducing the number of edge-cloud HTTP calls 

Several steps have been taken to increase the performance of downloading and uploading 

files. Firstly, the number of HTTP requests made from the Gateway to the Skyflok.com backend 

has been reduced as much as possible. While requests between services of the Backend have 

low latency as they are deployed on the same infrastructure, the Gateway is situated on the 

edge, and thus every call made to the Gateway suffers from significant latency. Round-trip 

times for even very simple calls can range between 200-500ms.  

When uploading a file, the Gateway first authenticates with the Skyflok.com backend and 

requests download links as well as information such as the storage policy of the bucket. The 

Backend performs several checks for each file upload (e.g., bucket ownership) as part of this 

process. However, since the beginning of the project, these have been consolidated into a 

single edge-cloud HTTP call. When it finishes uploading the fragments, the Gateway signals 

this to the Backend, which can then store the necessary metadata. Since storage policies are 

immutable, they are cached by the Gateway and only requested from the Backend the first 

time a bucket is accessed.  

File downloads have been streamlined to an even greater extent. The Gateway requests all 

metadata required to download fragments from the Backend when the S3 call is received. 

Following this, it completes the process autonomously. We provide an example of the time 

taken to upload and download a single file of 10MB in Figure 12. Three different storage 

policies have been used. The cloud-only policy is slowest as the time required to upload and 
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download fragments is significant. The edge-only policy almost eliminates this delay entirely, 

while the hybrid policy is somewhere in between. 

 

 

3.5.2 File caching 

To further improve file download performance, we introduced a file caching solution. Since 

the Gateway has been designed to be stateless and a file cache affects this highly desirable 

property, caching is an opt-in service. If a user decides to utilize it, they must have mechanisms 

in place to guarantee data consistency. A straightforward approach is only to deploy a single 

instance of the Gateway, thus ensuring that the cache is always consistent with the distributed 

data. A more complex approach requires sharding of the data, where each instance of the 

Gateway is used to access a subset of a user files. For example, sharding can be performed by 

taking the S3 bucket as a separator. Other mechanisms can also be put in place. 

The Gateway employs write-through caching. As files are uploaded through the S3 interface, 

the Gateway stores a copy of the original data on a local, typically ephemeral, file system. 

Internally, it records cached files along with their size, bucket, and time of caching. Downloads 

that result in a cache hit can be served from the file system. Cache misses are served by 

downloading the fragments, decoding, decrypting, and decompressing the data. When a file 

is deleted using the S3 interface, it is also removed from the cache. A Least Recently Used 

(LRU) approach is employed that favours recent files. If the cache fills up, older entries are 

deleted to make room for new entries. This is done following the assertion that more recent 

files are more likely to be accessed than older files. Users have the option to turn on read-

through caching as well. In case of cache misses, the file is added to the cache as it is being 

downloaded. 

Upload 10MB Download 10MB 

Figure 12: Preliminary measurements for file upload and download of a single 10MB file. 
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Beyond simply turning the file caching feature on and off, the Gateway offers the ability to 

configure the strategy using the following parameters: 

- Maximum size of the file cache 

- Minimum disk space kept empty 

- Maximum file size to be cached 

- A blacklist of file types (MIME) that shouldn’t be cached 

- Enable or disable read-through caching 

Currently, we offer a simple REST interface to configure these parameters. However, we might 

integrate this feature into storage policies, making caching a per-bucket setting based on 

future discussions with the UC providers and technical partners. Given that this is a recently 

implemented feature with some details subject to change, it will be documented in greater 

detail in WP6 deliverables as part of the Secure Storage Use Case at the end of the project.  

 

3.6 Integration with SERRANO Platform Services 

The SERRANO-enhanced Storage Service is a core component of the SERRANO platform and is 

integrated with other platform services to offer users an accelerated experience regarding file 

storage across the edge-cloud continuum. An AI-enhanced orchestrator automates the 

creation of storage policies, matching user intents with the optimal storage configuration. 

Here we limit the presentation to technical details on how three integrated workflows have 

been implemented as part of the Storage Service. More details on the benefits of the 

integrations have been and will be presented in WP6 deliverables in the context of UC1: 

Secure Storage. Furthermore, the implementation details of the other named platform 

services can be found in various deliverables from Work Packages 3, 4, and 5. 

3.6.1 Automatic storage policy creation 

Users declare their applications’ intents using the ARDIA Framework. Each separate storage 

task is associated with a separate intent (applications may have multiple storage tasks and 

multiple applications may share a storage task), which is translated by the SERRANO platform 

to a newly created storage policy. User applications can assign the automatically created 

policy to newly created S3 buckets. 

The process is designed to be simple and seamless for the user. Internally, several mechanisms 

are in effect. The Storage service acts as a source of information for storage resources. 

Information about cloud locations is exposed through the Cloud Telemetry API, whereas edge 

locations are simply listed in the Edge Telemetry API. The SERRANO Telemetry Service 

consumes and aggregates this information and also retrieves telemetry data from the 

SERRANO edge devices directly using a Prometheus-compatible interface. The AI-enhanced 
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Service Orchestrator maps the intents to an internal representation that it supplies to the 

Resource Orchestrator. The Resource Orchestrator consumes the aggregated information 

related to storage resources and uses the algorithms defined in the Resource Optimization 

Toolkit to create an optimal data distribution. This is the core of a storage policy and includes 

the redundancy scheme as well. The creation of the storage policy is done through the Storage 

Policy API. 

3.6.2 Acceleration of data processing 

The Gateway’s file upload and download workflows include three data processing step pairs: 

compression, encryption, and erasure coding. The Gateway uses the accelerated algorithms 

developed as part of WP for encryption and erasure coding to increase performance. 

Encryption is accelerated using GPUs, while FPGAs are employed for erasure coding. The final 

integration work is in progress and will use a set of libraries developed by AUTH. These will be 

called directly from the Gateway’s Python code whenever the appropriate hardware is 

available.  

3.6.3 Offloading of encryption for TLS connections 

To reduce CPU load, the Gateway offloads the task of encrypting TLS connections to DPUs, 

leveraging NVidia Bluefield cards when available. The Gateway is left unchanged, and the 

offloading is performed seamlessly. Instead of relying on the Gateway’s web server, Uvicorn, 

to provide TLS encryption, a nginx TLS termination proxy is deployed. This forwards all HTTPS 

connections to the Gateway through HTTP. We use a relatively new version of nginx which 

supports a feature called kernel TLS. The switching between CPU and DPU-based encryption 

is done by a custom OpenSSL implementation developed by Nvidia. More details can be found 

in Deliverable 3.2 (M15). 

3.7 Privacy and Security 

Data privacy and security are critical concerns for almost any IT system’s users. This is 

especially true for enterprises, where the nature of the data means its protection is critical to 

complying with laws and regulations. For example, GDPR regulations explicitly and precisely 

stipulate how private data must be handled. While cloud storage has steadily increased its 

adoption rate, concerns over its security remain. Cloud providers or user accounts of cloud 

services may be hacked. Furthermore, some cloud providers explicitly state that they scan files 

uploaded to their service6. Unfortunately, local storage solutions have their own security 

issues. Most small to medium enterprises do not have the capability or know-how to match 

the level of security afforded to cloud services by having dedicated teams to manage software 

patching, monitoring of network traffic and other security-related operations.  

 
6 Google, "Is Google Drive secure?," [Online]. 
 Available: https://support.google.com/drive/answer/141702?hl=en&ref_topic=2428743. 
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The Secure Storage use case presents a hybrid system that includes both cloud-based and on-

premises storage. As such, it has to deal with a larger attack surface than purely local or purely 

cloud-based solutions. To counter this increased threat, the SERRANO-enhanced Storage 

Service includes a wide range of platform-level measures adopted to ensure a high level of 

data security and privacy. 

Data in transit can be intercepted by either a man in the middle or a snooping attack. To limit 

the danger posed by such attacks, all communication between the user and the service, as 

well as the different components of the service, must be encrypted. In practice, this is ensured 

through HTTPS where the TLS protocol provides protection through AES encryption. 

Furthermore, the storage service employs two additional design principles to limit the attack 

surface. First, data does not leave the company’s infrastructure without being encrypted. To 

this end, the AES-GCM encryption used to protect data at the storage locations is applied 

before the data reaches the public internet. As such, even if an attacker somehow decrypts 

the TLS traffic in any place outside the company’s premises, it will still not be able to access 

the original data. Second, data is always transferred directly between the Gateway and the 

storage locations. No data transits the Backend, thus lowering the attack surface. 

3.7.1 S3 authentication 

All requests on the S3 Secure Storage API must be signed using the most recent version of 

Amazon’s authentication system: AWS Signature Version 47. The Gateway calculates the 

requests’ signature in the manner described in Amazon’s documentation and compares it to 

the signature supplied by the client application. If the signatures do not match, the request is 

rejected. The signature is calculated based on a large number of different parameters. Beyond 

its core role of authenticating requests, the signature process is designed to protect against 

tampering as part of a man-in-the-middle attack and replay-based attacks, as it has a time 

component. Access is provided with a pair of credentials in the form of an access key ID and a 

secret key. The secret key is one of the inputs to the signature verification process. The 

credentials are provided to teams, where a team is a collection of users. There is no possibility 

to access files from a different team than your own. 

Given that the Gateway is deployed to the customers’ premises and applications that access 

it are likely running on the same infrastructure, on a protected internal network, this level of 

request signing may be considered somewhat unnecessary. Furthermore, large requests such 

as file uploads carry a performance penalty as the SHA-256 hash of the HTTP request payload 

must be calculated on the Gateway. Nevertheless, this mechanism makes it possible to deploy 

the Gateway to a more challenging environment in terms of security. Furthermore, it is a 

reasonable assumption that the operators of S3 client applications expect such security 

mechanisms to be in place. 

 
7 Amazon - Authenticating Requests (AWS Signature Version 4) 
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html 
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3.7.2 Pre-signed URLs 

A key design consideration that benefits both scaling and security is that the owners of the 

data upload/download fragments of their files directly to/from storage locations. As such, the 

Skyflok.com backend does not handle data directly. This is achieved by generating pre-signed 

URLs (temporary URLs in OpenStack Swift parlance) on the Backend to connect users directly 

with the data stored in the storage locations. 

Whenever a file is to be uploaded or downloaded, the Gateway authenticates with the 

Skyflok.com backend and requests a set of upload/download links. The links point to protected 

resources on the cloud and edge locations. This poses a security challenge; how can the 

Gateway be trusted with the credentials necessary to access these resources? This component 

is outside the control of the service's creators, as it is deployed on customer infrastructure. If 

these credentials are stored on site, they will provide unauthorised access to data. 

 

Figure 13: Using pre-signed URLs to download a file 

 

The solution is to create a special set of cryptographically signed links – pre-signed URLs – 

which do not require additional credentials. The links have a short lifespan and can generally 

only be used once. The signature is calculated using asymmetric-key cryptography and is 

guaranteed to be different every time. Given the elegance of this solution, CC has also 

integrated the SERRANO edge devices with the help of this feature. Figure 13 illustrates the 

process of downloading a file using a pre-signed URL.  

Closely tied to this technique is the design principle that data never leaves the customer's 

premises unencrypted. Therefore, data privacy will be maintained even if cloud locations 

outside the user's control are compromised. The SERRANO-enhanced Storage Service relies 

on industry-standard AES encryption using the GCM block scheme. It is included in the NSA 

Suite B Cryptography and is used in many communication protocols such as TLS 1.3, SSH, and 

IEEE 802.1AE (MACsec) Ethernet security. 256-bit keys are used along with randomly 

generated initialisation vectors. 
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3.7.3 Random Linear Network Coding  

After a file is encrypted, it is also erasure-coded using Random Linear Network Coding (RLNC)8. 

RLNC is a novel erasure coding technique that creates a set of coded fragments or packets. 

Figure 14 illustrates the encoding process through the example of a single-generation 1000-

byte file. First, the example file is sliced into four (4) separate symbols, each 250 bytes long. 

These are combined using a set of randomly generated coefficients into six (6) coded packets. 

The coefficients are selected from a mathematical structure called a finite field. Different sized 

fields have different trade-offs in terms of performance and reliability, with the Galois Field of 

size 28 being a relatively common choice. This is partly due to practical reasons, as each field 

element can be represented using a single byte. In this particular example, two packets are 

redundant and have the purpose of protecting against temporary or permanent storage 

location issues. In other words, any 4 of the 6 packets are enough to reconstruct the original 

file. For a similar level of protection using conventional replicated storage, 3 copies of the 

original file would need to be stored. This would constitute a 200% overhead compared to the 

50% overhead achieved by RLNC in this example.  

  

Figure 14: RLNC encoding of a 1000-byte file using 4 symbols that are combined into 6 erasure-coded 

packets. 

 

 

 
8 "Random Linear Network Coding (RLNC)-Based Symbol Representation,"  

https://tools.ietf.org/id/draft-heide-nwcrg-rlnc-00.html. 
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In most applications, the packets (coded fragments) also include the coefficients used to 

create them. This makes it possible to decode without needing to look them up separately. 

However, they can be stored separately, further enhancing the system’s security. In this case, 

beyond the conventional roles of an erasure code, RLNC also acts as a simple cipher. Because 

the coded fragments are created as linear combinations of the original data using random 

coefficients, an attacker must guess the coefficients correctly to decode the data. 

Furthermore, the data distribution to physically separate cloud and edge locations also has a 

privacy-enhancing effect. A malicious actor would need to break into several locations and 

retrieve the data before attempting to solve the system of linear equations and then decrypt 

the data. In other words, access to a subset of coded fragments with a combined size smaller 

than the original data provides the attacker with no information about the original data.  

Beyond defending against attacks directed against cloud storage locations and even snoopy 

cloud providers, these measures are also beneficial if the edge storage locations are less 

secure. This is the case when an edge location is located in an environment that does not have 

physical access controls of the calibre of those found in a modern datacentre or an enterprise-

grade server room. 

The metadata and the encryption keys for protecting data at rest are stored in the Skyflok.com 

backend, hosted using Google Cloud Services. To access them, an attacker would either need 

to compromise Google’s security infrastructure or a user account with access to this 

information. To limit the attack surface, only the CEO and CTO of Chocolate Cloud have access 

and must use a complex password and 2-factor authentication. 
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4 Trust and Isolation on Untrusted Physical 

Tenders 

A software supply chain attack occurs when malicious code is purposefully added to a 

component that is sent to target users. The code may be introduced to the component in 

several ways, such as via compromise of the source code repository, theft of signing keys, or 

penetration of distribution sites and channels. Customers unknowingly acquire and deploy 

these compromised components onto their systems and networks as part of an authorized 

and normal distribution channel. Advanced malicious code typically does not disrupt normal 

operations and may not activate for several days or weeks, thereby remaining hidden from 

typical application and software testing practices. 

For instance, a telecommunications company buys core network systems management 

software from a trusted provider; however, unbeknownst to the trusted provider, one of the 

components it uses in the product has been compromised and now contains malicious code. 

The deeper into the supply chain it occurs, the more difficult it is to identify in advance. The 

malicious actor may use this inserted vulnerability as part of a larger attack chain that uses 

the malicious code to gain access within the telecom core network and pivot towards other 

attack vectors. 

The malicious actor may use this inserted vulnerability as part of a larger attack chain that 

uses the malicious code to gain access within the telecom core network and pivot towards 

other attack vectors. For instance, a potential attack vector stems from ‘persistent threats’, 

where malware is inserted into a system so that the platform always boots in a compromised 

state, even after legitimate software is re-installed. To combat this attack, system vendors are 

turning to Secure Boot and Measured Boot to assure that when a platform boots, it is running 

code that has not been compromise.  

4.1 Hardware Trust 

An edge device is susceptible to several attacks by malicious users, physical or otherwise. For 

instance, one could gain access to the storage backend of an edge server (e.g., an SD card, 

eMMC memory etc.) and tweak the operating systems binary that drives the device to relay 

data to a malicious third party. This type of attack is relevant to all three use cases of the 

SERRANO platform. To prevent this, mechanisms such as Secure boot and Measured boot are 

introduced. 

The terms Secure Boot and Measured Boot are often seen together, and they can be 

complementary, but they are not at all the same. Both technologies rely on a “Root of Trust”, 

that is, some piece of code or hardware that has been hardened well enough that it is not 

likely to be compromised and either cannot be modified at all or else cannot be modified 

without cryptographic credentials. 
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For many systems, that "Root of Trust" is provided by the Unified Extended Firmware Interface 

(UEFI) BIOS9 code that takes the place of the ad-hoc “legacy” BIOS that has been in use for 

years. The UEFI BIOS works with platform hardware to ensure that the flash memory that 

contains the BIOS cannot be modified without cryptographic authority, thus forming the "Root 

of Trust". 

A UEFI BIOS depends on several elements to ensure the Root of Trust is not compromised: 

● The BIOS contains a public key that is controlled by the equipment manufacturer. Any 

authorized change to the BIOS must be signed with the corresponding private key. 

● The BIOS itself is required to check the validity of the signature on a proposed update 

using the public key stored in a protected part of the BIOS flash. 

●  The BIOS must configure processor hardware features to block any unauthorized 

writes to the flash. In an x86 design, Protected Range Registers are one line of defence, 

with other mechanisms also available. 

Both Secure and Measured Boot start with the Root of Trust and extend a "chain of trust", 

starting in the root, through each component, to the Operating System (and in embedded 

systems, often to the application itself). However, once a Root of Trust is established, Secure 

Boot and Measured Boot do different things. 

Modern platforms of all sorts often use a multi-stage boot, where firmware in flash launches 

an OS Loader (such as Grub2 or u-boot), which then loads and launches a series of OS 

components. 

4.1.1 Secure Boot 

In a Secure Boot chain (Figure 15), each step in the process checks a cryptographic signature 

on the executable of the next step before it is launched. Thus, the BIOS will check a signature 

on the loader, and the loader will check signatures on all the kernel objects it loads. The 

objects in the chain are usually signed by the software manufacturer, using private keys that 

match up with public keys already in the BIOS. If any of the software modules in the boot chain 

have been hacked, then the signatures will not match, and the device will not boot the image. 

Because the images must be signed by the manufacturer, it is generally impractical to sign any 

files generated by the platform user (such as config files). 

Secure Boot is relatively self-contained. If the handful of signed objects has not been tampered 

with, the platform boots, and the Secure Boot process is done. If objects have been changed 

so the signature is no longer valid, the platform does not boot, and a re-installation is 

indicated. 

 

 
9 Unified Extensible Firmware Interface Forum: http://www.uefi.org/ 



D3.4 – Final release of SERRANO secure infrastructure layer  

   

ict-serrano.eu  40/56 

 

 
Figure 15: Secure boot execution flow 

 

4.1.2 Measure Boot 

In a Measured Boot chain (Figure 16), we still depend on a Root of Trust as the starting point 

for a chain of trust. However, in this case, before launching the next object, the currently-

running object “measures” or computes the hash of the next object(s) in the chain and stores 

the hashes so that they can be securely retrieved later to find out what objects were 

encountered. Measured Boot does not make an implicit value judgement as to good or bad, 

and it does not stop the platform from running, so Measured Boot can be much more liberal 

about what it checks. This can include all kinds of platform configuration information, such as 

which was the boot device, what was in the loader config file, or anything else that might be 

interesting. 

 

 
Figure 16: Measured boot execution flow 

 

Measured Boot is more flexible but also requires an important step. All those hashes have to 

be stored so that there is very little chance that they can be manipulated and a very high 

likelihood that they can be reliably reported to a management station using a process called 

Attestation. Since Measured Boot does not stop the platform from booting, the host OS 

cannot be relied upon to report the hashes. 
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In the case of Measure Boot, the Trusted Platform Module (TPM) is used to record these 

hashes. The TPM is a small self-contained security processor that can be attached to a system 

bus as a simple peripheral10. Of the many functions a TPM can provide, one is the facility called 

Platform Configuration Registers (PCRs), used for storing hashes. 

PCRs are registers in the TPM that are cleared only at hardware reset and cannot be directly 

written. One can “extend” values in PCRs, that is, to hash a new value into whatever was 

previously in the PCR. Thus, as the platform boots, each measurement can be accumulated in 

the PCRs to demonstrate which modules were loaded unambiguously. 

Once the PCRs have been collected, the second step is for the TPM to report the values, signed 

by a key only the TPM can access. The resulting data structure, called a Quote, gives the PCR 

values and a signature, allowing them to be sent to a Remote Attestation server via an 

untrusted channel. The server can examine the PCRs and associated logs to determine if the 

platform is running an acceptable image. 

Secure Boot and Measured Boot can be used simultaneously: Secure Boot ensures that the 

system only runs authentic software, and Measured Boot gives a much more detailed picture 

of how the platform is configured. 

4.1.3 Trusted Platform Module as the Silicon Root of Trust 

A TPM device supports many cryptographic functions. Notably the “PCR Extend” and “Seal” 

operations are used in popular measured boot architectures. Below, we elaborate on the two 

functions used in the SERRANO measured boot process. 

PCR Extend: The TPM can be asked to perform a “PCR Extend” command, where a particular 

hash value would be added to the existing hash value in a Platform Configuration Register 

(PCR), and the resultant hash value can be stored back in the same PCR. For instance: 

PCR_ContentNew = Extend (PCR_ContentCurrent,  New_Measurement) 

One can only extend the current value in the PCR with a new hash value, and the existing 

contents cannot be overwritten. This provides these key capabilities: 

1. The order of measurements - Final value will be the same if and only if the 

measurements are done in the same order. 

2. The final PCR value captures the whole history of measurements - useful in quickly 

validating final states against expected state. 

3. Deterministic - If one repeats the same history of measurements, the same final PCR 

value will be produced - Useful in validating a change in one of the input sequences. 

4. Seal: The TPM can seal a given secret information against the current PCR values 

through a TPM command called “Seal”. Once sealed, the information can be read back 

 
10 http://forums.juniper.net/t5/Security-Now/What-is-a-Trusted-Platform-Module-TPM/ba-p/281128 
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only through an unseal command, which will succeed only if those PCRs hold the same 

set of values as they were during the sealing operation. In other words, the secret 

cannot be recovered if those PCR values are not the same. 

Using these TPM capabilities, we build a powerful solution to measure and validate the 

software state of the SERRANO edge platform. The measuring process is called Measured 

Boot, and the method of getting the measurements verified and attested is called Attestation. 

In Measured Boot method each of the software layers in the booting sequence of the device, 

measures the layer above and extends the value in a designated PCR. For example, BIOS 

measures various components of the bootloader and stores these values in PCRs 0-7. Likewise, 

bootloaders measure the Linux kernel boot and store the measurements in PCRs 8-15. The 

Linux kernel has a feature called Integrity Measurement Architecture (IMA), where various 

kernel executables/drivers can be measured and stored in PCR 10. 

During these Extend operations, the operations are recorded by the BIOS and the bootloader, 

in a special firmware table, called the TPM Event Log table, and this table is handed over to 

the Operating System (OS) during OS takeover. By playing the same sequence of Extend 

operations recorded in each TPM Event Log, the system can check and verify if the final PCR 

values match, and if so, then the Event Log (and hence the software layers) can be trusted. 

4.2 Confidential Computing and Trusted Execution 

Security has long been one of the key goals of systems design11. Cryptography has enabled the 

safe storage (at rest) and transmission (in flight) of important data. However, there is still a 

situation when data can be vulnerable. The applications decrypt the data in order to save 

them; therefore, the decrypted version of data is stored in RAM, CPU caches, and registers. In 

recent years, a high number of memory scraping and CPU side-channel attacks have been 

reported. Under these circumstances, the wide adoption of cloud and edge computing, where 

users cannot control the underlying infrastructure, raises significant concerns regarding the 

security of data in use. In that context, the user cannot trust any parts of the system stack that 

cannot control such as the host Operating System and the hypervisor. 

Confidential computing aims to address the data in-use security concerns. Due to the reasons 

explained previously, confidential computing cannot be a software-level solution. Accordingly, 

it is based on hardware extensions that modern CPUs include and provide Trusted Execution 

Environments (TEE). A TEE is an enclave that isolates the code and the data of a workload from 

any other system component.  

Depending on the implementation, a TEE might use fencing and locking mechanisms to ensure 

the isolation of the trusted code. Only specific cores and memory cases are used when a 

trusted code is loaded in a TEE, aiming to avert side-channel attacks. Furthermore, TEEs can 

also use encryption for the data stored outside the TEE resources. The communication with a 

TEE happens through a well-defined interface, and all I/O operations are encrypted. As a 

 
11 L. Smith, "Architectures for secure computing systems," MITRE CORP BEDFORD MASS, 1975. 
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result, TEEs isolate the code and data inside a TEE from any other process, user, or system 

component. Only the trusted code is able to view or modify the encrypted data. 

The encryption and signing keys that are used from a TEE should be saved in a hardware 

module. That module can be the starting point (Root of Trust) and should be trustworthy. 

Except for encryption and signing keys, the RoT might contain other root secrets and a set of 

functions needed for the encryption or validation of data. The code and data (keys) of a RoT 

are usually stored in a read-only memory (ROM), restricting any modifications. Trusted 

platform modules (TPMs) described in previous sections are examples of RoT that can 

generate cryptographic keys and protect critical information such as cryptographic and signing 

keys, and passwords. 

Using the RoT platforms can secure the underlying firmware and extend the trust to higher 

levels of the software stack. A verified firmware can verify the OS boot loader, which can verify 

the Operating System and extend the trust to the hypervisor and/or container engine. The 

process of extending the trust from a RoT to higher levels of the software stack is called a 

Chain of Trust (CoT).  

Apart from the isolation, a TEE should be able to verify the integrity of an application code. 

Even if the code inside a TEE is isolated and cannot be changed, there is still the danger of 

someone tweaking that code before it is launched inside a TEE. To be able to verify that the 

workload running on the hardware node is indeed the one intended by the system, we use 

attestation: through attestation, the workload tenant can verify that the workload is running 

on a genuine, authenticated platform and that the initial software stack is the expected one. 

Our goal is to support as many TEEs as possible. Vendors provide a wide range of security 

mechanisms for TEEs, from memory isolation (e.g., Intel MKTME, Arm External Memory 

(DRAM) Encryption and Integrity with CCA), application isolation (e.g., Intel SGX, Arm 

Trustzone, IBM Apllication isolation technology) and virtual machine isolation (e.g., Intel Trust 

Domain Extensions (TDX), AMD Secure Encrypted Virtualization (SEV) or IBM Protected 

Execution Facility (PEF). We focus more on the latter case since we target multi-tenant 

environments as well as due to the extra layer of isolation offered by hardware-assisted 

virtualization. 

4.2.1 Workload attestation 

To securely sign, verify and provide attestable metadata to containers that will be deployed 

on a cluster, we are using the Sigstore12 project. Sigstore is an open-source project that 

provides digital signing and verification of container images. Within the container image 

supply chain, it establishes confidence and maintains the image's integrity by utilizing 

cryptographic digital signatures and transparency log technologies. 

Sigstore consists of a set of tools: 

• Cosign (signing, verification, and storage for containers and other artifacts) 

 
12 Sigstore - https://www.sigstore.dev 
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• Fulcio (root certificate authority) 

• Rekor (transparency log) 

• OpenID Connect (means of authentication) 

• policy-controller (enforcing container orchestration policy) 

Cosign: Tool for signing/verifying containers (and other artifacts) that ties the rest of Sigstore 

together, making signatures invisible infrastructure. It includes storage in an Open Container 

Initiative (OCI) registry. 

Fulcio: A free root certification authority, issuing temporary certificates to an authorized 

identity and publishing them in the Rekor transparency log. 

Rekor: A built-in transparency and timestamping service, Rekor records signed metadata to a 

ledger that can be searched but cannot be tampered with. 

OpenID Connect: An identity layer that checks if you're who you say you are. It lets clients 

request and receive information about authenticated sessions and users. 

Policy Controller: An admission controller for Kubernetes for enforcing policy on containers 

allowed to run. 

How Sigstore works 

We are using cosign to sign and verify software artifacts, such as container images and blobs. 

Cosign operates in two different modes: key pair mode and keyless mode. We have chosen 

the keyless mode as our preferred option to simplify the process and avoid the burdensome 

task of securely managing and distributing keys. In keyless mode, the Sigstore associates 

identities, rather than keys, with an artifact signature. To do that, it utilizes Fulcio to issue 

short-lived certificates, binding an ephemeral key to an OpenID Connect (OIDC) identity. Fulcio 

uses OIDC tokens to authenticate requests. Subject-related claims from the OIDC token are 

extracted and included in issued certificates. Signing events are logged in Rekor, a signature 

transparency log, providing an auditable record of when a signature was created. 

Verifying identity and signing the artifact 

The process of verifying identity and signing the artifact is the following: 

• An in-memory public/private key pair is created. 

• The identity token is retrieved. 

• Sigstore's certificate authority verifies the identity token of the user signing the artifact 

and issues a certificate attesting to their identity. The identity is bound to the public 

key. Decrypting with the public key will prove the identity of the private key holder. 

• For security, the private key is destroyed shortly after, and the short-lived identity 

certificate expires.  

Users wishing to verify the software will use the transparency log entry rather than relying on 

the signer to safely store and manage the private key. 
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Recording signing event 

To create the transparency log entry, a Sigstore client creates an object containing information 

allowing signature verification without the (destroyed) private key. The object contains the 

hash of the artifact, the public key, and the signature. Crucially, this object is timestamped. 

The Rekor transparency log "witnesses" the signing event by entering a timestamped entry 

into the records that attests that the secure signing process has occurred. Clients upload 

signing events to the transparency log so that the events are publicly auditable. Artifact 

owners should monitor the log for their identity to verify each occurrence. The software 

creator publishes the timestamped object, including the hash of the artifact, public key, and 

signature. 

Verifying the signed artifact 

When a software consumer wants to verify the software’s signature, Sigstore compares a 

tuple of signature, key/certificate, and artifact from the timestamped object against the 

timestamped Rekor entry. If they match, it confirms that the signature is valid because the 

user knows that the expected software creator, whose identity was certified when signing, 

published the software artifact in their possession. The entry in Rekor’s immutable 

transparency log means that the signer will monitor the log for occurrences of their identity 

and will know if there is an unexpected signing event. 

4.2.2 Incorporating Sigstore in SERRANO 

Signing 

A set of steps is required to enable image signing using the Sigstore (Figure 17). 

First, the image building process is automated using GitHub Action workflows. This approach 

grants us access to a GitHub Workflow identity token, which GitHub provides for each 

workflow run. This identity is specifically associated with the corresponding GitHub Action 

workflow. It includes additional metadata that helps identify the GitHub repository of the 

workflow, the workflow name, and more.  

Using this OpenID Connect token available in the workflow's environment, we can sign the 

produced image using cosign. Acting as a Sigstore client, cosign will generate an in-memory 

public/private key pair and request a new short-lived certificate from Fulcio using the OIDC 

token and the key pair. 

Fulcio then provides the certificate to sign the image. Fulcio will append the certificate to an 

immutable, append-only, cryptographically verifiable certificate transparency (CT) log, 

allowing for publicly auditable issuance. 

Given the certificate, cosign will sign the image using the provided certificate and push the 

signature to the OCI Image Registry, where the image is stored.  

The signing event is recorded in a transparency log entry. To achieve this, cosign creates an 

object containing information allowing signature verification without the (destroyed) private 



D3.4 – Final release of SERRANO secure infrastructure layer  

   

ict-serrano.eu  46/56 

 

key. The object contains the hash of the artifact, the public key, and the signature. Crucially, 

this object is timestamped. 

The Rekor transparency log "witnesses" the signing event by entering a timestamped entry 

into the records that attests that the secure signing process has occurred. 

 

 
Figure 17: Image and signature creation13 

 

Verifying 

When a software consumer wants to verify the software’s signature, Sigstore compares a 

tuple of signature, key/certificate, and artifact from the timestamped object against the 

timestamped Rekor entry. 

If they match, it confirms that the signature is valid because the user knows that the expected 

software creator, whose identity was certified when signing, published the software artifact 

in their possession. 

The entry in Rekor’s immutable transparency log means that the signer will be monitoring the 

log for occurrences of their identity and will know if there is an unexpected signing event. 

Consuming verified containers 

To ensure that only legitimate container images are deployed in our Kubernetes (k8s) cluster, 

we can utilize Sigstore's policy-controller admission controller. This controller is responsible 

for enforcing policies that validate the proper signing of images and the presence of verifiable 

supply-chain metadata. Additionally, the policy-controller resolves the image tags to ensure 

that the image being executed is identical to the one initially admitted. 

By verifying each image against the workflow that created it, the policy controller can validate 

that the image was signed by a workflow deployed by a specific entity and within a specific 

GitHub repository. This verification process guarantees that the image has not been tampered 

with since its creation, providing an added layer of security. 

 
13 Source: RedHat 

https://cloud.redhat.com/blog/signing-and-verifying-container-images
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4.2.2.1 Policy Controller 

The policy controller admission controller14 can enforce policy on a Kubernetes cluster based 

on verifiable supply-chain metadata from cosign15. It also resolves the image tags to ensure 

the image being deployed is not different from when it was admitted. 

By default, the policy controller admission controller will only validate resources in 

namespaces that have chosen to opt-in. This can be done by adding the label 

policy.sigstore.dev/include: "true" to the namespace resource. 

An image is admitted after it has been validated against all ClusterImagePolicy that 

matched the digest of the image and that there was at least one passing authority in each of 

the matched ClusterImagePolicy. So each ClusterImagePolicy that matches is AND for 

admission, and within each ClusterImagePolicy authorities are OR. 

In addition, the policy controller offers a configurable behaviour defining whether to allow, 

deny or warn whenever an image does not match a policy. This behaviour can be configured 

using the config-policy-controller ConfigMap created under the release namespace (by default 

cosign-system), and by adding an entry with the property no-match-policy and its value 

warn|allow|deny. By default, any image that does not match a policy is rejected whenever 

no-match-policy is not configured in the ConfigMap. 

4.2.2.2 ImagePolicyWebhook 

The ImagePolicyWebhook admission controller is an alternative method to statically attest 

images pulled to the specific node. It is a Kubernetes feature that allows us to enforce policies 

for image verification at runtime by calling an external webhook that can verify the digital 

signature of container images. 

To use ImagePolicyWebhook, we follow these steps: 

• Create a webhook service that can verify the digital signature of container images. The 

webhook service should be able to receive a request from the ImagePolicyWebhook 

admission controller and return a response indicating whether the image should be 

allowed or denied. 

• Deploy the webhook service on the cluster. 

• Configure the ImagePolicyWebhook admission controller to call the webhook service 

for image verification. This can be done by adding the ImagePolicyWebhook admission 

controller to the list of admission controllers in the Kubernetes API server 

configuration file and specifying the URL for the webhook service. 

As mentioned earlier, we use the cosign tool to provide attestable metadata to containers, in 

order to be used by the ImagePolicy admission controller. Cosign, Image Signing, and 

 
14 https://docs.sigstore.dev/policy-controller/overview/ 
15 https://github.com/sigstore/cosign 
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ImagePolicy Verification are the three components that make up the Attestation Mechanism 

for SERRANO.  

ImagePolicy Admission Controller  

The ImagePolicy admission controller acts as a gatekeeper for deploying container images 

inside our k8s clusters. It does this by enforcing regulations that specify which container 

images are permitted to operate and are therefore considered genuine.  

When a container image is presented for deployment, the ImagePolicy admission controller 

validates the image by carrying out the following procedures to ensure that it is authentic16: 

a. Image Retrieval: The admission controller is responsible for retrieving the container 

image from the registry or repository that has been defined. 

b. Validation of the Signature: The Admission Controller makes use of Cosign in order to 

validate the embedded cryptographic signature that is contained within the image 

information. It compares the signature to the associated public key to confirm that the 

image has not been tampered with and came from a reliable source. This is done to 

ensure that the signature is valid. 

c. Policy Evaluation: The admission controller examines the image in light of previously 

established policies. These policies may take into consideration aspects such as the 

image's provenance, the findings of vulnerability scanning, and the requirements for 

compliance. Our organization's security requirements and industry best practices 

served as the basis for establishing these rules. 

d. Decision Making: After the findings of the signature validation and policy evaluation 

have been analyzed, the ImagePolicy admission controller will either decide to accept 

or refuse the deployment of the container image. If the image meets all of the 

requirements and is able to pass verification, it will be recognized as valid and will be 

granted permission to run inside of the cluster. In that case, it is rejected, which 

eliminates any potential threats to security. 

 

We ensure that only trusted and certified container images are deployed in our cluster by 

using the Cosign software attestation mechanism and combining it with the ImagePolicy 

admission controller. This strategy improves the safety and integrity of our containerized 

programs and reduces the likelihood that those applications would run corrupt or modified 

image files. 

 
16 https://cloud.redhat.com/blog/signing-and-verifying-container-images 

https://cloud.redhat.com/blog/signing-and-verifying-container-images
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Figure 18: Signature Verification Process17 

 

4.3 Isolation Between Tenants in Edge Computing 

Edge resources are far more limited than those in the cloud, making it essential to use them 

efficiently. In this context, the underlying software, which enables the execution of 

applications at the edge devices, needs to be lightweight and consume as few resources as 

possible. 

The virtualization layer is a vital component of the software system stack in edge computing. 

Virtualization allows the abstraction of the underlying resources and enables the concurrent 

execution of workloads from various tenants in an isolated environment. Nonetheless, this 

comes at the cost of consuming more resources and adding overhead to the overall execution 

of a workload. Consequently, the virtualization layer must be as lightweight as possible while 

not compromising the isolation and fair execution among the different tenants.  

Virtualization has dominated the cloud. Instead of virtualizing the entire system, containers 

use Operating System mechanisms to provide the necessary isolation. Such a design requires 

fewer resources than traditional virtualization since the virtualized environment is much 

smaller. Furthermore, containers can achieve better performance, especially in the case of I/O 

and boot times, since the applications can directly communicate with the host Operating 

System without the mediation of any other software (e.g., hypervisor). On the other hand, 

relying on pure software solutions by sharing the Operating System among different tenants 

raises concerns regarding the level of isolation that containers provide. To this end, several 

recent studies have proved that container isolation is much weaker than traditional 

virtualization techniques. As a result, container deployment usually occurs inside virtual 

machines, increasing the overall system software stack.  

Under these circumstances, traditional system-level virtualization is the only feasible solution 

in order to provide strong isolation. In system-level virtualization, a Virtual Machine Monitor   

 
17 Image Source: AWS 

https://d2908q01vomqb2.cloudfront.net/fe2ef495a1152561572949784c16bf23abb28057/2022/06/22/crypto-2.jpg
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(VMM) creates an entire virtual machine, and a different Operating System runs inside. In 

most cases, the virtual machine monitor is a user space application that interacts with the host 

Operating System to create and manage the virtual machines. As a result, researchers and 

engineers focus on reducing the overhead that the virtual machine monitor induces and 

optimizing the I/O performance. 

In that context, the concept of microVMs has emerged. Instead of using an entire Operating 

System inside a virtual machine, microVMs use a minimal kernel and only the necessary 

components to execute applications. The lightweight virtual machines are much more scalable 

since they can quickly boot and shut down while reducing resource consumption. Such virtual 

machines also require fewer functionalities from the underlying hypervisor. As a result, new 

hypervisors can only support the necessary functionalities, specifically for microVMs, reducing 

their codebase and the overhead of setting up the environment for the virtual machine. 

VMM back-and-forth with the host OS can be expensive and redundant, but in some VMM 

designs, emulation of I/O devices makes it necessary. However, especially in the cloud, the 

VMM and the VMs mostly use virtual devices for I/O. In that context, the I/O request could be 

handled directly by the host OS without VMM mediation. Vhost follows such an approach and 

allows VMM to offload the data plane to another component, which could run inside the host 

OS. Vhost manages to improve the overall I/O performance significantly. Nonetheless, with 

Vhost, the guest-host communication operates asynchronously, requiring a thread to poll for 

the latest data. Using threads for polling might be fine on high-end servers with multicore 

CPUs, but it can create issues for edge devices with limited cores. Thus, despite the benefits 

of Vhost, such technology only applies to some edge devices. 

To minimize the exposed privileged operations when executing workloads at edge 

environments, we introduce a sandbox mechanism. Specifically, we protect the host system 

from any workload running on it by (a) executing it in a contained environment; (b) reducing 

the exposed privileged operations to the absolute minimum required for the workload to run.  

Recent works have introduced a new type of resource virtualization18,19,20,21,22. In the context 

of serverless computing23, a sandbox mechanism is one of the ways to allow multi-tenancy 

execution, increasing the workload consolidation factor and reducing idle resources in a cloud 

 
18 Solo5, "The Solo5 Unikernel," [Online]. Available: https://github.com/solo5/solo5. 
19 A. Madhavapeddy, R. Mortier, C. Rotsos, D. Sscott, B. Singh T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft, 
"Unikernels: Library operating systems for the cloud," in ASPLOS, 2013. 
20 A. Kantee and J. Cormack, "Rump Kernels: No OS? No Problem!," login Usenix Mag, 2014. 
21 D. Williams and R. Koller, "Unikernel monitors: extending minimalism outside of the box.," in 8th USENIX 
Conference on Hot Topics in Cloud Computing, 2016. 
22 A. Agache, M. Brooker, A. Florescu, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka and D.-M. Popa, 
"Firecracker: Lightweight Virtualization for Serverless Applications," in 17th USENIX Symposium on Networked 
Systems Design and Implementation , 2020. 
23 E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. 
Yadwadkar, J. Gonzalez, R. Popa, I. Stoica and D. Patterson, "Cloud Programming Simplified: A Berkeley View on 
Serverless Computing". 



D3.4 – Final release of SERRANO secure infrastructure layer  

   

ict-serrano.eu  51/56 

 

environment. Kata Containers24 provide such a sandbox mechanism, allowing an OCI 

compatible container to run inside a traditional VM. 

To achieve (a), we use sandboxing mechanisms, mainly containerization and virtualization 

techniques. In order to facilitate workload deployment, we keep the container concept, but 

instead of running workloads as containers on the host, we isolate the container execution 

using VMs. Additionally, we utilise hardware extensions when available. 

To achieve (b), we use unikernels19. In the last years, a new approach in lightweight 

virtualization aims to bridge the best from both containers and virtual machines. Unikernels 

are specialized single-address space machine images constructed by using library operating 

systems. Some of their advantages include fast boot times, low memory footprint, and 

increased performance while providing stronger security and hardware isolation. However, 

unikernels come with many limitations, and running existing applications on top of them takes 

a lot of work. While some frameworks try to provide a POSIX-like environment, others prefer 

a clean state approach, requiring the complete refactoring of an application to be able to 

execute on them. 

Following the same design principles, Solo518 is a specialized monitor for unikernels. Solo5 is 

an abstraction layer, permitting the same unikernel or application to be deployed in different 

environments (KVM, process, sandbox) without any modifications. One of the supported 

execution environments of Solo5 is a virtual machine running over KVM. In that scenario, 

Solo5 works like QEMU in a typical QEMU/KVM setup. It only provides a very minimalistic 

hypercall Application Binary Interface (ABI), which the guest can use for I/O requests. In more 

details Solo5 provides five hypercalls related to I/O: 

• Read from network 

• Write to network 

• Read from block device 

• Write to block device 

• Poll 

 

Virtual Machine Monitor 

The case of Solo5 demonstrates how simple and minimal a hypervisor can be, highlighting an 

interesting aspect of I/O in hardware virtualization. When a privileged operation (like a 

network I/O request) occurs in the guest, the system traps (VMExit) in the host kernel (KVM), 

and then it is delivered back to the userspace monitor. In its turn, the monitor handles the 

request from the guest and asks KVM to resume the guest execution. While this path seems 

appropriate in the typical case (such as with general-purpose hypervisors, where different 

architectures or devices are emulated, in the case of lightweight virtualization, an additional, 

unnecessary switch from kernel space to user space incurs significant overhead. For instance, 

during a network I/O request, the host kernel will return the control to the user space monitor 

 
24 Redhat and IBM, "Kata containers," [Online]. Available: https://katacontainers.io 
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in order to handle the guest’s request, and the user space monitor will eventually make a 

system call to transmit or receive the network packet, returning the control to the host kernel. 

We want to explore how significant the overhead of these mode switches is and find solutions 

that can substantially reduce the overhead. 

To answer the above questions, we designed and implemented HEDGE (Figure 19), a minimal 

and simplistic VMM that resides inside the Linux kernel interacting directly with KVM without 

any intervention from the user space. HEDGE is essentially a simple dispatch handler in the 

kernel that services a guest's needs. It provides an interface to the KVM API, a Virtual Machine 

execution environment for each of the VMs spawned, generic device handling (network & 

block), and a management layer to perform basic VM operations (create, destroy, dump 

console, etc.). 

 
Figure 19: A unikernel running as a VM on HEDGE 

 

A major challenge in this approach is that KVM targets user space processes providing an API 

through file descriptors. Moreover, using KVM's API from inside the kernel is impossible 

because most needed functions are only used inside KVM. A way around this is to create a 

glue code, which actually is some wrappers of KVM functions, between HEDGE and KVM, 

exposing all the needed functionality. For that reason, two small patches are required in order 

to be able to use HEDGE. In all other cases, HEDGE works similarly to most user space VMMs. 

As in the case of QEMU/KVM, each VM is associated with one kernel thread, which 

implements the vCPU. The thread's life cycle begins when the HEDGE receives a request to 

spawn a new VM and handles all privileged operations (VMExits). A worth noting design choice 

that we made is that the new kernel thread will have its memory mappings (mm struct). 

Moreover, HEDGE allocates a virtual memory that will serve as the guest's memory and maps 

it to a virtual address of the newly created kernel thread's memory area. Thereby kernel 

thread mimics a user space process tricking KVM that it gets used from user space. 

An essential aspect of HEDGE’s design is reducing the noise VMMs enforce to handle I/O 

requests. Performance is one of the main goals of SERRANO, and in order to achieve that, the 

guest needs to run uninterrupted as much as possible. Besides removing the mode switch 

overhead, HEDGE handles I/O requests with the minimum possible overhead. The simple and 

minimal hypercall ABI from Solo5 helps in that direction. Network packages are formed from 
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the guest, and when the I/O request occurs, the job of HEDGE is as simple as forwarding the 

frame to the appropriate network interface. Receiving packages follows the opposite route. 

Every guest is associated with a virtual interface (TAP), and we use raw ethernet sockets to 

receive and send network packets on behalf of the guest. Regarding block device support, 

HEDGE leverages the device mapper (DM) functionality to create a virtual block device 

mapped to a physical device. Using the block read/write hypercalls from Solo5 ABI, the guest 

makes I/O requests translated to read/write calls in the kernel to the DM block device. 

However, the plan is to add support for VirtIO to host more unikernel frameworks and even 

the basic functionality of a Linux guest. 

As with every VMM, HEDGE provides its management interface. For the time being, it is 

minimal and is able to handle basic VM operations such as start, stop, etc. One can easily 

manage HEDGE locally (user space) or remotely. In that manner, HEDGE can be easily managed 

in cases where user space access is impossible, such as edge nodes. In both cases, HEDGE can 

be managed by the following commands: 

• Load: loads a module (VM image) and prepares its deployment. 

• Start: Executes the selected module. 

• Stop: Stops the execution of a VM. 

 

Moreover, a user can select which block or net device will be used, specify the command line 

arguments for the guest, and dump the guest's console output. Furthermore, a user can also 

access statistics such as boot and setup times, I/O operations (both disk and network), and 

generic stats regarding HEDGE, such as the number of VMs, memory consumption, and more. 

Someone can interact with the management interface locally via a specialized filesystem in 

the Linux kernel, procfs. When HEDGE is loaded, two new files and one directory is created 

under /proc directory: 

• /proc/monitor: I/O file that can be used to control the hypervisor and its virtual 

machines. 

• /proc/vmcons: I/O file that keeps the virtual machine’s output. 

• /proc/vmstats: A directory that keeps stats for the hypervisor and virtual machines. 

 

On the other hand, one can interact with the network management interface. In that case the 

commands are sent over UDP, while the files can be transmitted over tftp. 

In the context of the SERRANO platform, we extract specific application code from the use 

cases and port it to two popular unikernel frameworks: Unikraft25 and rumprun20. 

 
25 S. Kuenzer, V.-A. Bădoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain, C. Soldani, C. Lupu, Ş. Teodorescu, C. 
Răducanu, C. Banu, L. Mathy, R. Deaconescu, C. Raiciu and F. Huici, "Unikraft: fast, specialized unikernels the easy 
way," in Sixteenth European Conference on Computer Systems EuroSys '21, New York, NY, USA, 2021. 
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4.4 Integration of Security Mechanisms  

In SERRANO, we build on the confidential computing paradigm to provide end-to-end secure 

tiers. During the initial design and provisioning phases, we have identified the following 

security levels that comprise the SERRANO secure infrastructure layer: 

• Tier-0: No additional security, trustiness or enhanced isolation, execution through 

default containers. 

• Tier-1: More isolated execution environment but no advanced security or trustiness, 

execution through containers in micro-VMs (sandboxing). 

• Tier-2: More secure execution, better isolation but no advanced trustiness, execution 

through unikernels that reduce attack surface and provide ultra-fast boot.   

• Tier-3: Advanced security and trustiness, default isolation, execution through 

container with secure boot and trusted execution extensions. 

• Tier-4: Maximum security, trustiness and isolation, execution though container with 

secure boot and trusted execution extensions and within a sandboxed micro-VM. 
 

Table 2 summarizes the provided functionality, the different security and trust levels that each 

deploy method provides and their trade-offs. 

 

Table 2: Security Tiers for the SERRANO platform 

 Tier-0 Tier-1 Tier-2 Tier-3 Tier-4 

Isolation minimal Yes Yes Yes Maximum 

Encryption No No No Could have Yes 

Trusted Execution No No No Yes Yes 

CPU/MEM Footprint Low Medium Low Low Medium 

Spawn Time Fast Fair Ultra-fast Fast Fair 

Specialized software No Yes Yes Yes Yes 

Specialized hardware No No No Yes Yes 

 

Tier-0 refers to generic containers (this is the baseline). All other columns are nomalized to 

Tier-0. Tier-1 refers to microVM sandboxing26,27. The application (essentially the container) is 

executed on top of a microVM, which entails booting a full virtualization stack (VMM, kernel, 

rootfs) and keeping it active until the application terminates. Although there have been 

advances in reducing the overhead of VMMs in terms of CPU and memory footprint, even 

state-of-the-art VMMs27 exhibit a 30% overhead for memory handling and address 

translation, as well as extra CPU time for handling I/O and context/mode switches. This 

includes both the extra memory that the VMM occupies and the fact that to spawn a 

container, a full OS system (the microVM) must be present and active. The storage overhead 

 
26 The speed of containers, the security of VMs, https://katacontainers.io/ 
27 A. Agache, M Brooker, A. Florescu, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and D.M. Popa, 
“Firecracker: lightweight virtualization for serverless applications”, (NSDI'20), 2020 
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is proportional to the application; however, with bare-minimum rootfs (typically 10s of MBs), 

a microVM can support container execution (typically 100s of MBs). 

Tier-2 refers to unikernel execution. CPU, memory and storage footprint is minimized, as the 

application itself is compiled as a machine image, removing any unwanted OS and library 

software stacks. The work28 depicts at least 20% reduction in CPU and Memory overhead, 

whereas the application binary footprint is reduced by at least 60% since, apart from the 

optimized build, no OS/libraries is included in the application. Tier-3 and Tier-4 are equivalent 

to Tier-0 and Tier-1, with the added security of secure boot29. Trusted execution is realized 

using an attestation mechanism in the hypervisor layer (Tier-4), only affecting initial boot 

times.  

 
28 S. Kuenzer, V. Bădoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain, C. Soldani, C. Lupu, Ş. Teodorescu, C. 
Răducanu, C. Banu, L. Mathy, R. Deaconescu, C. Raiciu, and F. Huici, “Unikraft: fast, specialized unikernels the 
easy way”, EuroSys '21, https://doi.org/10.1145/3447786.3456248 
29 M. Sabt, M. Achemlal and A. Bouabdallah, "Trusted Execution Environment: What It is, and What It is Not," 
2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015, pp. 57-64, doi: 10.1109/Trustcom.2015.357. 
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5 Conclusions  

This deliverable (D3.4) presents the outcomes of Work Package 3 “Hardware and Software 

Platforms for Enhanced Security” of the SERRANO project, which comprises the work by five 

partners and an investment of 65 PMs. Each task of the three tasks has developed different 

aspects of the SERRANO platform: the storage system in itself, a scalable secure storage 

system, and workload isolation of processes. This deliverable owes to be read in conjunction 

with the previous three deliverables within this WP: D3.1 Accelerated encrypted storage 

architecture (M15), D3.2 Secure cloud storage system (M15), and D3.3 Trust and isolated 

execution on untrusted physical tenders (M15).  The deliverable provides an overview of the 

final release of the SERRANO secure infrastructure layer and describes the developments in 

WP3 during the second iteration of the SERRANO implementation plan (M16-M30). 

It summarizes the efforts and working system solution developed within this work package, 

which includes a solution for distributed storage that employs acceleration engines in 

distributed infrastructures and orchestration tools that rely on trusted execution 

environments and hardware security mechanisms.  

The SERRANO-enhanced secure storage service encompasses geographically diverse storage 

facilities with multiple cloud and edge storage locations. The edge storage is based on the 

SERRANO developments that ensure privacy and security by design. In addition, the service 

leverages the acceleration capabilities of modern network interface cards that include the 

data encryption accelerators developed in SERRANO to improve the user experience by 

reducing end-to-end latency as well as freeing up local processing resources, which allows the 

network and storage fabric to scale up graciously. The implemented solution also includes the 

appropriate backend mechanisms, public secure and storage APIs, and a developer portal. The 

deliverable also provides different performance tests and optimizations introduced compared 

to the initial version. These optimizations include reducing the number of required edge-cloud 

HTTP calls (edge-cloud continuum) and file caching mechanisms. The report also provides 

visibility on S3 authentication, pre-signer URLs policies, and random linear network coding 

techniques. 

Moreover, the deliverable describes the final SERRANO developments for providing trust and 

isolation execution on untrusted physical tenders. The provided solutions include software 

mechanisms and frameworks that enable the isolation of processes in the form of SW and at 

the HW layer. To this end, SERRANO built on the confidential computing paradigm to provide 

end-to-end secure tiers along with the required mechanisms for their integration in the overall 

SERRANO platform.  


