

TRANSPARENT APPLICATION DEPLOYMENT IN A SECURE,

ACCELERATED AND COGNITIVE CLOUD CONTINUUM

Grant Agreement no. 101017168

Deliverable D4.4

Final Release of the SERRANO Cloud and Edge

Acceleration Platforms and Tools

Programme: H2020-ICT-2020-2

Project number: 101017168

Project acronym: SERRANO

Start/End date: 01/01/2021 – 31/12/2023

Deliverable type: Report

Related WP: WP4

Responsible Editor: HLRS

Due date: 30/06/2023

Actual submission date: 30/06/2023

Dissemination level: Public

Revision: 1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No 101017168

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 2/133

Revision History
Date Editor Status Version Changes

09.03.23 Javad Fadaie Ghotbi Draft 0.1 Initial ToC

15.05.23 Javad Fadaie Ghotbi Draft 0.15 Added task 4.1

20.05.23 Javad Fadaie Ghotbi Draft 0.18 Added task 4.2

01.06.23
Javad Fadaie Ghotbi, Kamil

Tokmakov
Draft 0.2

Added VVUQ framework

15.05.23 Gabriel Iuhasz Draft 0.3 Added 3.3

01.06.23 Argyrios Kokkinis Draft 0.4 Added updates regarding
tasks 4.1, 4.2 and 4.3

01.06.23 Aggelos Ferikoglou Draft 0.5 Added task 4.3

11.06.23 Anastassios Nanos Draft 0.6 Added task 4.4

19.06.23 Kamil Tokmakov Draft 0.7 Edit Draft

23.06.23 Javier Martin, Yoray Zack Draft 0.8 Review Draft

28.06.23
Javad Fadaie Ghotbi, Kamil

Tokmakov
Draft 0.9

Integrate review

comments into draft

28.06.23
Javad Fadaie Ghotbi, Kamil

Tokmakov
Final 1.0 Final version

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 3/133

Author List

Organization Author

USTUTT/HLRS Javad Fadaie Ghotbi, Kamil Tokmakov

AUTH Dimitrios Danopoulos, Aggelos Ferikoglou Ioannis Oroutzoglou, Kostas

Siozios, Argyris Kokkinis, Dimosthenis Masouros, Stylianos Siskos,

Spyridon Nikolaidis, George Zervakis, Zoi Agorastou, Florentia Afentaki,

George Margaritis, Christina Panagiotopoulou

NBFC Anastassios Nanos

UVT Gabriel Iuhasz

Internal Reviewers

IDEKO

MLNX

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 4/133

Abstract: This deliverable (D4.4) presents the outcomes of WP4. The SERRANO platform
successfully addresses the challenges of accelerating kernels in an HPC environment by
incorporating the power of HPC systems and parallelization techniques. The platform offers
flexibility in performance and energy efficiency tradeoffs by integrating GPU- and FPGA-
accelerated versions. Additionally, the platform incorporates transprecision and
approximation computing techniques to enhance performance, and optimise the utilisation
of compute and memory resources.

To manage the uncertainties introduced into the SERRANO platform, a Verification, Validation,
and Uncertainty Quantification (VVUQ) framework has been developed. The VVUQ framework
quantifies uncertainties and suggests optimal parameters to improve performance and energy
efficiency.

Plug&Chip framework facilitates the development of FPGA and GPU accelerators with
automatic optimization. The framework ensures enhanced performance without manual
intervention and emphasises memory-efficient designs for FPGA applications.

Furthermore, the vAccel framework, enhanced by NBFC and partners, enables the execution
of hardware-accelerated operations as serverless functions in isolated contexts, expanding
the platform's capabilities.

Keywords: SERRANO architecture, SERRANO platform, HPC services, FPGA, GPU accelerator,
approximation and transprecision computing, VVUQ, vAccel, Plug&Chip

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 5/133

Disclaimer: The information, documentation and figures available in this deliverable are written by the

SERRANO Consortium partners under EC co-financing (project H2020-ICT-101017168) and do not

necessarily reflect the view of the European Commission. The information in this document is provided

“as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The

reader uses the information at his/her sole risk and liability.

Copyright © 2021 the SERRANO Consortium. All rights reserved. This document may not be copied,

reproduced or modified in whole or in part for any purpose without written permission from the

SERRANO Consortium. In addition to such written permission to copy, reproduce or modify this

document in whole or part, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 6/133

Table of Contents

1 Executive Summary .. 15

2 Introduction .. 16

2.1 Document Structure ... 17

3 HW/SW Acceleration Techniques & SERRANO Infrastructure Characterization 18

3.1 Acceleration of the Secure Storage (UC1, Chocolate Cloud) Algorithms 18

3.1.1 Erasure-Coding (EC) Encoder ... 19

3.1.2 Erasure-Coding (EC) Decoder ... 22

3.1.3 AES-GCM Encryption .. 23

3.1.4 AES-GCM Decryption .. 26

3.2 Acceleration of the Fintech Analysis (UC2, InBestMe) Algorithms 28

3.2.1 Savitzky-Golay (SAVGOL) Filter .. 29

3.2.2 Kalman Filter .. 33

3.2.3 Wavelet Filter ... 36

3.2.4 Black-Scholes Algorithm ... 40

3.3 Acceleration of the Anomaly Detection in Manufacturing Settings (UC3, IDEKO)

Algorithms .. 45

3.3.1 DBSCAN Clustering Algorithm .. 45

3.3.2 1D-FFT Algorithm k-Means Clustering Algorithm .. 48

3.3.3 K-Means Clustering Algorithm ... 53

3.3.4 KNN Clustering Algorithm .. 59

4 Performance Maximization Under Maximum Affordable Error for HW and SW IPs 66

4.1 Approximation of the Fintech Analysis (UC2, InBestMe) Algorithms 67

4.1.1 Savitzky-Golay (SAVGOL) Filter .. 67

4.1.2 Kalman Filter .. 71

4.1.3 Wavelet Filter ... 75

4.1.4 Black-Scholes Algorithm ... 77

4.2 Approximation of Anomaly Detection in Manufacturing Settings (UC3, IDEKO)

Algorithms .. 80

4.2.1 DBSCAN Clustering Algorithm .. 80

4.2.2 1D-FFT Algorithm.. 83

4.2.3 K-Means Clustering Algorithm ... 84

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 7/133

4.2.4 KNN Clustering Algorithm .. 88

4.3 Verification, Validation, and Uncertainty Quantification (VVUQ) 90

4.3.1 Automated Benchmarking ... 91

4.3.2 VVUQ User Interface .. 92

4.3.3 Kernel Performance Approximation .. 93

4.4 Detection Methods and Energy Consumption ... 95

4.4.1 Detection and Analysis of Energy Consumption .. 96

4.4.2 Data Set .. 98

4.4.3 Experiments and Results .. 98

4.4.4 Conclusions and Discussion .. 103

5 Seamlessly Integration of Heterogeneous Architectures for Improving Developers’

Productivity in HW/SW Co-design of Data-intensive Applications .. 104

5.1 Automatic Optimization for FPGA Accelerated Kernels... 104

5.1.1 GenHLSOptimizer: A Genetic Algorithm-based Optimizer for High-Level

Synthesis ... 105

5.1.2 Evaluation ... 105

5.1.3 Conclusion .. 108

5.2 Dynamic Memory Management in High-Level Synthesis (HLS) 109

5.2.1 Many-accelerators Platforms in HLS .. 109

5.2.2 On-chip Defragmentation Methodology.. 110

5.2.3 Evaluation ... 111

5.2.4 Conclusion .. 112

5.3 Automatic Optimization for CUDA Kernels .. 113

6 Hardware Acceleration for Serverless Workloads ... 117

6.1 vAccel.. 118

6.1.1 Virtualization Abstraction .. 119

6.1.2 Container Runtime Integration .. 119

6.1.3 Framework and Language Bindings ... 120

6.1.4 SERRANO Kernels on vAccel ... 122

6.2 OpenFaaS .. 126

7 Conclusion .. 130

8 References .. 131

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 8/133

List of Images

Figure 1: Acceleration design ... 20

Figure 2: Execution time speedup and energy gains on the Alveo Xilinx acceleration cards .. 21

Figure 3: Execution time speedup and energy gains on the Xilinx MPSoC FPGAs 22

Figure 4: Execution time speedup and energy gains on the Alveo Xilinx acceleration cards .. 23

Figure 5: Execution time speedup and energy gains on the Xilinx MPSoC FPGAs 23

Figure 6: GPU Grid for NVIDIA Tesla T4 GPU.. 25

Figure 7: Execution time speedup and the energy gains on the Nvidia Tesla T4 GPU 26

Figure 8: Execution time speedup and the energy gains on the Nvidia Jetson AGX GPU 26

Figure 9: Latency and energy gains of AES decryption on T4 GPU .. 27

Figure 10: Latency and energy gains of AES decryption on Xavier AGX GPU 28

Figure 11: UC1 FPGA and GPU designs .. 28

Figure 12: Unified memory scheme for CPU and GPU ... 30

Figure 13: Latency and energy gains of SAVGOL on Alveo FPGAs ... 31

Figure 14: Latency and energy gains of SAVGOL on MPSoC FPGAs ... 32

Figure 15: Latency and energy gains of SAVGOL on T4 GPU ... 32

Figure 16: Latency and energy gains of SAVGOL on Orin and Nano GPUs 33

Figure 17: Latency and energy gains of Kalman on Alveo FPGAs .. 35

Figure 18: Latency and energy gains of Kalman on MPSoC FPGAs .. 36

Figure 19: Wavelet acceleration mechanism ... 37

Figure 20: Latency and energy gains of Wavelet on Alveo FPGAs ... 38

Figure 21: Latency and energy gains of Wavelet on MPSoC FPGAs .. 39

Figure 22: Latency and energy gain of Wavelet on T4 GPU ... 39

Figure 23: Latency and energy gains of Wavelet on Xavier AGX GPU 40

Figure 24: Acceleration approach .. 41

Figure 25: Latency and energy gains of Black-Scholes on Alveo FPGAs 42

Figure 26: Latency and energy gains of Black-Scholes on MPSoC FPGAs 43

Figure 27: Latency and energy gains of Black-Scholes on T4 GPU ... 43

Figure 28: Latency and energy gains of Black-Scholes on Orin and Nano GPUs 44

Figure 29: UC2 FPGA and GPU designs .. 45

Figure 30: Latency and energy gains of DBSCAN on Alveo FPGAs ... 47

Figure 31: Latency and energy gains of DBSCAN on MPSoC FPGAs .. 47

Figure 32: Converting the CSV data into binary format ... 49

Figure 33: Uniform distribution of signals among processors ... 49

Figure 34: FFT performs on signals batches in processor .. 50

Figure 35: Data workflow of parallel FFT ... 50

Figure 36: Latency and energy gains of 1D-FFT on Alveo FPGAs ... 51

Figure 37: Latency and energy gains of 1D-FFT on MPSoC FPGAs ... 52

Figure 38: FFT Filter Energy Consumption and Execution across the number of processors.. 53

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 9/133

Figure 39: K-Mean classification method ... 53

Figure 40: Illustration of timeseries K-Means for FPGAs ... 55

Figure 41: Parallelization of K-Means on the HPC system ... 56

Figure 42: Latency and energy gains for K-Means on Alveo FPGAs ... 57

Figure 43: Latency and energy gains for K-means on MPSoC FPGAs 57

Figure 44: Latency and Energy gains for K-Means on Nvidia T4 GPU 58

Figure 45: Latency and Energy gains for K-Means on Orin and Nano GPU devices. 58

Figure 46: The inference signal, represented by green signals, is classified into the blue group

using the KNN classification method, where the training signals are labelled as blue and red

 .. 60

Figure 47: Illustration of TimeSeries KNN for FPGAs ... 61

Figure 48: Illustration of TimeSeries KNN for GPUs ... 62

Figure 49: Parallelization of the KNN on the HPC system .. 62

Figure 50: Latency and Energy gains for K-NN on Alveo FPGAs ... 63

Figure 51: Latency and Energy gains for K-NN on MPSoC devices. ... 63

Figure 52: Latency and Energy gains for K-NN on T4 GPU device.. 64

Figure 53: Latency and Energy gains for K-NN on Nvidia Orin and Nano GPU devices. 64

Figure 54: UC3 FPGA and GPU designs .. 65

Figure 55: Template data type for transprecision techniques ... 68

Figure 56: Loop perforation in approximation computing techniques.................................... 68

Figure 57: Latency and energy gains of the low approximate SAVGOL on the Alveo FPGAs .. 69

Figure 58: Latency and energy gains of the high approximate SAVGOL on the Alveo FPGAs . 69

Figure 59: Latency and energy gains of the low approximate SAVGOL on the MPSoC FPGAs 69

Figure 60: Latency and energy gains of the high approximate SAVGOL on the MPSoC FPGAs

 .. 70

Figure 61: Latency and energy gains of the low approximate Kalman on the Alveo FPGAs ... 72

Figure 62: Latency and energy gains of the high approximate Kalman on the Alveo FPGAs .. 73

Figure 63: Latency and energy gains of the low approximate Kalman on the MPSoC FPGAs . 73

Figure 64: Latency and energy gains of the high approximate Kalman on the MPSoC FPGAs 74

Figure 65: Latency and energy gains of the low approximate Wavelet on the Alveo FPGAs .. 76

Figure 66: Latency and energy gains of the high approximate Wavelet on the Alveo FPGAs . 76

Figure 67: Latency and energy gains of the low approximate Wavelet on the MPSoC FPGAs 77

Figure 68: Latency and energy gains of the high approximate Wavelet on the MPSoC FPGAs

 .. 77

Figure 69: Latency and energy gains of the low approximate Black-Scholes on the Alveo FPGAs

 .. 78

Figure 70: Latency and energy gains of the high approximate Black-Scholes on the Alveo FPGAs

 .. 79

Figure 71: Latency and energy gains of the high approximate Black-Scholes on the MPSoCs 79

Figure 72: Summary of all the low approximate FPGA designs for the UC2 80

Figure 73: Summary of all the high approximate FPGA designs for the UC2 80

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 10/133

Figure 74: Latency and energy gains of the low approximate DBSCAN for the Alveo FPGAs . 81

Figure 75: Latency and energy gains of the high approximate DBSCAN for the Alveo FPGAs 82

Figure 76: Latency and energy gains of the low approximate DBSCAN for the MPSoC FPGAs82

Figure 77: Latency and energy gains of the high approximate DBSCAN for the MPSoC FPGAs

 .. 83

Figure 78: Quality based control loop .. 85

Figure 79: Latency and Energy gains for K-Means with low approximation error on Alveo FPGAs

 .. 85

Figure 80: Latency and Energy gains for K-Means with high approximation error on Alveo

FPGAs .. 86

Figure 81: Latency and Energy gains for K-Means with low approximation error on MPSoC

FPGAs .. 86

Figure 82: Latency and Energy gains for K-Means with high approximation error on MPSoC

FPGAs .. 87

Figure 83: Latency and Energy gains for approximate K-NN on Alveo FPGAs 89

Figure 84: Latency and Energy gains for approximate K-NN on MPSoC FPGAs 89

Figure 85: Summary of all the low approximate FPGA designs for the UC3 90

Figure 86: Summary of all the high approximate FPGA designs for the UC3 90

Figure 87: Verification Validation, and Uncertainty Quantification (VVUQ) 91

Figure 88: Automated Benchmarking with regard to approximation and transprecision

techniques .. 92

Figure 89: VVUQ configuration Interface ... 92

Figure 90: Optimal parameter received by VVUQ framework to execute Kalman filter in parallel

 .. 93

Figure 91: VVUQ addresses the trade-off between accuracy and execution time 93

Figure 92: Nonlinear and Linear approximation of minimum execution time 94

Figure 93: RAPL Domains (according to pyJoules) ... 97

Figure 94: Class distribution ... 98

Figure 95: Recursive Feature Elimination - Training .. 99

Figure 96: Recursive Feature Elimination - Inference .. 100

Figure 97: RFE scores for CatBoost and XGBoost ... 100

Figure 98: Validation curves for all hyper-parameter values. .. 101

Figure 99: Energy Consumption AdaBoost per parameter value and F1 Score per parameter

 .. 102

Figure 100: Average relative speedup for Xilinx Alveo U50 (Right) and MPSoC ZCU104 (Left)

 .. 107

Figure 101: Relative speedup per application for Xilinx Alveo U50 (Right) and MPSoC ZCU104

(Left) ... 107

Figure 102: DSE time per application for Xilinx Alveo U50 (Right) and MPSoC ZCU104 (Left)

 .. 108

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 11/133

Figure 103: Relative Speedup (Left) and Average Resources Utilisation (Right) distributions

 .. 108

Figure 104: Dynamic memory allocation for erasure coding encoder accelerators 109

Figure 105: Memory allocation failures due to execution of multiple K-means accelerators

 .. 110

Figure 106: Design flow for on-chip defragmentation methodology 111

Figure 107: Allocation failures for different Θ thresholds ... 112

Figure 108: Defragmentation latency for different Θ thresholds .. 112

Figure 109: A source-to-source compiler-tool based on rules... 113

Figure 110: Adopted GPU specification for both computation and memory description 114

Figure 111: Training and the prediction process ... 115

Figure 112: Experimental results, MSE and R2 score for the different regression models ... 116

Figure 113: vAccel software stack ... 118

Figure 114: vAccel integration with container runtimes ... 120

Figure 115: Libification of original kernel ... 124

Figure 116: vAccel port ... 124

Figure 117: Performance overhead of vAccel on local execution (library overhead) 125

Figure 118: Performance overhead of vAccel for VM execution ... 125

Figure 119: Performance overhead of end-to-end operation with sandboxed OpenFaaS

container and vAccel .. 128

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 12/133

List of Tables

Table 1: Secure Storage (UC1) algorithms ... 19

Table 2: Fintech Analysis (UC2) algorithms .. 28

Table 3: Speedup and energy gain of Savitzky-Golay on HPC system 33

Table 4: Speedup and energy gain of Kalman Filter on HPC system 36

Table 5: Black-Scholes formula .. 40

Table 6: Speedup and energy gain of Blach-Scholes on HPC system 44

Table 7: Algorithms’ acceleration for Anomaly Detection in Manufacturing Settings 45

Table 8: Speedup and energy gain of FFT on HPC system ... 52

Table 9: End-to-end K-Means implementation for the FPGAs .. 54

Table 10: Speedup and energy gain of K-means on HPC system ... 58

Table 11: Speedup and energy gain of K-means for acceleration data on HPC system 59

Table 12: KNN acceleration strategy for the FPGA .. 60

Table 13: Speedup and energy gain of KNN on the HPC system ... 65

Table 14: Speedup and energy gain of KNN for acceleration data on the HPC system 65

Table 15: Transprecision techniques in the Savitzkey-Golay ... 70

Table 16: Approximation techniques in the Savitzkey-Golay .. 71

Table 17: Transprecision techniques in Kalman filter .. 74

Table 18: Approximation techniques in Kalman Filter ... 75

Table 19: Transprecision techniques in FFT with 104 acceleration data 84

Table 20: Approximation computing techniques in the K-Means on the HPC system 87

Table 21: Transprecision computing techniques in the K-Means on the HPC system 88

Table 22: Transprecision computing techniques in the KNN on the HPC system 90

Table 23: Nonlinear formula achieved by gradient descent method 94

Table 24: Experiment infrastructure 16 x HPE Proliant DL385 Gen10 96

Table 25: Perf usage scenario .. 97

Table 26: Classification report for AdaBoost (Fold 8) .. 102

Table 27: SERRANO kernels ported to vAccel .. 123

Table 28: Python snippet that implements the k-NN execution over Python vAccel 127

Table 29: Input format for the serverless function .. 128

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 13/133

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

ASGI Asynchronous Server Gateway Interface

ASIC Application-Specific Integrated Circuit

BSI Belief Desire Intention

CFD Computational Fluid Dynamics

CI/CD Continuous integration/Continuous Deployment

CNC Computer Numerical Control

CORS Cross-Origin Resource Sharing

DOCA Data center On a Chip Architecture

DPU Data Processing Unit

DSE Design Space Exploration

DSP Digital Signal Processing

EDE Event Detection Engine

EU European Union

FaaS Function as a Service

FPGA Field Programmable Gate Array

GCP Google Cloud Platform

GPU Graphics Processing Unit

HLRS High Performance Computing Center Stuttgart

HLS High-Level Synthesis

HPC High Performance Computing

HPO Hyper-Parameter Optimization

HW Hardware

IO Input/Output

MAAS Metal as a Service

ML Machine Learning

MOM Message-Oriented Middleware

MPI Message Passing Interface

NUMA Non-Uniform Memory Access

OCI Open Container Initiative

OSS Object Storage Server

OST Object Storage Target

PCIe Peripheral Component Interconnect Express

PXE Preboot Execution Environment

QoS Quality-of-Service

RDMA Remote Direct Memory Access

REST Representational State Transfer

RLNC Random Linear Network Coding

RoCE RDMA over Converged Ethernet

ROT Resource Optimization Toolkit

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 14/133

RPC Remote Procedure Call

RTL Register-Transfer Level

SAR Service Assurance and Remediation

SDK Software Development Kit

SFTP Secure File Transfer Protocol

SLA Service Level Agreement

SoC System on a Chip

SW Software

TLS Transport Layer Security

TPM Trusted Platform Module

TTM Time to Market

UC Use Case

URL Uniform Resource Locator

VM Virtual Machine

VMM virtual Machine Monitor

VVUQ Verification, Validation and Uncertainty Quantification

WP Work Package

WSGI Web Server Gateway Interface

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 15/133

1 Executive Summary

The SERRANO platform has successfully developed an HPC service at HLRS that aims to
accelerate kernels proposed by use case providers within an HPC environment. This service
incorporates the power of HPC systems and parallelization techniques using OpenMP/MPI,
enabling efficient processing of large volumes of data and compute-intensive applications
with minimal runtime.

AUTH has successfully developed GPU- and FPGA-accelerated versions for all edge and cloud
devices available on the SERRANO platform. These accelerated versions, along with the HPC
versions, consider various performance and energy efficiency tradeoffs. As a result, they
provide the orchestration framework developed in WP5 with multiple degrees of freedom,
allowing for flexible optimization options.

In response to the challenges, such as limited computing and memory resources, HLRS has
integrated transprecision and approximation computing techniques into the kernel
implementation within the HPC service. This integration enables the execution of the kernel
with varying data precision and allows for minimised and adaptable computations within the
kernel.

AUTH has also applied approximation techniques to FPGA-accelerated application versions,
such as precision scaling, approximate memoization, and loop perforation. These techniques
contribute to increased energy efficiency and enrich the range of available UC applications.

The utilisation of these techniques introduces parameters and uncertainties. Verification,
Validation, and Uncertainty Quantification (VVUQ) is designed to quantify uncertainty and
effectively manage the trade-off between accuracy and execution runtime. By suggesting
optimal parameters for kernel execution, the VVUQ framework aims to maximise
performance and improve energy efficiency.

To estimate execution time and energy consumption for different data batches, the VVUQ
framework employs the Gradient Descent method. This method enables the development of
a non-linear formula that provides accurate estimations, facilitating efficient resource
allocation and planning within the HPC service.

The Plug&Chip framework has been introduced into the SERRANO platform by AUTH, which
enables the development of FPGA and GPU accelerators. This framework incorporates
automatic optimization techniques, allowing for performance enhancements without
requiring manual intervention. AUTH also focuses on developing a methodology for creating
memory-efficient accelerators specifically for FPGA applications.

NBFC and the involved partners used and enhanced the vAccel framework to allow an
arbitrary hardware-accelerated operation to be executed as a serverless function in an
isolated context.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 16/133

2 Introduction

This deliverable constitutes the final release of the SERRANO platforms, frameworks, and tools
developed in WP4 and demonstrates the progress achieved during the project period second
iteration of the SERRANO implementation plane(M16-M30). In the scope of WP4, the
SERRANO project progressed in different dimensions, such as the development of the
accelerated kernels, the application of approximation techniques, the introduction of
Plug&Chip, and vAccel frameworks.

During the reporting period, the SERRANO platform enriched a range of accelerators, from
energy-efficient devices at the network edge to high-performance, massively parallel devices
in the cloud and HPC. Different applications’ versions, including HPC, GPU, and FPGA-
accelerated versions, have been developed for various devices on the platform, considering
performance and energy efficiency tradeoffs. These options provide flexibility to the
orchestration framework developed in WP5.

Moreover, in order to overcome challenges such as limited computing and memory resources,
transprecision and approximation computing techniques have been integrated into the kernel
implementation of the HPC service. This approach allows for flexible execution with different
data precisions and minimised computations. To address uncertainties and trade-offs
between accuracy and execution runtime, a Verification, Validation, and Uncertainty
Quantification (VVUQ) framework has been developed, suggesting parameters for kernel
execution to optimise runtime and energy consumption. Additionally, approximation
techniques such as precision scaling, approximate minimisation, and loop perforation have
been employed in FPGA-accelerated application versions to enhance energy efficiency and
expand the library of UC applications. Furthermore, work on algorithmic transprecise
adaptation for distributed streaming applications edge/cloud computing systems were
performed, aiming to reduce network latency and increase bandwidth.

WP4 also focused on meeting the increasing demands for high-performance computing and
energy-efficient designs. It addresses the challenge of efficiently designing and deploying
compute-intensive applications on accelerated platforms such as GPUs and FPGAs. The project
developed FPGA and GPU accelerators using the Plug&Chip framework, which enables the
automatic optimization of kernels for performance without human intervention and also
introduces a methodology for memory-efficient accelerators on FPGAs.

Scaling the execution of hardware accelerated operations was addressed using the vAccel

framework. This framework exposes hardware acceleration functionality to isolated serverless

functions, allowing efficient execution and device selection. Enhancements are made to the

vAccel framework in SERRANO to support arbitrary function execution, device selection, and

remote execution through virtual or TCP sockets, thus enabling seamless deployment of

hardware-accelerated applications in multi-tenant environments.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 17/133

2.1 Document Structure

The document is structured as follows:

● This section (Section 1) introduces the activities performed during the reporting

period.

● Section 2 provides an overview of kernel acceleration techniques in HPC, FPGA, and

GPU devices. It presents the achieved speedup and energy gain resulting from these

acceleration methods.

● Section 3 describes the transprecision and approximation computing techniques

employed in kernel acceleration. It shows how these techniques contribute to

improving execution time and reducing energy consumption.

● Section 4 demonstrates the Plug&Chip framework and the essential tools required for

developing FPGA and GPU accelerators.

● Section 5 showcases the enhanced vAccel framework, which enables the execution of

arbitrary hardware-accelerated operations as serverless functions within isolated

contexts.

● Section 6 concludes the document, summarizing the developments in WP4.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 18/133

3 HW/SW Acceleration Techniques & SERRANO

Infrastructure Characterization

In this section the design, implementations and the evaluation results of the execution of the

kernels of the UCs with FPGA, GPU and HPC accelerators for the cloud, edge and HPC resources

are described. The accelerators that are described in this section compose the library of the

accurate accelerators that are used in the SERRANO platform, as opposed to the

approximation techniques described in Section 3.

The SERRANO platform features accelerators ranging from energy-efficient devices at the

edge (e.g., NVIDIA Jetson and Xilinx MPSoC) to high-performance, massively parallel devices

in the cloud (e.g., NVIDIA T4 and Xilinx Alveo), as well as Hawk supercomputer at HLRS. For

more information on the devices used, refer to Deliverables D4.1 and D4.2. NVIDIA GPUs along

with the programming model CUDA was used, while High Level Synthesis was used to create

the designs for the FPGAs. For more information on the FPGA and GPU optimizations used by

the team at AUTH, see Deliverable D4.1, which provides detailed explanations of each

optimization.

With respect to HPC, the SERRANO platform incorporates HPC services that accelerate the

kernels proposed by the use case providers in an HPC environment. The framework has been

developed at HLRS, and the kernels were optimised to be executed on the Hawk

supercomputer (Hawk). With the help of thousands of compute nodes, the kernels can process

large volumes of data requiring intensive computation at a considerably faster rate.

The HPC kernels were accelerated by applying parallelization techniques, such as

parallelization in shared and distributed memory using OpenMP/MPI. The MPI [1]

communication library provided us with the protocol to communicate data across different

processes that had disjoint memory address space, while OpenMP [2] provided us with

parallelization in shared memory using multithreading. By leveraging these frameworks, we

were able to speed up the execution time of the kernels and minimise energy consumption

across different input data sizes provided by the use case providers.

3.1 Acceleration of the Secure Storage (UC1, Chocolate

Cloud) Algorithms

Table 1 summarises the algorithms used in the workflow of the secure storage UC1. As

baseline for execution time and the energy consumption, the metrics that are obtained by

executing these algorithms on x86 and ARM based processor architectures are considered.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 19/133

Table 1: Secure Storage (UC1) algorithms

Algorithm Description

Encoder (EC) Erasure coding encryption algorithm

Decoder (EC) Erasure coding decryption algorithm

AES Encryption AES-GCM 256 bits encoding algorithm

AES Decryption AES-GCM 256 bits decoding algorithm

3.1.1 Erasure-Coding (EC) Encoder

Random Linear Network Coding (RLNC) is a coding scheme that maps the input data to

encoded output symbols through finite field arithmetic operations. In the context of the

specific scenario, RLNC erasure coding is used for encoding and decoding the encrypted data

before dispatching them in multiple secure locations. For more details on erasure-coding,

refer to D4.1.

3.1.1.1 Design and Implementation

Two implementations of the accelerators for the EC encoder were developed. One exploits

the computational resources of the acceleration cards (Alveo U50 and Alveo U200) and

enables encoding to be performed in data chunks of up to 10MB each. This approach reduces

the memory transfer time between the card's global memory and the compute region. The

second implementation is deployed on the MPSoC FPGAs (ZCU102 and ZCU104) and performs

encoding in smaller data chunks, limited by the platform's on-chip memory resources, with a

maximum size of 100KB each. Consequently, frequent off-chip memory transactions are

necessary when encoding large files. As described in D4.1, the computationally intensive

kernel in the EC encoding algorithm involves multiplications and accumulations of large 2D

arrays over a Galois Field. The number of columns in the arrays primarily depends on the size

of the input data that will be encoded.

3.1.1.1.1 Alveo FPGA Acceleration Cards

An acceleration approach similar to loop-tiling was adopted to design the accelerator. Initially,

the input data matrix is divided into N parts, with each part representing a portion of the initial

input matrix containing input bytes stored in a number of TILE rows. Consequently, based on

the design parameter TILE, the number of sub-matrices that constitute the input data is

determined.

A MAC FPGA accelerator is designed and optimised to perform matrix multiplication on TILE-

sized arrays. This optimization is achieved using the HLS unroll directive, resulting in the

generation of multiple multipliers executed in parallel to calculate each output row. This

optimization methodology is illustrated in Figure 51 in D4.1.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 20/133

The optimised MAC accelerator calculates the output sub-matrix for the first TILE-sized array

and transfers the result back to the card's global memory. It then reads the next TILE bytes

and performs MAC operations on the subsequent sub-matrix. This process continues until all

input sub-matrices have been processed.

For the design of the Alveo FPGA cards, the TILE parameter was set to 2000, and the number

of parallel executed multipliers was set to 20. Figure 1 below illustrates the design of this

accelerator.

Figure 1: Acceleration design

Additionally, to enhance the overall acceleration, multiple compute units (CUs) were

developed to perform the aforementioned operations in parallel.

For the design executed on the Alveo U50 card, 6 compute units were instantiated. On the

other hand, the design implemented on the Alveo U200 card utilises 8 compute units.

3.1.1.1.2 Xilinx MPSoC FPGAs

The approach described in the previous subsection can be applied to design similar

accelerators on the MPSoC platforms by adjusting the design parameters, such as TILE, the

number of parallel executed multipliers, and the number of compute units. However, reducing

the TILE parameter leads to more frequent off-chip memory transactions. Since the MPSoC

platforms lack high-speed memories like the HBM memories available on the Alveo U50 card,

this can result in significant execution overhead.

Therefore, for the design of the EC encoder accelerators on MPSoC FPGAs, the approach

outlined in D4.1 is followed. Here is a brief summary:

On the MPSoC ZCU104 platform, two compute units are instantiated. Each compute unit is

highly optimised for performing MAC operations on matrices of 100KB. These optimizations

involve storing the input data matrix in multiple on-chip memories (BRAMs) and enabling

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 21/133

parallel multiplications. The input data is divided into chunks of 100KB each and processed by

the two compute units.

A similar design is implemented on the ZCU102 platform, but in this case, 6 compute units are

used in parallel for improved performance.

It is important to note that in these designs, although the number of memory transactions is

higher compared to the Alveo implementations, the accelerators are aggressively optimised

for the 100KB data sizes. Therefore, the overhead from frequent off-chip communication is

not considered a bottleneck to the overall acceleration.

3.1.1.2 Evaluation Results

The results that are presented in the sections below show the application’s execution and

energy gains when it is executed on the selected FPGA platforms. Note that the application

time consists of the time that is also required to set the execution environment, initialise the

platform’s buffers, perform all the memory transactions, and store the results in the host’s

memory space.

3.1.1.2.1 Alveo FPGA Acceleration Cards

Figure 2 shows the execution time speedup and the energy gains when those accelerators are

executed on the Alveo Xilinx acceleration cards. The execution time speedups are 2x and 2.1x

for the U50 and U200 , while the energy gains are 3.1x and 1.7x respectively.

Figure 2: Execution time speedup and energy gains on the Alveo Xilinx acceleration cards

3.1.1.2.2 Xilinx MPSoC FPGAs

Figure 3 shows the execution time speedup and the energy gains when those accelerators are

executed on the Xilinx MPSoC FPGAs. The execution time speedups are 5.8x and 6.6x for the

ZCU102 and ZCU104, while the energy gains are 10.6x and 7x respectively.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 22/133

Figure 3: Execution time speedup and energy gains on the Xilinx MPSoC FPGAs

3.1.2 Erasure-Coding (EC) Decoder

The EC decoder algorithm takes input the coding coefficients, the encoded data and performs

gaussian elimination on the encoded matrix. D4.1 provides more details on the algorithm.

3.1.2.1 Design and Implementation

Similar to the encoder’s computationally intensive kernel, the core of this algorithm is the 2D

matrix multiplication over the Galois Field. The FPGA designs are analogous to the ones that

are mentioned in the section before (i.e the EC encoder) and perform the decoding in chunks

of data.

3.1.2.1.1 Alveo FPGA Acceleration Cards

The designs for the Alveo U50 and U200 acceleration cards perform the decoding task in

chunks up to 10MB each. The accelerator’s ports that communicate with the global memory

and transfer the encoded data, the coding coefficients and the decoded output were mapped

to different memory banks in order to avoid latencies induced by a shared communication

channel.

To enable a parallel computation of the elements that compose the decoded matrix, the

ARRAY_PARTITION HLS directive was used on the encoding coefficients to store them in

multiple on-chip memories and perform memory read and write operations in parallel.

Finally, to enable a task level parallelism scheme 10 compute units are instantiated both on

the Alveo U50 and Alveo U200 card and are executed in parallel.

3.1.2.1.2 Xilinx MPSoC FPGAs

Similar to the MPSoC EC encoder accelerators, the accelerators developed for the decoder

operate on chunks up to 100KB each. To optimise the accelerators’ performance the HLS

UNROLL directive was used to generate multiple GF multipliers that operate in parallel.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 23/133

3.1.2.2 Evaluation Results

3.1.2.2.1 Alveo FPGA Acceleration Cards

Figure 4 shows the execution time speedup and the energy gains when those accelerators are

executed on the Alveo Xilinx acceleration cards. The execution time speedups are 1.8x and 2x

for the U50 and U200, while the energy gains are 3.1x and 1.6x respectively.

Figure 4: Execution time speedup and energy gains on the Alveo Xilinx acceleration cards

3.1.2.2.2 Xilinx MPSoC FPGAs

Figure 5 shows the execution time speedup and the energy gains when those accelerators are

executed on the Xilinx MPSoC FPGAs. The execution time speedups are 4.1x and 5.1x for the

ZCU102 and ZCU104, while the energy gains are 6.1x and 5.9x respectively.

Figure 5: Execution time speedup and energy gains on the Xilinx MPSoC FPGAs

3.1.3 AES-GCM Encryption

AES-GCM is an encryption scheme based on Galois Message Authentication Code (GMAC.) It

consists of two main functions, block cipher encryption and multiplication and is preferred for

the high speed of authenticated encryption and data integrity that it provides. AES-GMC

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 24/133

Encryption is suitable to be employed in communication or electronic applications. For more

information about AES-GCM Encryption, refer to D4.1.

3.1.3.1 Design Implementation

The AES-GCM encryption method was accelerated on GPU with CUDA programming model,

following the methodology described in Deliverable D4.1. The implemented acceleration

consists of three main parts. The first part is to read the AES block array and the key array and

transfer them to the pageable GPU memory, using the cudaMalloc() and cudaMemcpy()

methods. The second part, which is the core of the acceleration, is to define and execute the

AES-GCM kernel. In practice we converted the serial C written loops to parallel CUDA kernels.

The final third step is to transfer the encrypted result from the GPU memory to the CPU

memory and write in a file the encrypted result. The shared memory was also adopted and

thus a more efficient implementation was reached. Finally, we launched the encryption kernel

with totally N threads organised in blocks of 1024 threads where N is the AES’ block number.

3.1.3.1.1 NVIDIA Tesla T4 GPU

The acceleration for the NVIDIA Tesla T4 GPU is, as mentioned above, based on the three basic

steps: (i) the Host to Device memory copy, (ii) the kernel execution, (iii) and the Device to Host

memory copy. The cudaMemcpy() method was adopted for the first and last steps. For the

kernel part, the serial for loops of the AE S-GCM encryption was parallelized using the CUDA

programming model. For the parallelization and acceleration, the kernel was launched with

totally of N threads(N:AES’ block number) separated at blocks with 1024 threads per block

that all had access to the shared memory, which was also adopted to optimise the

implementation.

As depicted in Figure 6, shared memory is accessed from all the threads that are placed in the

same block. All the threads from the same block can access data loaded from the global

memory to the shared memory, and thus, the resulting kernel is more efficient. Finally, due to

the fact that data were shared between threads, the danger of race conditions existed.

Theoretically, all threads from a block run in parallel, but in practice, it is infeasible that all the

threads will finish their execution synchronously. Thus, the threads have to be synchronised.

For this purpose, __syncthreads() function was adopted, to be able to synchronise the threads

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 25/133

Figure 6: GPU Grid for NVIDIA Tesla T4 GPU

3.1.3.1.2 NVIDIA Jetson AGX

Similar to the Tesla T4 acceleration, the implementation for the NVIDIA Jetson AGX also had

the same structure of the three basic stages, host to device memory copy, kernel execution,

and device to host memory copy. Again, the adopted block size was 1024 with total of N

threads (AES’ block number). Finally, also in this case shared memory and threads

synchronisation were also adopted to increase the efficiency of the acceleration.

3.1.3.2 Evaluation Results

The evaluation of the AES-GCM encryption acceleration was implemented on a 32MB custom

input text file.

3.1.3.2.1 NVIDIA Tesla T4 GPU

Figure 7 shows the execution time speedup and the energy gains when this accelerator is

executed on the Nvidia Tesla T4 GPU. The execution time speedup is 229.02x, while the energy

gain is 301.8x.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 26/133

Figure 7: Execution time speedup and the energy gains on the Nvidia Tesla T4 GPU

3.1.3.2.2 NVIDIA Jetson AGX

Figure 8 shows the execution time speedup and the energy gains when this accelerator is

executed on the Nvidia Jetson AGX GPU. The execution time speedup is 147.55x, while the

energy gain is 45.7x.

Figure 8: Execution time speedup and the energy gains on the Nvidia Jetson AGX GPU

3.1.4 AES-GCM Decryption

Similar to the AES-GCM Encryption, the AES-GCM Decryption scheme is also based on Galois

Message Authentication Code (GMAC) and consists of block cipher encryption and

multiplication operations. For more information, refer to D4.1.

3.1.4.1 Design Implementation

The AES-GCM decryption acceleration is similar to the implementation of the encryption.

Again, it consists of three major steps, where the first and last one are for the data copy from

the host to the device and from the device to the host, respectively. Also, the second step is

the cuda kernel execution, where the for loop parallelization is implemented.

3.1.4.1.1 NVIDIA Tesla T4 GPU

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 27/133

For the Nvidia Tesla T4 GPU acceleration of the AES-GCM decryption, the above mentioned

three basic steps were implemented. Additionally, the kernel launched totally N threads (AES’

block) organised at blocks with block size 1024 threads per block. Finally, shared memory was

once again leveraged to develop an efficient decryption acceleration.

3.1.4.1.2 NVIDIA Jetson AGX

Similar to the T4 acceleration, the acceleration for the Nvidia Jetson AGX GPU, was also

implemented following the above three described steps (host to device memory copy, kernel

execution and device to host memory copy). Finally, the same grid size and block size with the

above T4 implementation were adopted. Analytically, a total number of N threads (N is the

AES’ block) was adopted and organised in blocks where the block size was set at 1024 threads

per block. Similarly, we took advantage of shared memory, as described in Figure 6.

3.1.4.2 Evaluation Results

For evaluation purposes, a 32MB custom text file was firstly used, for encryption, with the

encryption kernel which was described at the previous section and then the output was used

to be decrypted with the implemented accelerated decryption function.

3.1.4.2.1 NVIDIA Tesla T4 GPU

Figure 9 shows the execution time speedup and the energy gains when this accelerator is

executed on the Nvidia Tesla T4 GPU. The execution time speedup is 113.94x, while the energy

gain is 155.25x.

Figure 9: Latency and energy gains of AES decryption on T4 GPU

3.1.4.2.2 NVIDIA Jetson AGX

Figure 10 shows the execution time speedup and the energy gains when this accelerator is

executed on the Nvidia Jetson AGX GPU. The execution time speedup is 58.25x, while the

energy gain is 14.43x.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 28/133

Figure 10: Latency and energy gains of AES decryption on Xavier AGX GPU

Figure 11 below summarises the results for all the FPGA and GPU designs for the UC1

algorithms.

Figure 11: UC1 FPGA and GPU designs

3.2 Acceleration of the Fintech Analysis (UC2, InBestMe)

Algorithms

Table 2 summarises the algorithms used in the workflow of the fintech UC2. As baseline for

execution time and the energy consumption the metrics that are obtained by executing those

algorithms on x86 and ARM based processor architectures are considered.

Table 2: Fintech Analysis (UC2) algorithms

Algorithm Description

Savitzky-Golay A moving window digital filter used for smoothing time-series

Kalman A digital filter used for smoothing time-series

Wavelet A db4 wavelet filtering transformation used for smoothing time-series

Black-Scholes A mathematical formula for the calculation of the European call and put options

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 29/133

3.2.1 Savitzky-Golay (SAVGOL) Filter

The Savitzky-Golay [3] filter is a powerful tool in digital signal processing utilised for smoothing

experimental data sets and reducing signal noise. By applying polynomial functions and

considering neighbouring data points, this filter effectively removes high-frequency

components from signals while preserving their overall shape and features. Details on the

Savitzky-Golay filter can be found in Deliverable D4.1.

3.2.1.1 Design Implementation

Different accelerators for the execution of the Savitzky-Golay filter were implemented for its

deployment at cloud and edge FPGA and GPU devices as well as and for HPC platforms. For

the acceleration on FPGA and GPU devices, a design methodology has been developed [4].

3.2.1.1.1 Alveo FPGA Acceleration Cards

The designs for the Alveo U50 and U200 acceleration cards were developed following the

design methodology that is described in Deliverable D4.1. Briefly, a dataflow mechanism that

is composed of three distinct subunits was designed. This mechanism performs the memory

read, write and the filter’s moving window computations in a pipelined manner. In addition,

to achieve a task level parallelism 10 compute units are instantiated. The execution of the

SAVGOL filter on the UC time-series is performed on batches of 10, allowing the 10 compute

units to work independently on the calculations of 10 different signals.

3.2.1.1.2 Xilinx MPSoC FPGAs

The dataflow design methodology that was developed for the FPGA acceleration of the

SAVGOL filter leads to the generation of designs that utilise few computational resources,

therefore the same design can be implemented on the MPSoC devices as well. However, in

this case due to the platforms’ limited resources 5 compute units are instantiated. This means

that the UC timeseries are fed into the accelerators in batches of 5.

3.2.1.1.3 NVIDIA Tesla T4 GPU

For the implementation of the Savitzky-Golay filter acceleration on the Nvidia Tesla T4 GPU,

we took advantage of the unified memory scheme that this GPU supports. Analyticity, instead

of using different system (CPU) and device (GPU) memory we used the unified memory that

is accessible from both CPU and GPU targeting to reduce the communication time cost and

simplify the total implementation. The unified memory scheme is depicted in Figure 12. The

acceleration flow in this case started with unified memory allocation using the

cudaMallocManaged() method, and then, the kernel execution took place. The parts of

memory copy at the beginning and at the end of the classical CUDA flow, in this case do not

exist and thus, a better acceleration is reached. The grid size that we adopted in this case was

ceil(N/Block Size) blocks, where N is the total number of data points of the time series and the

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 30/133

block size that we adopted was 32 threads per block. Also, some extra function for the data

reading and writing were defined. All the data points for all the time series of the input dataset

were read at the beginning of the execution and similarly, all the output data points for all the

time series were written at the end of the execution.

Figure 12: Unified memory scheme for CPU and GPU

3.2.1.1.4 NVIDIA Jetson Orin and Nano GPUs

The acceleration of the Savitzky-Golay filter for the Nvidia Jetson Orin, Nano and Xavier NX

GPUs is based on the classical CUDA acceleration flow. First the data is transferred from the

system (CPU) memory to the device (GPU) memory using malloc() and cudaMalloc() to

allocate CPU and GPU memory respectively, and cudaMemCpy() method to copy the data.

Then the kernel execution takes place and finally, the data transfer from the device (GPU)

memory to the system (CPU) memory is implemented. For the kernels’ implementation, the

main task of the kernel is the parallelization of the for loop of SAVGOL filter. In practice the

kernel was launched at a grid with block size at 32 threads per block for the Orin and 64 for

the Nano and Xavier NX and grid size at ceil (N/Block Size), where N is the total number of data

points of the input time series. Totally, N threads were used for the kernel launch.

3.2.1.1.5 HPC

In our collaboration with INBestMe, we received input data in CSV format, specifically asset

prices. However, before utilising this data in the HPC environment, preprocessing was

necessary. To accomplish this, we employed a data converter tool that has been developed

alongside the HPC system. This tool converts the input data into a binary format, that is

memory efficient compared to the original CSV format. Moreover, the data converter tool has

the capability to generate data in various data precisions, including lower precision formats,

such as float. Furthermore, the tool generates signals in a disjointed format with consecutive

indexes. This format facilitates the uniform distribution of signals across multiple processes

within the HPC system. By dividing the signals into disjoint segments, each process can handle

a specific subset of the data independently, enabling parallel processing and enhancing overall

performance and efficiency.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 31/133

Once the data preprocessing with the data converter tool is complete, the original CSV data is

transformed into disjoint segment signals in binary format. The task parallelization strategy

can be employed in this scenario. By distributing the workload among multiple processes, each

process can handle a specific subset of the data independently. This enables parallel

processing, where multiple tasks are executed simultaneously. By utilising the Savitzky-Golay

filter locally in each process, the signals can be filtered individually. This localised filtering

approach can significantly enhance overall performance and efficiency.

3.2.1.2 Evaluation Results

3.2.1.2.1 Alveo FPGA Acceleration Cards

Figure 13 shows the execution time speedup and the energy gains when those accelerators

are executed on the Alveo Xilinx acceleration cards. The execution time speedups are 2.1x and

2.5x for the U50 and U200, while the energy gains are 2.1x and 1.3x respectively.

Figure 13: Latency and energy gains of SAVGOL on Alveo FPGAs

3.2.1.2.2 Xilinx MPSoC FPGAs

Figure 14 shows the execution time speedup and the energy gains when those accelerators

are executed on the Xilinx MPSoC FPGAs. The execution time speedups are 1.9x and 2.1x for

the ZCU102 and ZCU104, while the energy gains are 1.8x and 2.2x respectively.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 32/133

Figure 14: Latency and energy gains of SAVGOL on MPSoC FPGAs

3.2.1.2.3 NVIDIA Tesla T4 GPU

Figure 15 shows the execution time speedup and the energy gains when this accelerator is

executed on the NVIDIA Tesla T4 GPU. The execution time speedup is 4.21x, while the energy

gain is 4.48x.

Figure 15: Latency and energy gains of SAVGOL on T4 GPU

3.2.1.2.4 NVIDIA Jetson Orin and Nano GPUs

Figure 16 shows the execution time speedup and the energy gains when those accelerators

are executed on the NVIDIA Jetson Orin and NVIDIA Jetson Nano GPUs. The execution time

speedups are 2.6x and 1.1x for the Orin and the Nano, while the energy gains are 3.94x and

2.99x respectively.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 33/133

Figure 16: Latency and energy gains of SAVGOL on Orin and Nano GPUs

3.2.1.2.5 HPC

InBestMe supplied multiple data batches containing 100, 500, 1000, 2000 and 4879 asset

prices. We conducted tests on the execution time and energy consumption of the kernel filters

using these data sets on the Hawk compute nodes at HLRS. For this experiment, we utilised

only one Hawk compute node with 128 cores, and its hardware architecture is described in

the D4.2. Table 3 displays the speedup and energy gain of Savitzkey-Golay on the HPC system.

Table 3: Speedup and energy gain of Savitzky-Golay on HPC system

InBestMe Data Speedup

Energy
gain

Accuracy
%

Minimum
execution time

(sec)

Minimum energy
consumption

(Joule)

100 Asset Data 2X 2X 100% 0.217 48.01

500 Asset Data 17X 3X 100% 0.123 115.82

1000 Asset Data 29X 3X 100% 0.155 291.33

2000 Asset Data 20X 2X 100% 0.484 1813.51

4879 Asset Data 10X 2X 100% 2.035 3760.48

3.2.2 Kalman Filter

The Kalman filter [5], referred to as linear quadratic estimation, is a powerful technique used

for estimating unknown variables and handles noise in measurements by taking into account

statistical properties of the system dynamics and the measurement errors. The filter finds

applications in diverse fields such as navigation, guidance, and finance. Details on Kalman

filtering can be found in Deliverable D4.1.

3.2.2.1 Design Implementation

Kalman filtering has been implemented on all the different FPGA devices available on the

SERRANO platform. It was also implemented using SERRANO’s HPC infrastructure. The

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 34/133

accelerators for the cloud and edge devices were developed using the design methodology

described in Deliverable D4.1. The provided input dataset contains 4890 stock price signals

with 20000 data points and a total size of 4.5 GB.

3.2.2.1.1 Alveo FPGA Acceleration Cards

To provide an accurate FPGA-accelerated design, we do not use the Kalman filter
implementation described in D4.1. Our acceleration strategy is based on the observation that
the execution of the filtering algorithm is independent for different stock price time series and
can therefore be easily parallelized. Task-level parallelism can be realised by instantiating
multiple computational units on the FPGA, each of which performs Kalman filtering. We
instantiate 8 compute units on the Alveo U50 FPGA, using the available High Bandwidth
Memories (HBM). On the Alveo U200, 4 compute units are instantiated using the available
Dynamic Random-Access Memories (DDR). Although the Alveo U200 contains more resources
than the U50 FPGA, no more than 4 compute units can be instantiated during synthesis due
to place-n-route issues.

In the Kalman filter kernel, the loops responsible for transferring data to/from the
programmable logic and the loop that performs the actual computation are pipelined with an
initiation interval of one. Besides the calculation loop, where the target initiation interval
cannot be achieved due to data dependencies, the other loops are pipelined with the targeted
initiation interval.

3.2.2.1.2 Xilinx MPSoC FPGAs

We use the same Kalman filtering acceleration strategy for the MPSoC ZCU104 and ZCU102
devices. The proposed implementation does not require many resources and can therefore
be implemented on the resource-constrained edge FPGAs of the SERRANO platform. For both
devices, we instantiate 2 compute units using the available High Performance (HP) memories.
For the Kalman filter kernel, we use exactly the same approach as described for the cloud
FPGAs.

The main difference between the accelerated versions targeting the edge FPGAs is based on
the available RAM memory of the boards. In particular, the MPSoC ZCU104 has 2 GB RAM
memory, while the MPSoC ZCU102 has 4 GB. The final version of the stock price dataset
provided by INB has a size of about 4.5 GB, which makes clear that it cannot be processed at
once. To overcome the memory limitation, we divide the dataset into smaller parts that fit
into the memory and process them one by one. The official dataset is divided into 30 equally
sized stock price datasets for the MPSoC ZCU104 device and 15 for the MPSoC ZCU102.

3.2.2.1.3 HPC

The parallelization strategy employed in the Kalman filter is similar to that of the Savitzky-

Golay filter. In this case, the data preprocessing step involves converting the data into binary

format, divided into disjoint segments with their respective indices. The signals are then

distributed across multiple processing units, allowing for workload distribution.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 35/133

Once the signals are distributed, the Kalman filter operates independently on each signal to

filter out noise and produce the desired output result. This parallel processing approach

enables efficient noise removal and estimation of the true state of each signal.

3.2.2.2 Evaluation Results

3.2.2.2.1 Alveo FPGA Acceleration Cards

Figure 17 shows the speedup and energy gains of the accurate version of the Kalman filter for

the Alveo U50 and U200 FPGAs compared to the Python single-threaded execution on an

Intel(R) Core (TM) i5-6500 CPU @3.2GHz. The speedups are 3074x and 1880x for the U50 and

U200, while the energy gains are 5049x and 1884x, respectively. It is evident that our

implementation outperforms the baseline. We can also see that the Alveo U50 FPGA is able

to achieve a higher speedup compared to the Alveo U200, which is due to the fewer

instantiated compute units.

Figure 17: Latency and energy gains of Kalman on Alveo FPGAs

3.2.2.2.2 Xilinx MPSoC FPGAs

Figure 18 shows the speedup and energy gains of the accurate version of the Kalman filter for

the MPSoC ZCU104 and ZCU102 FPGAs compared to the Python single-threaded execution on

an ARM Cortex A53 @800MHz. The speedups are 1510x and 869x for the ZCU104 and ZCU102,

while the energy gains are 2875x and 1806x, respectively. With respect to the Python baseline,

the same observations can be made as for the cloud FPGAs. Another interesting observation

is that the design for the MPSoC ZCU104 achieves a higher speedup compared to the

corresponding design for the MPSoC ZCU102. This is due to the fact that it takes more time to

allocate the buffers on ZCU102 compared to ZCU104. In particular, buffer allocation on

ZCU102 takes about 30 seconds, whereas on ZCU104 it takes only 7 seconds (4.3x faster).

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 36/133

Figure 18: Latency and energy gains of Kalman on MPSoC FPGAs

Finally, the designs targeting the cloud FPGAs lead to higher speedups and energy gains due
to the RAM limitation of the edge FPGAs. Processing the input dataset in batches introduces
an overhead, making the cloud accelerators more suitable for Kalman filter processing.

3.2.2.2.3 HPC

Table 4 displays the speedup and energy gain of the parallel Kalman filter inside HPC service.

HLRS conducted an experiment using multiple asset prices data batches from InBestMe.

Similarly, the data used for the Savitzky-Golay filter.

Table 4: Speedup and energy gain of Kalman Filter on HPC system

InBestMe Data Speedup Energy gain

Accuracy %

Minimum
execution
time (sec)

Minimum energy
consumption

(Joule)

100 Asset Data 4X 2X 100% 0.105 23.36

500 Asset Data 13X 3X 100% 0.178 166.7

1000 Asset Data 37X 4X 100% 0.105 198.1

2000 Asset Data 14X 2X 100% 0.530 1324.5

4879 Asset Data 10X 2X 100% 2.035 4476.98

3.2.3 Wavelet Filter

Discrete time wavelet transforms have found engineering applications in computer vision,

pattern recognition, signal filtering and most widely in signal and image compression. A

wavelet is a waveform of effectively limited duration that has an average value of zero and

nonzero norm. In numerical analysis and functional analysis, a discrete wavelet transform

(DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other

wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it

captures both frequency and location information (location in time). Similar to the Savitzky

Golay and Kalman filters, wavelet is used to smooth the UC time series. The UC2 uses the

Daubechies 4 (db4) [6] wavelet for the smoothing procedure. In the Daubechies wavelets the

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 37/133

filter’s length is typically equal to eight (8) and this is the length that was selected by the UC2.

More information on the UC2 wavelet algorithm can be found in the deliverable D4.1.

3.2.3.1 Design Implementation

Accelerators for the computationally intensive DWT part of the wavelet filtering algorithm

were developed for the cloud and edge FPGA and GPU devices as well as for the HPC

platforms. Note, that the process of inverting the filtered signal to reconstruct the original

(but smoothed prices) is not executed on the developed accelerators but on the general-

purpose host devices.

3.2.3.1.1 Alveo FPGA Acceleration Cards

Similar to the Savitzky Golay filter, the Discrete Wavelet Transform (DWT) process is executed

using a moving window mechanism. At each point, the coefficients of the db4 wavelet are

convolved with the input time-series. To accelerate this process, a dataflow execution

mechanism, similar to the one implemented for the Savitzky Golay filter on the Alveo U50 and

U200 acceleration cards, was adopted in this case. First, the coefficients for the high-pass

decomposition and the low-pass reconstruction are transferred into the FPGA’s local memory.

Next, two circuits that perform the convolutions on the first eight and the last eight input

values are designed and executed in parallel. Last, the dataflow mechanism performs the DWT

computations for the rest input points following a pipelined approach. To design this

mechanism ping pong buffers [7] that enable out-of-order read and write operations are used

for storing temporarily the input data. Figure 19 illustrates this design.

Figure 19: Wavelet acceleration mechanism

Finally, the outputs from the DWT algorithm are transferred back to the host device where

the inverse discrete wavelet transform (IDWT) is executed and the smoothed prices are

produced. To enable a task-level parallelism 6 compute units are instantiated on both the U50

and the U200 and are executed in parallel.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 38/133

3.2.3.1.2 Xilinx MPSoC FPGAs

Similar design implementations to the ones that were developed for the Alveo cards were

created for the two MPSoC FPGAs. However, due to the limited resources of those devices,

two compute units instead of six are instantiated and are executed in parallel.

3.2.3.1.3 NVIDIA Tesla T4 GPU

In the case of Wavelet filter acceleration, the implemented acceleration was based on the

methodology described in Deliverable D4.1 (M15). In advance, the classical CUDA acceleration

flow was followed. This flow includes memory to device copy at the pageable GPU memory,

kernel execution and device to host memory copy. Then we launched our kernel with N total

threads, where N is the length of the input array of the input signal to be processed. Also, the

block size was set at 32 threads per block and thus, the grid size was set at ceil (N/block size).

It has to be mentioned that the dwt_sym_stride() function, which is the wavelet’s most time

consuming algorithmic part, was accelerated on the CUDA kernel.

3.2.3.1.4 NVIDIA Jetson AGX GPU

Similar to the T4 implementation, the acceleration for the Nvidia Jetson AGX is also based on

the classical CUDA acceleration flow. And also in this case the block size was set at 32 threads

per block and the grid size was set at ceil (N/block size).

3.2.3.2 Evaluation Results

3.2.3.2.1 Alveo FPGA Acceleration Cards

Figure 20 shows the execution time speedup and the energy gains when those accelerators

are executed on the Alveo Xilinx acceleration cards. The execution time speedups are 3.5x and

3.9x for the U50 and U200, while the energy gains are 3.8x and 2.4x respectively.

Figure 20: Latency and energy gains of Wavelet on Alveo FPGAs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 39/133

3.2.3.2.2 Xilinx MPSoC FPGAs

Figure 21 shows the execution time speedup and the energy gains when those accelerators

are executed on the Xilinx MPSoC FPGAs. The execution time speedups are 1.9x and 2x for the

ZCU102 and ZCU104, while the energy gains are 1.2x and 1.6x respectively.

Figure 21: Latency and energy gains of Wavelet on MPSoC FPGAs

3.2.3.2.3 NVIDIA Tesla T4 GPU

Figure 22 shows the execution time speedup and the energy gains when this accelerator is

executed on the NVIDIA Tesla T4 GPU. The execution time speedup is 5.84x, while the energy

gain is 47.5x.

Figure 22: Latency and energy gain of Wavelet on T4 GPU

3.2.3.2.4 NVIDIA Jetson AGX GPU

Figure 23 shows the execution time speedup and the energy gains when this accelerator is

executed on the NVIDIA Jetson AGX GPU. The execution time speedup is 2.87x, while the

energy gain is 58.1x.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 40/133

Figure 23: Latency and energy gains of Wavelet on Xavier AGX GPU

3.2.4 Black-Scholes Algorithm

The Black-Scholes [8] also known as the Black-Scholes-Merton model, is a mathematical

formula used to calculate the theoretical price of options. The formula provides a way to

estimate the fair value of European-style options, which are financial derivatives that give the

holder the right to buy (call option) or sell (put option) an underlying asset at a predetermined

price (strike price) within a specific time period. By considering various factors, such as the

current price of the underlying asset, the strike price, the time to expiration, the risk-free

interest rate, and the volatility of the asset's price, the Black-Scholes formula produces an

option price that reflects the market's expectations.

3.2.4.1 Design Implementation

UC2 uses the Black-Scholes formula to calculate the call and put options for each price of every

one of their assets. Therefore, the calculation of the following two formulas for all the prices

is accelerated:

Table 5: Black-Scholes formula

Call option: C = S * N(d1) - X * e^(-r * T) * N(d2)

Put option: P = X * e^(-r * T) * N(-d2) - S * N(-d1),

Where:

d1 = (ln(S/X) + (r + (σ^2)/2) * T) / (σ * sqrt(T))

d2 = d1 - σ * sqrt(T)

In those formulas:

- C represents the price of the call option.
- P represents the price of the put option.
- S is the current price of the underlying asset.
- X is the strike price of the option.
- T is the time to expiration of the option, expressed in years.
- r is the risk-free interest rate.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 41/133

- N(x) represents the cumulative standard normal distribution function.

Accelerators for the calculation of the Black-Scholes put and call option prices were developed

on cloud and edge FPGA and GPU devices as well as on HPC resources.

3.2.4.1.1 Alveo FPGA Acceleration Cards

To accelerate the calculations of the put and call option prices, the designs that were

developed on the U50 and U200 perform the computations using a dataflow mechanism.

Specifically, in every clock cycle the accelerator reads a price and its expiry date from an asset

and stores them in two First-In-First-Out (FIFO) buffers. The arithmetic circuits (multipliers and

adders) that are required for the calculation of the Black-Scholes formulas are implemented

to utilise the platform’s DSP blocks for enhanced performance. Then, based on the user’s

request for the calculation of call or put options, multiplexers enable the arithmetic blocks

that compute the call or put options respectively.

Finally, in order to parallelize the computations for the two option prices, two compute units

are instantiated on both Alveo platforms. The first compute unit calculates only the put

options for all prices while the second only the call, as a result the two options are computed

in parallel for every price. Figure 24 below illustrates the design for the Black-Scholes

acceleration.

Figure 24: Acceleration approach

3.2.4.1.2 Xilinx MPSoC FPGAs

The designs that were developed for the Alveo cards can be also used on the MPSoC platforms

without modifications. Due to the dataflow approach the number of the utilised

computational resources is limited and doesn’t exceed the MPSoCs available resources.

3.2.4.1.3 NVIDIA Tesla T4 GPU

For the acceleration of put and call options computation on the Nvidia Tesla T4, we took

advantage of the unified memory. Unified memory is accessible from both CPU and GPU and

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 42/133

thus reduces the development complexity (simplifies the implementation) and also reduces

the total execution time. The acceleration contains the unified memory allocation part, with

the cudaMallocManaged() method and the kernel execution part. At the kernel for loops for

the put and the call option prices computation were parallelized using CUDA. The adopted

grid size for this implementation was ceil (N/block size), where N is the length of the processed

signal and the adopted block size was 32 threads per block.

3.2.4.1.4 NVIDIA Jetson Orin and Nano GPUs

In the case of Jetson Orin, Nano and Xavier NX GPUs, the implemented acceleration was based

on the classical CUDA acceleration flow which contains memory to device copy at the GPU

memory, kernel execution and device to host memory copy. Then the kernel was launched

with N total threads, where N is the length of the input array of the input signal to be

processed. Also, the block size was set at 32 threads per block and the grid size was set at ceil

(N/block size).

3.2.4.1.5 HPC

To accelerate the Black-Scholes kernel, a similar strategy as the Savitzky-Golay kernel is

employed. In this case, the data will be initially converted into binary representation based on

its indices. The signals will then be distributed among multiple processes. Each process will

compute the output parameters such as put price and option price locally for the batch data

prices. This approach helps to parallelize the computation and enhance the performance of

the Black-Scholes kernel.

3.2.4.2 Evaluation Results

3.2.4.2.1 Alveo FPGA Acceleration Cards

Figure 25 shows the execution time speedup and the energy gains when those accelerators

are executed on the Alveo Xilinx acceleration cards. The execution time speedups are 36x and

52.5x for the U50 and U200, while the energy gains are 47.8x and 42x respectively.

Figure 25: Latency and energy gains of Black-Scholes on Alveo FPGAs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 43/133

3.2.4.2.2 Xilinx MPSoC FPGAs

Figure 26 shows the execution time speedup and the energy gains when those accelerators

are executed on the Xilinx MPSoC FPGAs. The execution time speedups are 130x and 117x for

the ZCU102 and ZCU104, while the energy gains are 81x and 72x respectively.

Figure 26: Latency and energy gains of Black-Scholes on MPSoC FPGAs

3.2.4.2.3 NVIDIA Tesla T4 GPU

Figure 27 shows the execution time speedup and the energy gain when this accelerator is

executed on the NVIDIA Tesla T4 GPU. The execution time speedup is 39615.62x, while the

energy gain is 60947.1x.

Figure 27: Latency and energy gains of Black-Scholes on T4 GPU

3.2.4.2.4 NVIDIA Jetson Orin and Nano GPUs

Figure 28 shows the execution time speedups and the energy gain when these accelerators

are executed on the NVIDIA Jetson Orin and Nano GPUs. The execution time speedups are

12874x for the Jetson Orin and 1545.28x for the Jetson Nano, while the energy gains are

26626.69x and 4204.85x, respectively.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 44/133

Figure 28: Latency and energy gains of Black-Scholes on Orin and Nano GPUs

3.2.4.2.5 HPC

Table 6 demonstrates the speedup and energy consumption of the Black-Scholes inside the

HPC service, an experiment was conducted by HLRS using multiple asset price data batches

from InBestMe, similar to the data used for the Savitzky-Golay filter.

Table 6: Speedup and energy gain of Blach-Scholes on HPC system

InBestMe Data Speedup Energy gain

Accuracy
%

Minimum
execution time

(sec)

Minimum energy
consumption

(Joule)

100 Asset Data 29.4X 21X 100% 0.0738 16.285

500 Asset Data 60X 11X 100% 0.1642 153.59

1000 Asset Data 136X 13X 100% 0.1551 290.11

2000 Asset Data 322X 14X 100% 0.1352 505.89

4879 Asset Data 572X 12X 100% 0.1856 4476.98

Figure 29 below summarises the results for all the FPGA and GPU designs for the UC1.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 45/133

Figure 29: UC2 FPGA and GPU designs

3.3 Acceleration of the Anomaly Detection in Manufacturing

Settings (UC3, IDEKO) Algorithms

Table 7 summarises the algorithms used in the workflow of the anomaly detections in

manufacturing environments UC3. As baseline for execution time and the energy

consumption the metrics that are obtained by executing those algorithms on x86 and ARM

based processor architectures are considered.

Table 7: Algorithms’ acceleration for Anomaly Detection in Manufacturing Settings

Algorithm Description

DBSCAN Unsupervised learning clustering algorithm used for the anomaly detection

K-Means Unsupervised learning clustering algorithm used for the anomaly detection

k-NN Supervised learning clustering algorithm used for the anomaly detection

1D-FFT 1 dimensional Fast Fourier Transform (FFT) used for smoothing signals

3.3.1 DBSCAN Clustering Algorithm

Density-based spatial clustering of applications with noise [9] (DBSCAN) is a density-based non

parametric clustering algorithm, i.e. given a set of data elements in a given space, it groups

the elements that are close to each other and flags the data elements that are alone in low-

density regions as outliers. In the IDEKO use case, DBSCAN is used to detect anomalies in a set

of signals (i.e., to classify them as anomalous or non-anomalous), indicating a machine

malfunction. To quantify the similarity between two signals, the Dynamic Time Warping [10]

(DTW) algorithm is used.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 46/133

After analysing the provided source code, we concluded that the computationally intensive

part is the calculation of the DTW distances of all the different signals, so we only accelerated

the DTW distance calculation. Details on DBSCAN can be found in Deliverable D4.1.

3.3.1.1 Design Implementation

DBSCAN has been implemented on all the different FPGA devices available on the SERRANO

platform. The accelerators for the edge and cloud devices were developed using the design

methodology described in Deliverable D4.1. The provided input dataset contains 110 signals

with 3400 data points and a total size of 7.3MB

3.3.1.1.1 Alveo FPGA Acceleration Cards

Our acceleration approach is based, as in the Kalman filter, on parallelism at the task level. In

particular, the calculation of the DTW distance of two signals does not depend on other DTW

distance calculations and can therefore be calculated in parallel. We instantiate 8 compute

units on the Alveo U50 FPGA, using the available HBMs. On the Alveo U200, 4 compute units

are instantiated using the available DDRs. Although the Alveo U200 contains more resources

than the U50 FPGA, no more than 4 compute units can be instantiated during synthesis due

to place-n-route issues.

DTW is a dynamic programming algorithm, which means that the calculation of the current

element depends on the calculation of previous ones. The dependencies in dynamic

programming algorithms make parallel computing difficult. Our approach, therefore, was to

pipeline the loops responsible for transferring data to/from the programmable logic and the

loop that performs the actual computation. Apart from the calculation loop, where the target

initiation interval cannot be achieved due to data dependencies caused by dynamic

programming, the other loops are pipelined with an initiation interval of one.

3.3.1.1.2 Xilinx MPSoC FPGAs

We use the same acceleration strategy for the MPSoC ZCU104 and ZCU102 devices. The

proposed implementation does not require many resources and can therefore be

implemented on the resource-constrained edge FPGAs of the SERRANO platform. For both

devices, we instantiate 2 compute units using the available High Performance (HP) memories.

For the DTW distance computation kernel, we use exactly the same approach as described for

the cloud FPGAs.

3.3.1.2 Evaluation Results

3.3.1.2.1 Alveo FPGA Acceleration Cards

Figure 30 shows the speedup and energy gains of the accurate version of the DTW distance

computation for the Alveo U50 and U200 FPGAs compared to the Python execution. The

speedups are 343x and 99x for the U50 and U200, while the energy gains are 152x and 26x,

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 47/133

respectively. It is obvious that our implementation performs better than the baseline solution

in terms of execution time and energy consumption. We can also see that the Alveo U50 FPGA

is able to achieve a higher speedup compared to the Alveo U200, which is due to the fewer

instantiated compute units.

Figure 30: Latency and energy gains of DBSCAN on Alveo FPGAs

3.3.1.2.2 Xilinx MPSoC FPGAs

Figure 31 shows the speedup and energy gains of the accurate version of the DTW distance

computation for the MPSoC ZCU104 and ZCU102 FPGAs compared to the Python single-

threaded execution. The speedups are 17.8x and 13.6x for the ZCU104 and ZCU102, while the

energy gains are 42.5x and 36x, respectively. As in the case of the Kalman filter, this is due to

the fact that buffer allocation on ZCU102 takes more time compared to ZCU104. In particular,

buffer allocation on ZCU102 takes about 54 seconds, while on ZCU104 it takes only 4.4 seconds

(12.3x faster).

Figure 31: Latency and energy gains of DBSCAN on MPSoC FPGAs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 48/133

3.3.2 1D-FFT Algorithm k-Means Clustering Algorithm

The Fast Fourier Transform [11] (FFT) is an algorithm that computes the discrete Fourier

transform (DFT) of a sequence or its inverse (IDFT). Fourier analysis converts a signal from its

original domain to a frequency domain representation and vice versa. The DFT is obtained by

decomposing a sequence of values into components of different frequencies. This operation

is useful in many fields, but computing directly from the definition is often too slow. An FFT

quickly computes such transformations by decomposing the DFT into a product of sparse

factors. This can reduce the complexity of computing DFT from O(N^2), which results from

simply applying the definition of DFT, to O(NlogN), where N is the data size.

3.3.2.1 Design Implementation

FFT has been implemented on all the different FPGA devices available on the SERRANO

platform. It was also implemented using SERRANO’s HPC infrastructure. The accelerators for

the edge and cloud devices were developed using the design methodology described in

Deliverable D4.1. The provided input dataset contains 520 signals with 16384 data points and

a total size of 81MB.

3.3.2.1.1 Alveo FPGA Acceleration Cards

Our approach to accelerating the FFT kernel is based on Xilinx's FFT IP library [12] and dataflow

processing [13]. The dataflow mechanism consists of three subunits that perform reading,

writing, and FFT calculation in a pipelined manner. In addition, to achieve task-level

parallelization, multiple computational units are instantiated to process different signals in

parallel. We instantiate 4 compute units on the Alveo U50 and U200 FPGAs and use the

available HBMs and DDRs, respectively.

3.3.2.1.2 Xilinx MPSoC FPGAs

We use the same acceleration strategy for the MPSoC ZCU104 and ZCU102 devices. The

proposed implementation does not require many resources and can therefore be

implemented on the resource-constrained edge FPGAs of the SERRANO platform. For both

devices, we instantiate 2 compute units using the available High Performance (HP) memories.

For the FFT kernel, we use exactly the same approach as described for the cloud FPGAs.

3.3.2.1.3 HPC

IDEKO provides signal data in CSV format for processing, which needs to be preprocessed

before it can be processed in the HPC environment. The data converter tool is used for this

purpose. Firstly, it reads signals by their indices from the original CSV format, and secondly, it

converts the signals into binary format using specific data precision, such as double or single

precision (Figure 32).

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 49/133

Figure 32: Converting the CSV data into binary format

Once the conversion process is complete, the disjoint signals are produced in binary format,

as shown in Figure 32, and are ready for processing by kernels such as FFT. To achieve optimal

performance, a parallelization strategy is employed, specifically task parallelization. This

approach involves distributing the signals by their index to different processes (Figure 33),

allowing for workload distribution among many processes. Each process can process a batch

of signals, as there is no data dependency, and each signal can be processed independently.

Figure 33: Uniform distribution of signals among processors

Figure 33 illustrates the uniform distribution of signals across different processes. Each

process is assigned specific signals, with process 0 accessing signal_0, signal_1, and process n-

1 assigned to process signal_n-1 and signal_n. By distributing signals uniformly among

processors, each processor has a roughly equal workload, ensuring optimal performance. This

approach is based on task distribution and helps to maximise efficiency while reducing

processing time.

Once the signals have been available locally by each processor, the FFT filter can act on each

time series signal independently, as shown in Figure 34.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 50/133

Figure 34: FFT performs on signals batches in processor

Taking the FFT of these signals, they are transformed into the frequency domain, and the

amplitude of the spectrum is extracted as the output. In the final stage, the output data is

aggregated, a CSV file is generated, and then returned to the providers of the use case. The

data workflow of parallel FFT, which is the strategy we will apply in the remaining kernels, is

presented in Figure 35.

Figure 35: Data workflow of parallel FFT

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 51/133

3.3.2.2 Evaluation Results

3.3.2.2.1 Alveo FPGA Acceleration Cards

Figure 36 shows the speedup and energy gains of the accurate version of the FFT for the Alveo

U50 and U200 FPGAs compared to the Python single-threaded execution. The speedups are

38.2x and 48.4x for the U50 and U200, while the energy gains are 50x and 34.8x, respectively.

It is obvious that our implementation performs better than the baseline solution in terms of

execution time and energy consumption. We can also see that the Alveo U200 FPGA is able to

achieve a higher speedup compared to the Alveo U50, which is due to the more available

resources of the device, allowing the creation of a more efficient design in terms of

performance. However, the higher performance comes at the cost of higher power

consumption. For example, the power consumption of the Alveo U200 is 50.6 watts, while

that of the Alveo U50 is 27.8 watts (1.8x lower).

Figure 36: Latency and energy gains of 1D-FFT on Alveo FPGAs

3.3.2.2.2 Xilinx MPSoC FPGAs

Figure 37 shows the speedup and energy gains of the accurate version of the Kalman filter for

the MPSoC ZCU104 and ZCU102 FPGAs compared to the Python single-threaded execution.

The speedups are 18.9x and 7.2x for the ZCU104 and ZCU102, while the energy gains are 30x

and 11.2x, respectively. This is due to (a) the fact that buffer allocation takes more time on

the ZCU102 compared to the ZCU104, and (b) the timing issues encountered during the

synthesis process when the target frequency for the ZCU102 was set at 300 MHz. To obtain

the final design, we set a target frequency of 250 MHz, which results in higher execution time

and thus higher energy consumption.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 52/133

Figure 37: Latency and energy gains of 1D-FFT on MPSoC FPGAs

3.3.2.2.3 HPC

HLRS conducted tests on our parallelization framework using several batches of signals

provided by IDEKO. Initially, we examined the effects of increasing the number of processes

on the execution runtime and energy consumption time of 104 acceleration signals. Our

findings showed in Figure 38 that increasing the number of processors resulted in a decrease

in execution runtime and energy consumption. HLRS has presented in Table 8 the speedup

and energy gain through the parallelization of the FFT kernel with various signal batches

provided to us by IDEKO, and verifying the accuracy of the results, were done by them.

Table 8: Speedup and energy gain of FFT on HPC system

IDEKO Signal Speedup Energy
gain

Accuracy
%

Minimum
execution
time (sec)

Minimum energy
consumption

(Joule)

26 cycle signal 5X 4X 100% 0.072 33.21

104 cycle signal 29X 10X 100% 0.053 23.76

156 cycle signal 26X 12X 100% 0.099 33.21

208 cycle signal 37X 7X 100% 0.079 79.82

234 cycle signal 85X 15X 100% 0.040 35.48

260 cycle signal 72X 11X 100% 0.057 64.33

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 53/133

Figure 38: FFT Filter Energy Consumption and Execution across the number of processors

3.3.3 K-Means Clustering Algorithm

K-Means is a clustering algorithm that can be used for the classification of time series signals.

The basic idea of K-Means is to group data points into a specified number of clusters, based

on their similarity to one another. In this instance, we are grouping position time series signals

into two clusters based on their similarity. The signals are classified into clusters that are in

close proximity to each other. Typically, the Euclidean metric is used to measure distance in

K-Means, but in this case, we use DTW [14] (Dynamic Time Warping) as it offers greater

flexibility when matching time series signals with varying shapes, lengths, and alignments.

The left side of Figure 39 displays the time series position signals, which serve as the input

data for K-Means classification. Upon application of K-Means classification with DTW metric,

the position signals will be separated into two distinct clusters.

Figure 39: K-Mean classification method

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 54/133

3.3.3.1 Design Implementation

In the timeseries K-Means algorithm with DTW metric we also leverage LB_Keogh. LB_Keogh

is a technique that provides an envelope (lower and upper bounds) around each time series

sequence. It allows for a faster calculation of the distance between sequences by considering

only the deviations that fall outside the envelope. This method is particularly useful when

dealing with large datasets and provides us a lower computational complexity, when using the

DTW algorithm, by leveraging a fast approximation approach in the algorithm level, which

does not have a negative impact on the quality of results.

3.3.3.1.1 Alveo FPGA acceleration cards

Below is the general end-to-end algorithm implementation for the FPGAs.

Table 9: End-to-end K-Means implementation for the FPGAs

1. Initialization:
a. Choose the parameters such as number of iterations or number of series.
b. Assign the two centroids to the first two timeseries.

2. Assignment step:
a. For each time series in the dataset, calculate the DTW distance to each cluster

centroid. Accelerate this compute intensive kernel using the FPGA.
b. Apply the LB_Keogh lower bounding technique to minimise the time of the distance

calculations. LB_Keogh provides an approximate lower bound on the DTW distance,
allowing for early pruning of dissimilar series.

c. Assign each time series to the cluster with the closest centroid based on the DTW
distance.

3. Update step:
a. Recalculate the centroids of each cluster based on the assigned time series.
b. The centroid of a cluster is the time series that minimises the sum of DTW distances

to all the series assigned to that cluster.
c. This step ensures that the cluster centroids are representative of the time series

within their respective clusters.
4. Iteration:

a. Repeat the assignment and update steps until the maximum number of iterations is
reached.

5. Final Clustering:
a. The algorithm outputs the final cluster assignments for anomaly (‘1’) or normal (‘0’)

for each time series.

Below is the illustration of the algorithm. The DTW kernel is accelerated using the FPGA fabric
taking advantage of the low latency on-chip storage (BRAMs) and transferring the result back
to the host CPU. The algorithm continues to compute DTW distance with all the required

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 55/133

timeseries according to LB_Keogh values until the algorithm reaches the user-defined
iteration limit.

Figure 40: Illustration of timeseries K-Means for FPGAs

3.3.3.1.2 Xilinx MPSoC FPGAs

The designs created for Alveo cards can be seamlessly applied to MPSoC platforms without

any modifications. The dataflow approach ensures that the utilisation of computational

resources remains within the limits of the available resources in MPSoCs.

3.3.3.1.3 NVIDIA Tesla T4 GPU

For the GPU architecture we followed a different acceleration approach. In particular, we

chose for acceleration the LB_Keogh kernel, as it has a high parallelization factor which is a

good fit for GPUs. Taking advantage of the task level parallelization we computed the vector

of all possible LB_Keogh values which are needed for the algorithm. This approach was very

efficient for GPU devices and thus provided successful results in terms of throughput and

latency

3.3.3.1.4 NVIDIA Jetson Orin and Nano GPUs

Similar to the server GPUs, Edge GPU devices such as Orin or Nano followed the same

acceleration approach each with its own acceleration potential according to the device

hardware capabilities.

3.3.3.1.5 HPC

Parallelizing K-Means Classification in an HPC environment involves applying the techniques

discussed in the FFT kernel. Initially, we distribute the signals across processors and randomly

assign two centroid signals in the first iteration (Figure 41). These centroids are then

broadcasted to all processors, and each process computes the distance of each signal to the

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 56/133

random centroid locally. Subsequently, each signal is assigned to the centroid class with a

closer distance, and we compute the new centroid by averaging the signals that belong to the

same class. After computing the new centroid, we broadcast them to all processes in each

loop iteration. We repeat this loop ten times, which gives us sufficient classification.

Figure 41: Parallelization of K-Means on the HPC system

3.3.3.2 Evaluation Results

3.3.3.2.1 Alveo FPGA Acceleration Cards

Below, we present the speed-up ratios for the performance and energy gains for each device

for the accurate designs. All metrics were obtained using 110 timeseries as input dataset.

Figure 42 shows the execution time speed-up and the energy gains when we applied

acceleration using the Alveo U200 and Alveo U50 FPGAs. Specifically, the performance speed-

ups obtained are 120x and 123x and the energy gain speed-ups were 233x and 256x

respectively.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 57/133

Figure 42: Latency and energy gains for K-Means on Alveo FPGAs

3.3.3.2.2 Xilinx MPSoC FPGAs

Figure 43 shows the execution time speed-up and the energy gains when we applied

acceleration using the MPSoC FPGAs. Specifically, the performance speed-ups obtained is

97.4x and the energy gain speed-up is 117x.

Figure 43: Latency and energy gains for K-means on MPSoC FPGAs

3.3.3.2.3 NVIDIA Tesla T4 GPU

Below, we present the results from the GPU acceleration card, specifically the Nvidia Tesla T4

GPU. Figure 44 shows the execution time speedup and the energy gains. The execution time

speedup is 976.8x while the energy gain is 1061x.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 58/133

Figure 44: Latency and Energy gains for K-Means on Nvidia T4 GPU

3.3.3.2.4 NVIDIA Jetson Orin and Nano GPUs

Below, we present the results from the edge GPU devices, specifically the Nvidia Orin and

Nano GPUs. Figure 45 shows the execution time speedups and the energy gains. The execution

time speedups are 788x and 270x while the energy gains are 736x and 240x respectively.

Figure 45: Latency and Energy gains for K-Means on Orin and Nano GPU devices.

3.3.3.2.5 HPC

HLRS tested parallelization techniques for K-Means using several position signal batches

provided by IDEKO. Table 10 shows the achieved K-Means speedup, energy gain, and

minimum execution time by running K-Means on compute nodes at Hawk supercomputer in

HLRS for 110, 330, 550, ..., and 1100 position signals.

Table 10: Speedup and energy gain of K-means on HPC system

IDEKO Signal Speedup Energy
gain

Accuracy %

Minimum
execution time

(sec)

Minimum energy
consumption

(Joule)

110 position signal 71X 53X 100% 10.9545 4416.55

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 59/133

330 position signal 199X 51X 98%-100% 7.59292 5145.27

550 position signal 311X 48X 100% 8.21393 9276.83

770 position signal 449X 52X 100% 8.19523 12958

990 position signal 558X 55X 100% 8.05906 15031.3

1100 position signal 368X 32X 100% 13.1062 27405.4

IDEKO has generated acceleration data by using accelerometers at different parts on the screw

balls. As a result, each signal has six coordinates, meaning that six signals must be considered

as one signal. The K-means classification method also applied to these signal formats.

Therefore, we have developed a new parallel implementation of K-means for this purpose,

using the same parallelization strategy as applied for the K-means in position signals.

HLRS have performed parallel K-Means on the acceleration data using several data batches

provided by IDEKO, that the speedup and minimum execution time are presented in Table 11.

Table 11: Speedup and energy gain of K-means for acceleration data on HPC system

IDEKO Signal Speedup Energy gain Accuracy
%

Minimum
execution time

(sec)

Minimum energy
consumption

(Joule)

26 cycle signal 82X 34X 90%- 100% 24.007 10067.4

104 cycle signal 433X 74X 100% 25.217 29466.8

156 cycle signal 634X 69X 100% 25.743 47280.2

208 cycle signal 518X 44X 100% 42.08 98357.6

234 cycle signal 566X 44X 100% 43.354 112164

260 cycle signal 580X 38X 100% 47.035 141346

3.3.4 KNN Clustering Algorithm

The K-Nearest Neighbor [15] algorithm is a supervised machine learning technique used for

classification, with applications in image processing and generative models. In the context of

this study, KNN is employed for the classification of time series signals.

The fundamental idea behind KNN is to classify time series signals based on labelled training

datasets. Figure 46 illustrates the training dataset, which consists of labelled signals

represented by red and blue signals, as well as inference signals represented by green signals.

The KNN method for time series signals calculates the distance between the inference signals

and the training signals using the DTW metric and identifies the K-Nearest neighbors. The class

label of the inference signal is determined by the majority label of these K-Nearest neighbors.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 60/133

Figure 46: The inference signal, represented by green signals, is classified into the blue group using the KNN

classification method, where the training signals are labelled as blue and red

3.3.4.1 Design Implementation

In the Timeseries KNN algorithm with DTW metric we also leverage LB_Keogh. It uses the

concept of envelope to approximate the upper and lower bounds of the time series. The

envelope is computed by taking a window around each point in the time series and

constructing an envelope that encloses the potential range of values within the window.

LB_Keogh helps reduce the number of distance calculations required by DTW and thus

improves its efficiency.

3.3.4.1.1 Alveo FPGA Acceleration Cards

Our acceleration strategy for the FPGAs is as follows.

Table 12: KNN acceleration strategy for the FPGA

1. Compute LB_Keogh Envelopes: For each time series in the training set, compute the
LB_Keogh envelope.

2. Query Processing: Given a query time series, compute its LB_Keogh envelope.

3. Distance Calculation: Calculate the DTW distance between the query time series and each
time series in the training set, using the LB_Keogh envelope as an upper bound. If the DTW
distance exceeds a threshold defined by the LB_Keogh envelope, the time series can be
pruned from further consideration.

kNN Classification: Select the K-nearest neighbors based on the smallest DTW distances and

use their labels to classify the query time series.

The illustration of the high-level algorithm is presented below:

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 61/133

Figure 47: Illustration of TimeSeries KNN for FPGAs

3.3.4.1.2 Xilinx MPSoC FPGAs

The designs created for Alveo cards can be seamlessly applied to MPSoC platforms without

any modifications. The dataflow approach ensures that the utilisation of computational

resources remains within the limits of the available resources in MPSoCs.

3.3.4.1.3 NVIDIA Tesla T4 GPU

For the GPU architecture, we employed a different method to enhance its performance.

Specifically, we opted to utilise the LB_Keogh kernel for acceleration due to its high degree of

parallelization, which aligns well with GPUs. To leverage task-level parallelization, we

calculated the vector of all possible LB_Keogh values required for the algorithm. This approach

proved highly efficient on GPU devices, delivering successful outcomes in terms of throughput

and latency.

More specifically, we employed GPU shared memory to establish a shared region of memory

accessible to threads within a block. Within this memory block, we stored the input series

used for computing LB_Keogh values. Additionally, we utilised shared memory to retain

intermediate sum values of LB_Keogh. By employing a technique known as reduced sum, we

synchronised and computed the sum across the threads in each block. This synchronisation

was crucial to ensure proper data sharing and prevent race conditions. In essence, the GPU

carried out simultaneous calculations on multiple data points, taking advantage of the

extensive parallel architecture of the GPU. Consequently, this significantly accelerated the

processing compared to sequential execution on a CPU.

The illustration of the high-level algorithm is presented below:

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 62/133

Figure 48: Illustration of TimeSeries KNN for GPUs

3.3.4.1.4 NVIDIA Jetson Orin and Nano GPUs

Similar to the server GPUs, Edge GPU devices such as Orin or Nano followed the same

acceleration approach each with its own acceleration potential according to the device

hardware capabilities.

3.3.4.1.5 HPC

To speed up the KNN algorithm, the training datasets were first distributed uniformly into

processes. Next, the inference signal was broadcasted to all processes, as shown in Figure 49,

and the distance between the inference signal and the training signals was computed locally

within each process. These distances were then gathered into process 0. Finally, the class label

of the inference signal was determined based on the majority label of the K-nearest neighbors.

Figure 49: Parallelization of the KNN on the HPC system

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 63/133

3.3.4.2 Evaluation Results

3.3.4.2.1 Alveo FPGA Acceleration Cards

Below, we present the speed-up ratios for the performance and energy gains for each device

for the accurate and approximate designs. All metrics were obtained using 110 timeseries as

trained dataset and single timeseries for the query.

Figure 50 shows the execution time speed-up and the energy gains when we applied

acceleration using the Alveo U200 and Alveo U50 FPGAs. Specifically, the performance speed-

ups obtained are 52.8x and 65x and the energy gain speed-ups were 114.3x and 150.7x

respectively.

Figure 50: Latency and Energy gains for K-NN on Alveo FPGAs

3.3.4.2.2 Xilinx MPSoC FPGAs

Figure 51 shows the execution time speed-up and the energy gains when we applied

acceleration using the MPSoC FPGAs. Specifically, the performance speed-up obtained is

123.6x and the energy gain speed-up is 61.1x.

Figure 51: Latency and Energy gains for K-NN on MPSoC devices.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 64/133

3.3.4.2.3 NVIDIA Tesla T4 GPU

Below, we present the results from the edge GPU devices, specifically the Nvidia T4 GPU.

Figure 52 shows the execution time speedup and the energy gains. The execution time

speedups are 164.3x and while the energy gains are 198x respectively.

Figure 52: Latency and Energy gains for K-NN on T4 GPU device.

3.3.4.2.4 NVIDIA Jetson Orin and Nano GPUs

Below, we present the results from the edge GPU devices, specifically the Nvidia Orin and

Nano GPUs. Figure 53 shows the execution time speedup and the energy gains. The execution

time speedups are 417x and 383x while the energy gains are 189x and 145x respectively,

Figure 53: Latency and Energy gains for K-NN on Nvidia Orin and Nano GPU devices.

3.3.4.2.5 HPC

HLRS tested the parallelization of the KNN kernel using multiple training datasets and

inference data provided by IDEKO. The training datasets consisted of time series signals with

associated labels, and KNN was used to classify the inference signals. The results of our tests,

including the speedup and minimum execution time, are presented in Table 13.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 65/133

Table 13: Speedup and energy gain of KNN on the HPC system

IDEKO Signal Speedup Energy
gain

Accuracy
%

Minimum
execution time

(sec)

Minimum energy
consumption (Joule)

110 training signal 61X 46X 100% 0.42 96.4233

330 training signal 157X 39X 100% 0.49 334.166

550 training signal 257X 39X 100% 0.51 580.295

770 training signal 351X 38X 100% 0.52 830.691

990 training signal 418X 40X 100% 0.57 1079.75

1100 training signal 374X 33X 100% 0.71 1485.88

IDEKO supplied us with acceleration data consisting of six signals that were combined into one

signal. We applied K-Means to this data and utilised their labels to categorise the acceleration

inference signals. We also implemented a new KNN for acceleration data and tested

parallelization with training signals in Table 14.

Table 14: Speedup and energy gain of KNN for acceleration data on the HPC system

IDEKO Signal Speedup Energy
gain

Accuracy %

Minimum
execution time

(sec)

Minimum energy
consumption

(Joule)

26 cycle signal 87X 36X 100% 1.25 525.05

104 cycle signal 261X 45X 100% 1.87 2153.36

156 cycle signal 514X 57X 100% 1.37 2532.12

208 cycle signal 516X 44X 100% 1.86 4361.16

234 cycle signal 505X 41X 100% 2.03 5271.06

260 cycle signal 546X 38X 100% 2.09 6280.81

Figure 54 below summarises the results for all the FPGA and GPU designs for the UC3.

Figure 54: UC3 FPGA and GPU designs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 66/133

4 Performance Maximization Under Maximum

Affordable Error for HW and SW IPs

Section 2 outlined the acceleration of kernels in the FPGA, GPU and HPC system, which was

required by use case providers. However, these computations demand vast compute and

memory resources. In Task 4.2 of SERRANO, we were required to tackle these challenges by

employing transprecision and approximation computing techniques [16] at the cost of

deteriorating accuracy. In this section, we will explain how these techniques function and how

we applied them in developing kernels for the FPGA, GPU and HPC system. By using these

techniques, we will demonstrate the extent to which execution runtime and energy

consumption have improved.

For the design of approximate accelerators on FPGAs, two versions are developed per

accelerator and platform, each offering a different level of approximation. One version aims

for a low approximation error, resulting in a smaller trade-off between error and energy gain,

while the other version intentionally introduces a higher approximation error. It should be

noted that the quantification of error metrics depends on the input dataset. The specific

values for low and high approximation errors are calculated based on the provided by the use

cases datasets for each algorithm.

There are numerous approximate computing methods applied to hardware platforms to meet

the requirements of critical embedded applications with ultra-low power consumption and

small footprint. AUTH has mainly used the techniques of a) precision scaling, which aims to

reduce the precision of operands, b) approximate memoization, which is used to approximate

operations that require many clock cycles on hardware, such as the logarithm function, and c)

loop perforation, which skips loop iterations that incur significant overhead. For more

information, refer to Deliverable D4.2. Finally, application-specific approximations were used

based on the algorithmic characteristics of the application under test.

While using these techniques introduces several parameters and uncertainties, a Verification,

Validation and Uncertainty Quantification (VVUQ) framework was developed to quantify

these uncertainties. This framework helps to choose parameters, such as the number of

processes, data precision and computation density to minimise execution time and energy

consumption, while balancing the accuracy of the kernel and execution time trade-off.

Moreover, the Gradient Descent method is used to develop a non-linear formula estimating

the execution time and energy consumption of the HPC service for different data batches.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 67/133

4.1 Approximation of the Fintech Analysis (UC2, InBestMe)

Algorithms

4.1.1 Savitzky-Golay (SAVGOL) Filter

4.1.1.1 Approximate and Transpresicion Techniques

Approximate versions of the Savitzky-Golay filter FPGA and HPC accelerators have been

developed.

4.1.1.1.1 Alveo FPGA Acceleration Cards

The Alveo U50 and U200 FPGA acceleration cards utilise approximate designs that leverage

HLS arbitrary precision data types to quantize the inputs and intermediate operands. In the

low approximation error variant, the floating-point values are converted to the ap_fixed<15,

12, AP_RND_CONV> data type. This fixed-point representation allocates 15 bits for the

integral part and 3 bits for the fractional part. Additionally, a rounding circuit is implemented.

Similarly, the high approximation error variant employs the ap_fixed<14, 12, AP_RND_CONV>

data type, reducing the fractional part to 2 bits.

4.1.1.1.2 Xilinx MPSoC FPGAs

The quantization schemes that were used in the Alveo designs were also employed for the

design of the approximate accelerators in the MPSoC platforms.

4.1.1.1.3 HPC

Transprecision techniques are an approach used in computation that aims to optimise the use

of memory resources. By applying lower data precision in the computation, this approach

reduces the memory footprint and minimises the execution run time and energy

consumption. Despite the use of lower precision data, the accuracy of the final result does not

necessarily have to be compromised.

There are several transprecision computing techniques that have been developed. We apply

the Mixed-precision computing [17]: This technique involves using different precision levels

within a single computation. To implement this technique, we use templated data type,

allowing us to template all the input and output data involved in the implementation. As

illustrated in Figure 55, we use two distinct data types for input and output data, with 'I'

representing input data precision and 'O' representing output data precision. As a result, we

are able to change the data type inside the implementation dynamically.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 68/133

Figure 55: Template data type for transprecision techniques

Approximation computing techniques are used to improve the performance and reduce the

execution time of computations. One well-established approach is loop perforation, which

involves skipping some iterations in repetitive loops. This reduces the workload and results in

a significant reduction in execution time. However, this approach can also lead to changes in

the quality and accuracy of the output compared to the original code. It is a straightforward

method used when the computation can be reduced, and some degree of error can be

tolerated.

There are several ways to implement loop perforation. One common approach is to use a

technique called "step skipping." Step skipping involves skipping some of the loop iterations

by incrementing the loop counter by a larger amount than one. For example, if a loop iterates

over an array of values, step skipping may involve only processing every third or fourth

element in the array instead of processing every single element. Figure 56 demonstrates the

application of loop perforation, which transforms the canonical loop into a tuned loop. The

perforation stride 's' is used to indicate how many iterations of the original loop are skipped.

Figure 56: Loop perforation in approximation computing techniques

4.1.1.2 Evaluation Results

4.1.1.2.1 Alveo FPGA Acceleration Cards

Figure 57 shows the execution time speedup and the energy gains when the accelerators with

the low approximation error are executed on the Alveo Xilinx acceleration cards. The

execution time speedups are 2.1x and 2.6x for the U50 and U200, while the energy gains are

2.4x and 1.3x respectively. The Mean Absolute Error (MAE) is 0.17.

Figure 58 shows the execution time speedup and the energy gains when the accelerators with

the high approximation error are executed on the Alveo Xilinx acceleration cards. The

execution time speedups are 2.1x and 2.7x for the U50 and U200, while the energy gains are

2.6x and 1.6x respectively. The Mean Absolute Error (MAE) is 6.4.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 69/133

Figure 57: Latency and energy gains of the low approximate SAVGOL on the Alveo FPGAs

Figure 58: Latency and energy gains of the high approximate SAVGOL on the Alveo FPGAs

4.1.1.2.2 Xilinx MPSoC FPGAs

Figure 59 shows the execution time speedup and the energy gains when the accelerators with

the low-approximation error are executed on the Xilinx MPSoC FPGAs. The execution time

speedups are 2x and 2.2x for the ZCU104 and ZCU102, while the energy gains are 2.7x and 3x

respectively. The Mean Absolute Error (MAE) is 0.17.

Figure 59: Latency and energy gains of the low approximate SAVGOL on the MPSoC FPGAs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 70/133

Figure 60: Latency and energy gains of the high approximate SAVGOL on the MPSoC FPGAs

Figure 60 shows the execution time speedup and the energy gains when the accelerators with

the high-approximation error are executed on the Xilinx MPSoC FPGAs. The execution time

speedups are 2.2x for the ZCU104 and ZCU102, while the energy gains are 3.1x and 3.2x

respectively. The Mean Absolute Error (MAE) is 6.4.

4.1.1.2.3 HPC

Transprecision techniques will be applied into the Savitzkey-Golay kernel. By employing two

different data types: double precision and single precision (float), for both input and output

data types, denoted as I and O in Figure 55, respectively. Table 15 presents how combining

these different data types can potentially improve the execution runtime and reduce energy

consumption.

Table 15: Transprecision techniques in the Savitzkey-Golay

Input data

precision

Output data

precision

Execution

time (sec)

Energy
consumption

(Joule)

Execution
time

improvement

Energy
consumption
improvement

double double 0.1169 109.358 - -

double float 0.0742 69.401 36% 36%

float double 0.0999 93.499 14% 15%

float float 0.0429 40.153 63% 64%

Loop perforation as approximation computing techniques has been utilised in Savitzky-Golay

implementation. It is important to note that loop perforation cannot be applied to critical

loops in kernels, as it would lead to execution errors. Table 16 showcases the results of loop

perforation in the Savitzky-Golay with input data from InBestMe, where different perforation

strides {1, 2, 4, 8} were used.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 71/133

Table 16: Approximation techniques in the Savitzkey-Golay

Perforation
strides

Execution
time

Energy
consumption

(Joule)

L2
error
norm

Execution
time

improvement

Energy
consumption
improvement

Error
increment

1 0.0025 0.0427 91.605 - - -

2 0.0021 0.0367 113.68 16% 14% 24%

4 0.0020 0.0338 123.25 20% 21% 34%

8 0.0018 0.0328 127.87 28% 23% 38%

4.1.2 Kalman Filter

4.1.2.1 Approximate and Transpresicion Techniques

We provide two approximate versions for each FPGA-accelerated version of the Kalman filter,

targeting the different devices available on the SERRANO platform.

4.1.2.1.1 Alveo FPGA Acceleration Cards

Our approximation strategy is based on the implementation of the batched Kalman filter

described in Deliverable D4.1. In particular, we divide each signal into k equal parts and

perform Kalman filtering for each of these parts. This source transformation makes it possible

to break the dependency and to calculate the Kalman filter for each partial signal in parallel.

As we show in D4.1, the error caused by this transformation is negligible due to the error

tolerance of the Kalman filter. The number of batches is set at 10 for the low approximation

variant and 50 for the high approximation variant for the Alveo U50. For the Alveo U200 FPGA,

the batch size for both variants is set to 50, since timing problems occurred when synthesising

the low-approximate version with a batch size of 10.

We further approximate the batched Kalman filter using the precision scaling approximation

technique described in Deliverable D4.2. In the variant with small approximation error, the

floating-point values are converted to the data type [18] ap_fixed<19, 13, AP_RND>. This

fixed-point representation provides 13 bits for the integer part and 6 bits for the decimal part.

For the variant with high approximation error the data type ap_fixed<14, 13, AP_RND> is used,

which reduces the decimal part to 1 bit. These data types are used for the approximation

variants of the two devices.

4.1.2.1.2 Xilinx MPSoC FPGAs

The approximation schemes used in the Alveo designs were also used to design the

approximate accelerators in the MPSoC platforms.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 72/133

4.1.2.1.3 HPC

The transprecision techniques applied in the Kalman filter are similar to the approach used in

the Saitzkey-Golay filter. Different precisions, particularly lower precision, can be employed

by utilising templated data types for input and output data. This leads to a reduction in

execution time while maintaining the accuracy of the final output.

Also, approximation techniques such as loop perforation, as explained in the Saitzkey-Golay

filter section, can be utilised in the Kalman filter. Some of the loop iterations within the Kalman

filter kernel can be skipped to reduce the workload and decrease execution time, however, at

the expense of altering the accuracy of the final results.

4.1.2.2 Evaluation Results

4.1.2.2.1 Alveo FPGA Acceleration Cards

Figure 61 shows the speedup and energy gains of the low approximation error version of the

Kalman filter for the Alveo U50 and U200 FPGAs compared to the Python single-threaded

execution. The speedups are 5064x and 4352x for the U50 and U200, while the energy gains

are 7719x and 3899x, respectively. The low approximation error version can achieve 1.65x and

2.3x higher speedups and 1.5x and 2.1x higher energy gains compared to the accurate Alveo

U50 and U200 FPGAs versions. These benefits are associated with negligible errors, as the

average Mean Absolute Error (MAE) for the 4890 stock price signals is about 0.05.

Figure 62 shows the corresponding results for the version of the Kalman filter with high

approximation error. The speedups are 5586x and 4468x for the U50 and U200, while the

energy gains are 7801x and 4100x, respectively. The high approximation error version can

achieve 1.82x and 2.4x higher speedups and 1.55x and 2.2x higher energy gains compared to

the accurate Alveo U50 and U200 FPGAs versions. These benefits are associated with an

average MAE of 1.15.

Figure 61: Latency and energy gains of the low approximate Kalman on the Alveo FPGAs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 73/133

Figure 62: Latency and energy gains of the high approximate Kalman on the Alveo FPGAs

4.1.2.2.2 Xilinx MPSoC FPGAs

Figure 63 shows the speedup and energy gains of the low approximation error version of the

Kalman filter for the MPSoC ZCU104 and ZCU102 FPGAs compared to the Python single-

threaded execution. The speedups are 2707x and 1170x for the ZCU104 and ZCU102, while

the energy gains are 4948x and 2139x, respectively. The low approximation error version can

achieve 1.79x and 1.35x higher speedups and 1.7x and 1.2x higher energy gains compared to

the accurate versions for the MPSoC ZCU104 and ZCU102 FPGAs. As in the case of cloud

devices, the average MAE is 0.05.

Figure 63: Latency and energy gains of the low approximate Kalman on the MPSoC FPGAs

Figure 64 shows the corresponding results for the version of the Kalman filter with a high

approximation error. The speedups are 2905x and 1510x for the ZCU104 and ZCU102, while

the energy gains are 4023x and 2380x, respectively. The high approximation error version can

achieve 1.9x and 1.75x higher speedups and 1.4x and 1.3x higher energy gains compared to

the accurate versions for the MPSoC ZCU104 and ZCU102 FPGAs. An interesting observation

is that for the MPSoC ZCU104, the energy gains are higher for the low-approximation version,

which is counterintuitive. This is due to the increase in batch size and thus parallelism, which

translates into higher DSP and LUT utilisation. The higher use of DSPs and LUTs is responsible

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 74/133

for the 1.3x increase in power consumption that accounts for the lower energy gain in the high

approximation error design. Similar to cloud devices, the average MAE is 1.15.

Figure 64: Latency and energy gains of the high approximate Kalman on the MPSoC FPGAs

4.1.2.2.3 HPC

To assess the impact of transprecision techniques on the Kalman filter, two different data

types were used: double precision and single precision for both input and output data. Table

17 shows the execution time and energy improvements achieved by implementing mixed data

precision in the Kalman filter.

Table 17: Transprecision techniques in Kalman filter

Input data

precision

Output
data

precision

Execution

time (sec)

Energy
Consumption

(Joule)

Execution time
improvement

Energy
consumption
improvement

double double 0.1782 166.7 - -

double float 0.1007 94.23 43% 44 %

float double 0.0761 71.25 57% 58%

float float 0.0135 12.63 92% 94%

Table 18 illustrates the impact of loop perforation on the Kalman filter. Different perforation

strides, namely {1, 2, 4, 8}, were applied. As a result, the execution time and energy

consumption of the kernel were reduced. However, it should be noted that the error norm

increased, indicating a loss of accuracy in the final results.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 75/133

Table 18: Approximation techniques in Kalman Filter

Perforation
strides

Execution
time

Energy
Consumption

(Joule)

L2 error
norm

Execution
time

improvement

Energy
consumption
improvement

Error
increment

1 0.00043 0.0733 97.097 - - -

2 0.00031 0.0531 115.987 28% 27% 18%

4 0.00024 0.0419 124.344 44% 41% 27%

8 0.00021 0.0366 128.432 50% 51% 31%

4.1.3 Wavelet Filter

4.1.3.1 Approximate and Transpresicion Techniques

Approximate versions of the wavelet filter accelerators have been developed for the FPGA

platforms and the HPC resources.

4.1.3.1.1 Alveo FPGA Acceleration Cards

The approximate versions of the wavelet kernel implemented on the Alveo U50 and U200

platforms utilise different data types, resulting in variations in error, resource utilisation,

power consumption, and performance metrics.

In the accurate version of the wavelet filter, the double data type is employed for both the

filter's input signal and the wavelet coefficients. In contrast, the low-approximate version uses

the float data type, which leads to the utilisation of fewer resources.

For the high-approximate version, the accelerator's inputs undergo quantization, similar to

the quantization method used for the approximate Savitzky-Golay accelerators. In this

quantization process, the HLS ap_fixed<19,16> data type is utilised, allocating 19 bits for

number representation. Out of the 19 bits, only 3 are dedicated to the fractional part of the

numbers.

4.1.3.1.2 Xilinx MPSoC FPGAs

The approximation approach that is described in the sub-section above was followed for the

design of the MPSoC approximate accelerators. The same data types with the ones used on

the Alveo designs were used.

4.1.3.2 Evaluation Results

4.1.3.2.1 Alveo FPGA Acceleration Cards

Figure 65 shows the execution time speedup and the energy gains when the accelerators with

the low approximation error are executed on the Alveo Xilinx acceleration cards. The

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 76/133

execution time speedups are 3.8x and 4.3x for the U50 and U200, while the energy gains are

4.8x and 2.9x respectively. The Mean Absolute Error (MAE) is 0.01.

Figure 66 shows the execution time speedup and the energy gains when the accelerators with

the high approximation error are executed on the Alveo Xilinx acceleration cards. The

execution time speedups are 3.8x and 4x for the U50 and U200, while the energy gains are

4.9x and 2.9x, respectively. The MAE is 22.2.

Figure 65: Latency and energy gains of the low approximate Wavelet on the Alveo FPGAs

Figure 66: Latency and energy gains of the high approximate Wavelet on the Alveo FPGAs

4.1.3.2.2 Xilinx MPSoC FPGAs

Figure 67 shows the execution time speedup and the energy gains when the accelerators with

the low-approximation error are executed on the Xilinx MPSoC FPGAs. The execution time

speedups are 2.1x and 2x for the ZCU104 and ZCU102, while the energy gains are 2x and 2.4x

respectively. The Mean Absolute Error (MAE) is 0.01.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 77/133

Figure 67: Latency and energy gains of the low approximate Wavelet on the MPSoC FPGAs

Figure 68 shows the execution time speedup and the energy gains when the accelerators with

the high-approximation error are executed on the Xilinx MPSoC FPGAs. The execution time

speedups are 2.1x for the ZCU104 and ZCU102, while the energy gains are 2.8x and 3x

respectively. The Mean Absolute Error (MAE) is 22.2.

Figure 68: Latency and energy gains of the high approximate Wavelet on the MPSoC FPGAs

4.1.4 Black-Scholes Algorithm

4.1.4.1 Approximate and Transpresicion Techniques

Approximate versions for the calculation of the Black-Scholes formula on FPGA and HPC

platforms have been developed.

4.1.4.1.1 Alveo FPGA Acceleration Cards

To design the two approximate accelerators for the Alveo U50 and U200 platforms, two

approximation schemes are employed. Firstly, similar to the Savitzky-Golay and Wavelet filter

approximate kernels, quantization is applied to the inputs and operands of the kernels.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 78/133

Specifically, for the low-approximate version, the HLS ap_fixed<23, 13, AP_RND_CONV> data

type is utilised. This means that a 23-bit arithmetic representation is employed, with 10 bits

allocated for the fractional part. Conversely, the high-approximate version uses the

ap_fixed<18, 13, AP_RND_CONV> data type. In this case, an 18-bit representation is used,

with 5 bits dedicated to the fractional part.

Furthermore, as outlined in Section 2.2.4, computations involving exponential functions are

necessary for calculating put and call options. However, performing such calculations on

hardware presents challenges and necessitates specialised RTL blocks that heavily utilise the

platform's DSP resources. To approximate these functions, Taylor series expansions are

employed, enabling the use of polynomials that leverage multipliers and adder trees. The

choice of the polynomial order determines the trade-off between performance, power

consumption, resource utilisation, and approximation error.

For the low-approximate version, a polynomial order of 15 is employed, while the high-

approximate version uses an order of 12.

4.1.4.1.2 Xilinx MPSoC FPGAs

The approximation techniques that are described in the section above were also employed for

designing the two MPSoC approximate accelerators. The same quantization factor and the

polynomial orders that were described above were used.

4.1.4.2 Evaluation Results

4.1.4.2.1 Alveo FPGA Acceleration Cards

Figure 69 shows the execution time speedup and the energy gains when the accelerators with

the low approximation error are executed on the Alveo Xilinx acceleration cards. The

execution time speedups are 39x and 56x for the U50 and U200, while the energy gains are

75x and 58x respectively. The MAE for the put options is 4.3 and for the call options is 7.5.

Figure 69: Latency and energy gains of the low approximate Black-Scholes on the Alveo FPGAs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 79/133

Figure 70 shows the execution time speedup and the energy gains when the accelerators with

the high approximation error are executed on the Alveo Xilinx acceleration cards. The

execution time speedups are 76x and 64x for the U50 and U200, while the energy gains are

148x and 71x respectively. The MAE for the put options is 180 and for the call options is 181.

Figure 70: Latency and energy gains of the high approximate Black-Scholes on the Alveo FPGAs

4.1.4.2.2 Xilinx MPSoC FPGAs

Figure 71 shows the execution time speedup and the energy gains when the accelerators with

the high-approximation error are executed on the Xilinx MPSoC FPGAs. The execution time

speedups are 140x and 118x for the ZCU104 and ZCU102, while the energy gains are 180x and

148x respectively. The MAE for the put options is 180 and for the call options is 181.

Figure 71: Latency and energy gains of the high approximate Black-Scholes on the MPSoCs

Figure 72 summarises the results for all the low approximate FPGA designs for the UC2, while

Figure 73 summarises the results for all the high approximate FPGA designs.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 80/133

Figure 72: Summary of all the low approximate FPGA designs for the UC2

Figure 73: Summary of all the high approximate FPGA designs for the UC2

4.2 Approximation of Anomaly Detection in Manufacturing

Settings (UC3, IDEKO) Algorithms

4.2.1 DBSCAN Clustering Algorithm

4.2.1.1 Design Implementation

We provide two approximate versions for each FPGA-accelerated version of the Time Series

DBSCAN, targeting the different devices available on the SERRANO platform. Due to the

complexity of the DBSCAN algorithm, specifically communication infrastructure complexity,

an HPC acceleration is still under implementation.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 81/133

4.2.1.1.1 Alveo FPGA acceleration cards

Our approximation strategy is based on the loop perforation approximation technique

described in Deliverable D4.2. Considering that N are the DTW distance calculations that need

to be computed and M is the number of available compute units on the FPGA, a total of N/M

batches are computed. As with loop perforation, where loop iterations are omitted, we omit

all DTW distance computations every K batches. The number of K is fixed at 75 for the low

approximation variant and 25 for the high approximation variant in the Alveo U50 and U200

FPGAs.

4.2.1.1.2 Xilinx MPSoC FPGAs

The approximation schemes used in the Alveo designs were also used to design the

approximate accelerators in the MPSoC platforms.

4.2.1.2 Evaluation Results

4.2.1.2.1 Alveo FPGA Acceleration Cards

Figure 74 shows the speedup and energy gains of the low approximation error version of the

Time Series DBSCAN for the Alveo U50 and U200 FPGAs compared to the Python single-

threaded execution. The speedups are 399x and 118x for the U50 and U200, while the energy

gains are 178x and 31.3x, respectively. The low approximation error version can achieve 1.2x

higher speedups and 1.2x higher energy gains compared to the accurate versions for the Alveo

U50 and U200 FPGAs. These advantages are associated with an accuracy of 90%, which means

that 90% of the examined signals were correctly classified compared to the exact version of

the algorithm.

Figure 74: Latency and energy gains of the low approximate DBSCAN for the Alveo FPGAs

Figure 75 shows the corresponding results for the version of the Time Series DBSCAN with

high approximation error. The speedups are 449x and 131x for the U50 and U200, while the

energy gains are 200x and 34.7x, respectively. The high approximation error version can

achieve 1.3x higher speedups and 1.3x higher energy gains compared to the accurate versions

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 82/133

for the Alveo U50 and U200 FPGAs. These benefits are associated with an accuracy of 82%. It

should be noted that we did not use higher values for K to account for the IDEKO requirement

that accuracy should not be less than 80%.

Figure 75: Latency and energy gains of the high approximate DBSCAN for the Alveo FPGAs

4.2.1.2.2 Xilinx MPSoC FPGAs

Figure 76 shows the speedup and energy gains of the low approximation error version of the

Time Series DBSCAN for the MPSoC ZCU104 and ZCU102 FPGAs compared to the Python

single-threaded execution. The speedups are 20x and 15.3x for the ZCU104 and ZCU102, while

the energy gains are 47.8x and 40.5x, respectively. The low approximation error version can

achieve 1.12x and 1.13x higher speedups and 1.12x and 1.13x higher energy gains compared

to the accurate versions for the MPSoC ZCU104 and ZCU102 FPGAs. Similar to cloud devices,

the accuracy is 90%.

Figure 77 shows the corresponding results for the version of the Time Series DBSCAN with

high approximation error. The speedups are 22.4x and 16.5x for the ZCU104 and ZCU102,

while the energy gains are 53.5x and 43.5x, respectively. The high approximation error version

can achieve 1.3x and 1.2x higher speedups and 1.3x and 1.2x higher energy gains compared

to the accurate versions for the MPSoC ZCU104 and ZCU102 FPGAs. Similar to cloud devices,

the accuracy is 82%.

Figure 76: Latency and energy gains of the low approximate DBSCAN for the MPSoC FPGAs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 83/133

Figure 77: Latency and energy gains of the high approximate DBSCAN for the MPSoC FPGAs

4.2.2 1D-FFT Algorithm

4.2.2.1 Approximate and Transpresicion Techniques

Approximate versions of the 1D-FFT HPC accelerators have been developed, whereas the

approximate versions for FPGA, specifically with the precision scaling, were not performed

due to the usage of a Xilinx IP that does not allow the usage of custom data types (from ap_int

and ap_fixed libraries).

4.2.2.1.1 HPC

The approximation computing techniques, discussed in Section 3.1.2 and Section 3.1.1, for the

Kalman filter and the Savitzky-Golay filter cannot be directly applied to the FFT (Fast Fourier

Transform) filter. In the FFT filter, time series signals are transformed into the frequency

domain. If some of the input data is skipped to reduce the workload, the FFT algorithm will

generate completely different results. Therefore, approximation computing techniques

cannot be employed in the FFT filter. However, the transprecision computing techniques

described in the section can still be applied to the FFT filter. Using lower precision data for

both input and output, reduce execution time and energy consumption, while maintaining the

accuracy of the results.

4.2.2.2 Evaluation Results

4.2.2.2.1 HPC

Transprecision techniques have been applied in the FFT kernel. Table 19 demonstrates the

application of mixed data precision for both input and output data. As a result, the execution

time and energy consumption have been improved, and the accuracy of the output will not

be changed.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 84/133

Table 19: Transprecision techniques in FFT with 104 acceleration data

Input data

precision

Output data

precision

Execution

time (sec)

Energy
Consumption

(Joule)

Execution time
improvement

Energy
consumption
improvement

double double 0.2914 58.75 - -

double float 0.2051 41.34 30% 30%

float double 0.2681 54.05 10% 11%

float float 0.1888 38.07 35% 64%

4.2.3 K-Means Clustering Algorithm

4.2.3.1 Approximate and transpresicion techniques

Approximate versions of the Timeseries K-Means clustering for FPGA and HPC accelerators

have been developed.

4.2.3.1.1 Alveo FPGA Acceleration Cards

The Alveo U50 and U200 FPGA acceleration cards make use of approximate designs that take

advantage of HLS (High-Level Synthesis) arbitrary precision data types to quantize the inputs

and intermediate operands. In the variant with low approximation only 1 K-Means iteration is

used which trade-offs speed in the algorithm execution but with lower accuracy. In the design

with the high approximation error, the floating-point values are converted to the

ap_fixed<25,24,AP_RND, AP_SAT> data type. This particular fixed-point representation

assigns 24 bits to the integer part and 1 bit to the fractional part. This approximate design can

be seamlessly compiled using the ‘AXX=1’ flag during compilation.

4.2.3.1.2 Xilinx MPSoC FPGAs

The quantization schemes that were used in the Alveo designs were also employed for the

design of the approximate accelerators in the MPSoC platforms.

4.2.3.1.3 HPC

Approximation computing techniques will be implemented in the K-means kernel, and it has

a significant improvement in the execution time of K-means. This technique is known as

quality-based control loop. These loops determine how many times certain parts of an

algorithm are executed until the desired level of convergence is achieved. Quality-based

control loops continuously monitor an internal metric and halt the iterations when a condition

based on both internal state and user-specified parameters is met (Figure 78). Typically, users

rely on default values for these parameters or choose conservative values, which can lead to

suboptimal performance.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 85/133

To address this issue, approximation computing techniques allow for the relaxation of the

control parameters. Consequently, the loop may not iterate as much, and the output may

differ from the default implementation. It is important to mention that control parameters

must be carefully chosen to ensure that the desired level of quality is maintained.

Figure 78: Quality based control loop

Quality-based control loop techniques were incorporated into the K-means kernel

implementation, as explained in Section 2.3.3 Figure 41. By introducing a condition within the

loop and monitoring the distance between two centroids during each iteration, we can stop

the iteration and break the while loop if the difference between these centroids is less than a

control parameter (epsilon). While the default implementation has the loop iterate 10 times,

we can apply different values such as e-4, e-2, and e-1 for epsilon. The goal is to reduce the

number of iterations and execution time by using a larger epsilon value, but we also anticipate

that classification accuracy may suffer due to this approximation technique.

4.2.3.2 Evaluation Results

4.2.3.2.1 Alveo FPGA Acceleration Cards

Figure 79 shows the execution time speedup and the energy gains when the accelerators with

the low approximation error are executed on the Alveo Xilinx acceleration cards. The

execution time speedups now are 183x and 192x for the U50 and U200, while the energy gains

are 359x and 402x respectively. The accuracy of this version is 95.7%.

Figure 79: Latency and Energy gains for K-Means with low approximation error on Alveo FPGAs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 86/133

Figure 80 shows the execution time speedup and the energy gains when the accelerators with

the high approximation error are executed on the Alveo Xilinx acceleration cards. The

execution time speedups now are 725x and 760x for the U50 and U200, while the energy gains

are 1410x and 1583x respectively. The accuracy of this version is 75%.

Figure 80: Latency and Energy gains for K-Means with high approximation error on Alveo FPGAs

Figure 81 shows the execution time speedup and the energy gains when the accelerators with

the low approximation error are executed on the MPSoC FPGAs. The execution time speedup

now is 248.7x while the energy gain is 332x respectively. The accuracy of this version is 95.7%.

4.2.3.2.2 Xilinx MPSoC FPGAs

Figure 82 shows the execution time speedup and the energy gains when the accelerators with

the high approximation error are executed on the MPSoC FPGAs. The execution time speedup

now is 762.5x while the energy gain is 916.2x respectively. The accuracy of this version is 75%.

Figure 81: Latency and Energy gains for K-Means with low approximation error on MPSoC FPGAs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 87/133

Figure 82: Latency and Energy gains for K-Means with high approximation error on MPSoC FPGAs

4.2.3.2.3 HPC

Table 20 presents the implementation of the quality-based control approximation technique

on the K-means kernel, which was utilised for the IDEKO position signal. To carry out this

implementation, we set the epsilon value to e-4 and re-executed the K-means classification

on the datasets. As a result, we observed a reduction in the number of iterations within the

loop, which in turn led to improvements in the execution time and energy consumption.

Notably, the accuracy of classification remained unchanged, and in all datasets, the K-means

kernel, when implemented with the quality-based control loop approximation technique,

produced identical classification results.

Table 20: Approximation computing techniques in the K-Means on the HPC system

IDEKO signal Epsilon Execution

time (sec)

Execution time
improvement

Energy
consumption
improvement

Accuracy

110 position signal e-4 2.181 5.0X 8.9X 100%

330 position signal e-4 2.445 3.1X 3.1X 100%

550 position signal e-4 3.339 2.4X 2.4X 100%

770 position signal e-4 3.357 2.4X 2.4X 100%

990 position signal e-4 3.403 2.3X 2.3X 100%

1100 position signal e-4 5.726 2.2X 2.2X 100%

Transprecision techniques will be applied into the K-means Kernel. By employing Two different

data types: double precision and single precision (float), for both input and output data types,

denoted as I and K, respectively. Table 21 presents how combining these different data types

can potentially improve the execution runtime and reduce energy consumption.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 88/133

Table 21: Transprecision computing techniques in the K-Means on the HPC system

Input data

precision

Output
data

precision

Execution

time (sec)

Energy
Consumption

(Joule)

Execution
time

improvement

Energy
consumption
improvement

double double 2.251 907.548 - -

double float 2.136 861.448 5% 5%

float double 2.146 865.445 5% 5%

float float 1.965 792.618 13% 12%

4.2.4 KNN Clustering Algorithm

4.2.4.1 Approximate and transpresicion techniques

Approximate versions of the Timeseries KNN classification algorithm for FPGA and HPC

accelerators have been developed.

4.2.4.1.1 Alveo FPGA Acceleration Cards

The Alveo U50 and U200 FPGA acceleration cards make use of approximate designs that take

advantage of HLS (High-Level Synthesis) arbitrary precision data types to quantize the inputs

and intermediate operands. In the design with the high approximation error, the floating-

point values are converted to the ap_fixed<25,24,AP_RND, AP_SAT> data type. This particular

fixed-point representation assigns 24 bits to the integer part and 1 bit to the fractional part.

This approximate design can be seamlessly compiled using the ‘AXX=1’ flag during

compilation.

4.2.4.1.2 Xilinx MPSoC FPGAs

The quantization schemes that were used in the Alveo designs were also employed for the

design of the approximate accelerators in the MPSoC platforms.

4.2.4.1.3 HPC

In the KNN kernel, approximation computing techniques are not typically introduced, as they

can compromise the accuracy of the results. In this specific use case, the KNN kernel is

responsible for classifying inference signals between two classes, and introducing uncertainty

through approximation techniques may not be desirable.

However, transprecision computing techniques can still be applied in the KNN kernel. By

utilising different and lower precision data types for the input data, execution time and energy

consumption can be reduced without significantly impacting the accuracy of the classification

results.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 89/133

4.2.4.2 Evaluation Results

4.2.4.2.1 Alveo FPGA Acceleration Cards

Figure 83 shows the execution time speedup and the energy gains when the accelerators with

approximation are executed on the Alveo Xilinx acceleration cards. The execution time

speedups now are 61.1x and 85.1x for the U50 and U200, while the energy gains are 133x and

198.6x respectively. The accuracy of this version is 95.4%.

Figure 83: Latency and Energy gains for approximate K-NN on Alveo FPGAs

4.2.4.2.2 Xilinx MPSoC FPGAs

Figure 84 shows the execution time speedup and the energy gains when the accelerators with

approximation are executed on the MPSoC FPGAs. The execution time speedup is now 211x,

while the energy gain is 116x.

Figure 84: Latency and Energy gains for approximate K-NN on MPSoC FPGAs

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 90/133

4.2.4.2.3 HPC

To assess the impact of transprecision techniques on the KNN kernel, two different data types

were used: double precision and single precision for both input data. Table 22 shows the

execution time and energy improvements achieved by implementing mixed data precision in

the KNN Kernel.

Table 22: Transprecision computing techniques in the KNN on the HPC system

Input data
precision

Execution
time (sec)

Energy Consumption

(Joule)

Execution time
improvement

Energy consumption
improvement

double 3.930 1584.61 - -

float 3.488 1406.66 11.5% 11.6%

Figure 85 below summarises the results for all the low approximate FPGA designs for the UC3.

Similarly, Figure 86 summarises the results for all the high approximate FPGA designs.

Figure 85: Summary of all the low approximate FPGA designs for the UC3

Figure 86: Summary of all the high approximate FPGA designs for the UC3

4.3 Verification, Validation, and Uncertainty Quantification

(VVUQ)

In Sections 3.1 and 3.2, we discussed transprecision and approximation computing techniques

and how they have been integrated into kernel implementation. Transprecision techniques

involve utilising limited data precision during kernel execution, and we have observed that

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 91/133

using low precision data types can reduce memory footprint, execution run time, and energy

consumption without compromising the accuracy of the output. We have also applied

approximation techniques, which consist of loop perforation and quality-based control loops.

Both of these techniques reduce computation run time and energy consumption at the cost

of changing the accuracy of the output results.

Figure 87: Verification Validation, and Uncertainty Quantification (VVUQ)

However, a question arises about how we can manage all these parameters and uncertainties

in the kernel. The SERRANO platform, we have developed Verification, Validation, and

Uncertainty Quantification [19] (VVUQ) to choose the best combination of input/output data

precision and loop perforation to minimise computation run time and energy consumption.

Additionally, VVUQ addresses the trade-off between the accuracy of the results and execution

time, and helps use case providers choose the best parallel parameter number of processes

to achieve these optimizations (Figure 87).

4.3.1 Automated Benchmarking

Various parameters come into play during kernel execution. Regarding transprecision

techniques, we consider the mixed data precision scenario for input and output, where

{double-double, double-float, float-double, float-float} are the available options, as illustrated

in Figure 88. We use different perforation stride values for approximation techniques, such as

s={1,2,4,8,16}. Additionally, for parallel kernel execution, we use num_MPI_Procs to denote

the number of processes, which can take values of {1, 2, 4, 16, 32, 64, 128, 256}. To automate

benchmarking, we utilise a nested loop structure similar to Figure 88, where we execute the

kernel for each combination of these parameters and monitor execution time, energy

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 92/133

consumption, and application accuracy. Therefore, automated Benchmarking leads to the

automatic generation of files containing profiling measurements of the kernel in all possible

combinations.

Figure 88: Automated Benchmarking with regard to approximation and transprecision techniques

4.3.2 VVUQ User Interface

We will describe how users can interact with the VVUQ interface, using the Kalman Filter

kernel as an example. After conducting Automated Benchmarking on the input data, several

profiling files are automatically generated, as previously explained. With the VVUQ

framework, users can explore all of these profiling files and quantify the uncertainty to obtain

optimal parameters such as the number of processes, input and output data precision, and

performance stride for executing the Kalman Filter that minimises execution time and energy

consumption. In the bash script, users can specify the kernel name and input data size while

leaving the remaining parameters at their default values.

Figure 89: VVUQ configuration Interface

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 93/133

By executing the bash script, the VVUQ framework provides the optimal parameters for

executing the Kalman filter (Figure 90). To achieve minimum execution runtime and energy

consumption, the kernel needs to be executed with 128 MPI cores and with input and output

data precision set as float, while using a perforation stride of 4, and the L2 absolute error norm

would be 48.58.

Figure 90: Optimal parameter received by VVUQ framework to execute Kalman filter in parallel

We also received information about how the error varies due to loop perforation in

approximation techniques. Increasing the perforation stride reduces the execution time but

increases the error. We can adjust the affordable error range for our case by setting the

parameters for error offset and error end set. Therefore, in task 4.2, we need to balance

application accuracy and execution runtime. By applying the error_offset of 50 and

error_endset of 150, we received a new parallel parameter that minimises execution time and

energy consumption while considering the affordable error we just set.

Figure 91: VVUQ addresses the trade-off between accuracy and execution time

4.3.3 Kernel Performance Approximation

In section 3.3.2, we have introduced the VVUQ framework and its ability, in conjunction with

Automated Benchmarking, to evaluate the accuracy and reliability of results. However, one

potential drawback of utilising this framework is that it may lead to increased costs, as it

requires more computational time to consider all combinations of data precision, perforation

stride, and multiple numbers of cores, and then identify uncertainties and validate the results.

To tackle these difficulties, we plan to employ the VVUQ framework on a small number of use

cases. We will then combine these outcomes with AI/ML techniques to determine the best

parameter values for new data batches. By doing so, we can overcome the computational

expenses associated with using the VVUQ framework while enhancing the efficiency and

dependability of the SERRANO digital platform.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 94/133

In Table 4, we have computed the minimum execution time for different data batches in each

kernel. Consequently, the Gradient Descent method was applied to achieve a nonlinear

formula that approximates the minimum execution time. This formula is subsequently used

to estimate the minimum execution time of the random signals we obtained. In this approach,

the gradient descent method was applied to compute the optimal parameters {a, b, c} in the

following equation.

 𝑌 = 𝑎 ∗ 𝑒𝑥𝑝(−𝑏 ∗ 𝑥) + 𝑐

Table 13 displays the benchmark results for the parallel KNN kernel using several acceleration

data batches from IDEKO, indicating that we achieved the minimum execution time. With this

information, we can utilise the Gradient Descent method to determine the most accurate

nonlinear formula (Table 23) that approximates the minimum execution time of the KNN

kernel across various data sizes.

Table 23: Nonlinear formula achieved by gradient descent method

KNN minimum Execution time approximation Formula

 Nonlinear function (Gradient Decent) 1.03247*exp(0.0294826*x) - 0.0302112

 Linear Function (Linear Regression) 0.0382379*x + 1.11035

Nonlinear formula and linear approximation in addition to the original minimum execution

time measurement displayed in Figure 92. By applying the nonlinear formula, we can optimally

approximate the minimum execution time of the KNN kernel for various data sizes.

Figure 92: Nonlinear and Linear approximation of minimum execution time

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 95/133

4.4 Detection Methods and Energy Consumption

This section describes the experiments carried out regarding algorithmic transprecise

adaptation of ML analysis and detection methods. We aim to investigate models and

techniques that enable distributed streaming applications to be deployed and redistributed

across edge/cloud computing systems. By utilising devices that are dispersed through a

network that is in the proximity of end users, it is possible to reduce network latency and

increase the available bandwidth. It is important to mention that these types of user networks

where the target edge devices are located are intrinsically dynamic. In the case of mobile

devices, it is easy to see that these connect to different end points (base stations) as they

roam. Thus, these devices might be available in an intermittent manner for computation tasks.

Our anomaly detection solution described in WP5 deliverable, Event Detection Engine (EDE),

proposes leveraging these resources from heterogeneous compute and network resources

utilising algorithmic transprecise adaptation mechanisms.

Transprecise computing states that computation need not always be exact and proposes a

disciplined trade-off of precision against accuracy, which impacts computational effort, energy

efficiency, memory usage, and communication bandwidth and latency. This approach allows

for dynamic adaptation of precision during computation depending on the underlying system

context and available resources. In the case of distributed streaming, this adds a new

dimension to the problem of scheduling streaming applications and will ultimately lead to

superior performance, energy efficiency, and user experience. The experiments described in

this section demonstrate the feasibility of this unique approach by developing a transprecise

stream processing application framework and transprecision-aware middleware. The use

cases for performance anomaly detection, network anomaly detection, and graph processing

will guide the research and underpin technology demonstrators as relevant for the EDE

platform (part of Service Assurance and Remediation) developed in WP5.

The experiments aim to address three fundamental scientific questions. Firstly, our objective

is to establish the scope of transprecision in stream processing applications by developing

algorithms capable of trading-off result accuracy with non-functional properties. This task is

challenging as not all algorithms, including those based on machine learning, can easily adapt

to transprecision methodologies. Secondly, we aim to define appropriate programming

abstractions for transprecise streaming applications. These well-defined abstractions will

enhance end-user productivity by providing greater control over computation and scheduling

policies on edge/cloud systems. Lastly, our goal is to achieve dynamic transprecise-aware

mapping of streaming applications on edge/cloud resources. This involves accurately

modelling the potential tradeoffs between resources and precision for each application and

the operators they utilize.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 96/133

4.4.1 Detection and Analysis of Energy Consumption

In the following subsection we will describe the overall design and goal of our experiments

regarding algorithmic transprecise adaptation. We selected a wide range of ML methods

suitable for anomaly detection tasks. Next, we executed several experiments whose main goal

was to find, using guided Hyper-Parameter Optimization (HPO), the best hyper-parameters

for each model in order to maximise predictive performance. These experiments were carried

out during the development of the Service Assurance and Remediation (SAR) component in

WP5.

Once we had the best performing hyper-parameters for each ML method we designed a set

of experiments to basically benchmark what the energy impact of different training and

inference scenarios are for each model. For the measurement of power utilisation we used

the Intel developed Running Average Power Limit (RAPL) interface [20]. It is used for reporting

accumulated energy consumption for various power domains. Server grade CPUs, largely from

the Intel Xeon family (post 2010 Sandy Bridge architecture) are supported. These domains are

largely dependent on the CPU being utilised. Figure 93 shows how each monitorable RAPL

domains are organised. Package domain contains information regarding CPU cores, Cache

memory and integrated GPU (if available). The DRAM domain gathers information regarding

the working memory. CPU and Integrated GPU measurements can be fetched using the Core

and Uncore domains respectably. An additional domain regarding Nvidia GPUs can be

obtained (Starting from Nvidia Volta 2018) using the NVIDIA Management Library (NVML) [21].

Because most of our available HPC cluster is based around AMD processors (mostly AMD EPYC

7702 [22]) not all RAPL domains are supported. In fact in order to utilise RAPL measurements

some modifications to the Linux kernel had to be made. However, even so we were able to

gather energy consumption data only for the package domain. If there are two CPU sockets

on the physical hardware then there are two package domains which need to be monitored

(PKG 0, PKG 1). In our case, we have a single socket for our testing server. The complete

specifications of the testing infrastructure can be found bellow (Table 24).

Table 24: Experiment infrastructure 16 x HPE Proliant DL385 Gen10

Specification Description

CPU 128x EPYC 7702 2,0 Ghz/core

RAM 1024 GB

Storage 2x 480 GB SSD

Inter-connect (storage and communications) 2x25GbE adaptors

Operating system Ubuntu 22.04 LTS (custom kernel)

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 97/133

Initial experiments were carried out using the perf [23] Linux tool used for performance

analysis. It supports hardware performance counters, tracepoints, software performance

counters, and dynamic probes. An example usage scenario can be found bellow:

Table 25: Perf usage scenario

perf stat -e ,power/energy-gpu/,power/energy-pkg/ ede.py -f config.yaml

The previous example collects energy consumptions (in Joules) for the GPU and Package

domains. While utilising perf for energy measurements we have found that it provides limited

measurements capabilities for our use-case. For example, when we train/validate a predictive

model we usually execute some form of cross-validation, while using perf we would require

to split up each split into separate perf calls, there is no reliable method to split measurements

otherwise.

This is the main reason we decided to instrument our code to provide as precise measurement

as possible. For this we used pyJoules [24]. This library allows us to measure specific code

fragments. In our case we wished to measure only model training and prediction, ignoring any

preprocessing operators. For each cross-validation fold we collect training, inference energy

consumption and duration. We still measure the overall power consumption using perf as a

form of sanity check.

Figure 93: RAPL Domains (according to pyJoules)

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 98/133

4.4.2 Data Set

The dataset used during the testing phase was described in WP5 deliverables. For the sake of
completeness we will describe it here as well. The dataset was generated by monitoring a 4
node deployment of Apache Spark on which a data and compute intensive distributed
application was being executed. System level metrics were collected with a polling period of
1 second. For each node we collect 89 features. For the experiments detailed in this
deliverable we used a single node run, with 4 hardware anomaly classes. Each hardware
anomaly was induced using a distributed anomaly induction tool developed by the UVT team:

● CPU Load - Simulates an abnormally high CPU utilisation
● Memory - Simulates both memory allocation issues as well as memory leaks
● DDOT - Simulates CPU ALU and Cache memory issues
● Copy - Simulates persistent storage I/O issues

Figure 94 shows the class distribution of the dataset used for the dataset used. We can see
that the anomalous events are vastly underrepresented in the dataset. Furthermore some
anomalies have overlapping effects/symptoms DDOT and CPU anomalies have a large CPU
component while COPY has a large Memory component.

Figure 94: Class distribution

4.4.3 Experiments and Results

We based our experiments around the results obtained during WP5 related experiments.
Specifically, we used the best method parameters obtained after an extensive, guided, hyper-
parameter optimization of each method detection method. The methods chosen for this
experiment are all decision tree based supervised classification methods. These were chosen
because they represent on the one hand the most common method types used in these

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 99/133

scenarios and on the other hand are very well suited detection tasks in unbalanced datasets.
The methods used are; AdaBoost, RandomForest, XGBoost, LightGBM, CatBoost.

The current experiments can be split up into 3 distinct phases. Each of these phases are
designed to fully describe the tradeoff between energy consumption and predictive
performance.

The first phase we execute for each algorithm a 10 fold cross-validation utilising stratified
method for the splitting of training and validation sets. This enables us to maintain the same
class distribution for these sets as the original set. If we would split the data randomly some
classes are likely to be underrepresented or even missing from the training or validation sets.
This will lead to skewed performance evaluation. The main goal of this phase is to obtain a
baseline of performance, seeing that the best hyper-parameters are used during this step.

During the second phase we execute a recursive feature elimination for each method. Training
predictive models initially on one feature then adding at each iteration an additional feature
until we obtain the complete featurespace. This allows us to check how the input data size
affects both power consumption and predictive performance.

Figure 95 and Figure 96 show the results regarding power consumption during training and
inference respectively. We can see AdaBoost has an almost linear increase in power
consumption while RandomForest and to some extent CatBoost, showcases almost the same
data usage, independent of input feature space. XGBoost and LightGBM have relatively noisy
power consumption. Out of all of the methods the highest single energy consumption was
obtained by XGBoost while the lowest is CatBoost. We should mention that for each iteration
a the same 10 fold cross-validation methodology is used, meaning that in total 10 * 89 models
were trained during this process. Figure 97 shows the scores obtained for each iteration. We
can see that both methods perform well with a relatively small feature space, XGBoost actually
performing better.

Figure 95: Recursive Feature Elimination - Training

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 100/133

Figure 96: Recursive Feature Elimination - Inference

In phase 3 we take the feature space defined during HPO and see what the impact of each
parameter value has on predictive performance and energy consumption. Figure 98 shows the
impact of parameter values on energy consumption. We can clearly see that some parameters
have a much larger impact than others, a clear pattern can be observed for all 3 methods.

For the sake of brevity and simplicity we will not list the results for each method and its
parameters. Instead we will focus on AdaBoost for the simple reason it has the lowest energy
consumption out of all methods currently tested. Figure 99 shows energy consumption (left-
hand side) and the predictive performance using the F1 score (right-hand side).

Figure 97: RFE scores for CatBoost and XGBoost

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 101/133

Figure 98: Validation curves for all hyper-parameter values.

We should mention at this point that all experiments were carried out using a fixed random

seed to aid in experiment reproducibility. This fixed seed was used for the generation of

training and validation splits for cross-validation and for method initialization. One interesting

side effect is how some training and validation dataset pairs during cross-validation cause

spikes in energy consumption. Specifically, this occurs during training and is linked to some

underlying characteristics of the data. The exact cause is not yet completely understood and

requires further research. At this point the most probable cause of this might be related to

specific events (i.e. rows) and the data distribution and/or entropy.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 102/133

Figure 99: Energy Consumption AdaBoost per parameter value and F1 Score per parameter

Table 26: Classification report for AdaBoost (Fold 8)

classes pre rec spe f1 geo iba sup

normal 0.998 0.998 0.991 0.998 0.995 0.991 959.0

ddot 1.0 1.0 1.0 1.0 1.0 1.0 18.0

mem 1.0 0.923 1.0 0.960 0.960 0.915 26.0

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 103/133

cpu 0.928 1.0 0.999 0.962 0.999 0.99 13.0

copy 0.984 1.0 0.999 0.992 0.999 0.99 64.0

avg/total 0.997 0.997 0.997 0.997 0.997 0.997 0.997

Table 26 provides a classification report in case of AdaBoost, it represents a detailed

breakdown using several scoring measures including F1 score separated for each class in part.

The “support” column also shows the number of occurrences of each class in the validation

data. These kinds of reports are generated for each training fold during cross-validation.

4.4.4 Conclusions and Discussion

The results presented in this section let us create a repository of both pre-trained predictive

models and a set of viable hyper-parameters which yield a workable tradeoff between

predictive performance and energy consumption. We have also observed a strong correlation

between both training and inference times and energy consumption, thus we can conclude

that, at least for the methods listed here, a lower energy consumption leads to faster inference

times.

We have HPO related results for several deep learning methods however, seeing that they

require specialised hardware to execute the experimental results are not yet complete as of

writing this deliverable. Similarly, we are currently working on extending the experimental

work done with unsupervised detection methods to include energy consumption metrics. For

both scenarios we further aim to include additional transprecision optimizations, especially in

the case of deep neural network-based models where mixed precision and post training

optimizations such as weight quantization and clustering are known adaptations.

An extended version of the results summarised here are to be published in a journal article in

the upcoming months by the UVT team.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 104/133

5 Seamlessly Integration of Heterogeneous

Architectures for Improving Developers’

Productivity in HW/SW Co-design of Data-

intensive Applications

The SERRANO platform aims to provide a set of tools and design methodologies that will ease

the designers to develop performance and power optimised solutions for heterogeneous

computing platforms deployed at the edge and the cloud. In today's era, the demands for

high-performance computations and low-power designs are continuously escalating. To meet

the user requirements for energy efficiency, high throughput, and security in this new

computing paradigm, the concept of adaptive computing has emerged. Acceleration

platforms such as GPUs and FPGAs offer higher performance than most conventional

processing systems, while still fulfilling the user requirements for energy efficiency and

security. However, the efficient design and deployment of computationally intensive

applications on these specialised compute units can often be unclear, even for the most

experienced developers. This challenge is further compounded by the need to expedite the

development cycle and design solutions within limited timeframes. In the context of the

SERRANO project those issues are addressed by designing FPGA and GPU accelerators through

the Plug&Chip framework.

The components that realise the Plug&Chip framework that facilitates the FPGA and GPU

developers to speed-up the development cycle by utilising a set of tools is described in this

section. Namely those tools are:

1. A tool for the automatic optimization of FPGA accelerated kernels.

2. A design methodology for the design of memory efficient FPGA accelerators.

3. A tool for the automatic optimization of CUDA kernels.

5.1 Automatic Optimization for FPGA Accelerated Kernels

High-Level Synthesis simplified the hardware development process by allowing developers to

instruct the compiler how to perform synthesis by adding directives to a C/C++ or OpenCL

source code. However, manually selecting the appropriate directives is an extremely difficult

task even for experienced designers, mainly because of a) the huge decision space and b) the

inherent interdependence with the underlying FPGA architecture. The lack of end-to-end tools

that provide optimised HLS configurations in an automated manner is therefore one of the

major obstacles to realising the FPGA Automatic Code Deployment vision [25]. SERRANO fills

the gap with GenHLSOptimizer, an end-to-end tool for automatically optimising C/C++ kernels

with respect to the underlying architecture of the target FPGA.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 105/133

5.1.1 GenHLSOptimizer: A Genetic Algorithm-based Optimizer for

High-Level Synthesis

SERRANO offers a tool that automatically optimises synthesizable C/C++ kernels for Xilinx

FPGAs through High-Level Synthesis. This optimization scheme identifies points of interest,

i.e., loops and arrays, applies directives (e.g., loop unrolling, array partition), and performs

synthesis to get the latency and resource utilisation. By applying different combinations of

directives, the optimizer proposes an approximation to the Pareto-optimal designs with

respect to the underlying architecture of the target device.

Due to the large design space, the DSE is performed using the algorithm NSGA-II [26]. which is

implemented in the Python Multi Objective Optimization (PyMOO) library [27]. The goal of the

Genetic Algorithm (GA) is to minimise the latency and area of the design, taking into account

the resource constraints of the target FPGA. The population size and offspring of the NSGA-II

algorithm are set at 40. We also configure the Genetic Algorithm with the random operator

for sampling and selection, the simulated binary operator for crossover, and the polynomial

operator for mutation. All operators are configured with the default parameters of the library.

The termination criterion was set at 24 generations.

The exploration phase consists of the following steps: a) the configuration population is

initialised, b) each configuration of the current population is applied to the source code using

a source-to-source compiler and the output is synthesised using the Xilinx Vitis tool chain [28],

and c) the synthesis outputs of the population are passed to NSGA-II to build the next

generation configurations. Steps b) and c) are executed iteratively until the termination

criterion is reached. Configurations that result in designs that exceed the available resources

of the target FPGA architecture or require an unreasonable amount of time for the synthesis

process (1h) are marked as infeasible so that GA can produce feasible solutions when the

algorithm converges. Assuming that the designs of one generation are evaluated in parallel,

the 1h threshold for time-consuming synthesis, and the termination criterion, the near-

optimal designs are generated in 24h in the worst case. Readers can find more information in

deliverable D4.3, which analyses the individual components of the proposed methodology.

5.1.2 Evaluation

We evaluate GenHLSOptimizer with C/C++ kernels provided by SERRANO. In particular, we use

the following kernels: (a) the Black-Scholes algorithm (INB), (b) the Kalman filter (INB), (c) the

Savitzky-Golay filter (INB), (d) the Wavelet Transform (INB), (e) the Dynamic Time Warping

Distance Calculation (IDK), and (f) the Encoding part of Erasure Coding (CC).

For the synthesis of the studied kernels, we use Xilinx Vitis HLS 2021.1, a State-of-the-Art

framework capable of synthesising source codes for edge and cloud devices. We target the

Xilinx Alveo U50 and MPSoC ZCU104 FPGAs available on the SERRANO platform. The target

clock frequency was set to 300 MHz. The genetic algorithm was implemented using the

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 106/133

PyMOO library (version 0.5.0). Finally, our experiments were performed on an Intel Xeon Gold

5218R (@2.10GHz) server with 256GB RAM memory.

We compare the design provided by GenHLSOptimizer with i) the design provided by the

kernel without directives (Vitis), which highlights the impact of the optimizations provided

natively by Vivado-HLS, and ii) the design provided when the source code is optimised by the

developers of AUTH. iii - iv) We synthesise each of these baselines with/without enabling Vitis'

default HLS optimizations, i.e. config_compile -pipeline_loops, config_unroll -

tripcount_threshold and config_array_partition -complete_threshold, creating 4 baselines in

total.

5.1.2.1 Optimised Design Latency

Figure 100 shows the relative mean speedup of GenHLSOptimizer compared to each baseline

for the Xilinx Alveo U50 and MPSoC ZCU104 FPGAs. Our solution outperforms all baselines. It

achieves an average relative speedup of 425.35x and 2.43x compared to the Vitis and AUTH

versions, respectively, and an average relative speedup of 5.17x and 1.13x when these

versions are optimised with Vitis' HLS optimizations for the Xilinx MPSoC ZCU104 FPGA. The

same picture emerges for the Xilinx Alveo U50 FPGA, where GenHLSOptimizer achieves an

average relative speedup of 234.53x and 2.4x compared to the Vitis and AUTH versions, and

an average relative speedup of 5.17x and 1.1x when these versions are optimised with Vitis'

HLS optimizations.

An interesting observation is that GenHLSOptimizer is able to achieve higher relative speedup

on average on the MPSoC ZCU104 compared to the Alveo U50, especially for the Vitis baseline.

This is due to the limited resources of the Edge compared to the Cloud device. In particular,

when an application is synthesised for a resource-constrained edge FPGA, the final design is

likely to have higher latency than the design for a cloud FPGA equipped with more Block RAMs,

DSPs, Flip-Flops, and Look-Up Tables, especially if no specific optimizations are instructed via

HLS directives.

Figure 101 shows the relative speedup per application for both FPGAs to provide insight into

how our approach optimises each kernel. Note that GenHLSOptimizer is able to achieve higher

relative speedup for each application when using the MPSoC ZCU104 compared to Alveo U50

for the Vitis baseline.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 107/133

Figure 100: Average relative speedup for Xilinx Alveo U50 (Right) and MPSoC ZCU104 (Left)

Figure 101: Relative speedup per application for Xilinx Alveo U50 (Right) and MPSoC ZCU104 (Left)

5.1.2.2 Design Space Exploration Time

GenHLSOptimizer uses a meta-heuristic to determine the approximate Pareto frontier.

Therefore, the time to perform the Design Space Exploration is an important aspect of our

approach. Figure 102 shows the time it takes GenHLSOptimizer to create the optimised design

for each application for both FPGAs. Our approach takes an average of 11.9 hours and 7.1

hours to create the optimised designs for the MPSoC ZCU104 and Alveo U50 FPGAs,

respectively. Average design space exploration times are below the 24-hour threshold,

highlighting the system's ability to converge much faster. We can also see that the average

DSE time for the Alveo U50 FPGA is 1.68x lower than that of the MPSoC ZCU104. This also

happens due to the resource limitations of the edge FPGAs. Since the directive configurations

are initialised randomly, it is more likely that a directive combination will result in an infeasible

design on a resource-constrained edge device than on a cloud device. This complicates the

work of the genetic algorithm to find the approximate Pareto frontier and consequently

requires more time.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 108/133

Figure 102: DSE time per application for Xilinx Alveo U50 (Right) and MPSoC ZCU104 (Left)

5.1.2.3 Latency and Resources Distributions

Figure 103: Relative Speedup (Left) and Average Resources Utilisation (Right) distributions

Figure 103 shows the distribution of relative speedup and resource utilisation for the FPGAs

studied for all baselines. GenHLSOptimizer provides lower latency designs compared to all

baselines by efficiently utilising the available resources of the target FPGA, as shown by the

average resource utilisation distribution of each baseline. Finally, as described in deliverable

D4.3, our approach can always produce a feasible design in terms of resources, which is an

important differentiator from the Vitis_wO baseline that cannot always produce feasible

designs.

5.1.3 Conclusion

In this section, we present GenHLSOptimizer, an end-to-end tool for optimising C/C++ kernels

with respect to the underlying architecture of the target FPGA without human intervention.

Our experimental evaluation shows that our approach is able to outperform all studied

baselines in terms of latency, considering the resource constraints of an edge and cloud FPGA

available on the SERRANO platform.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 109/133

5.2 Dynamic Memory Management in High-Level Synthesis

(HLS)

SERRANO offers a tool and a co-design methodology for the implementation of memory

efficient many-accelerator platforms on Xilinx FPGAs. This tool [29] [30] is publicly available

through the SERRANO’s repository [31].

5.2.1 Many-accelerators Platforms in HLS

The implementation and parallel execution of many accelerators on a single FPGA device has

been suggested as a candidate approach for increasing the application’s throughput [32]. This

is an execution scheme that allows multiple accelerators to process data batches in parallel

leading to a significant decrease in the overall execution latency. However, this execution

scheme implies the synthesis and implementation of multiple circuits on the same FPGA

platform which may not be feasible on small platforms with limited computational and

memory resources. Studies [33] have shown that the rapid saturation rate of the platform’s

on-chip memories is the primary reason that makes the many-accelerator schemes not

feasible.

Dynamic memory management in HLS allows accelerators to share and reuse on-chip memory

resources at their execution time. In those design methodologies heap structures are

implemented on the FPGA platform for the dynamic memory allocation and deallocation.

Figure 104 shows the number of the erasure-coding encoder accelerators that can be

implemented in the Xilinx MPSoC ZCU104 FPGA platform when the typical static and the

dynamic memory sharing schemes are used. While the static allocation methodology can

deliver only up to three encoder accelerators before over-utilizing the platform’s memory

resources, the dynamic memory schemes can deliver up to 28 parallel executed encoder

accelerators instead.

Figure 104: Dynamic memory allocation for erasure coding encoder accelerators

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 110/133

5.2.2 On-chip Defragmentation Methodology

Despite the benefits of the dynamic allocation methodology, as the number of implemented

and parallel-executed accelerators increases, there is a higher likelihood of encountering heap

fragmentation issues. These issues can result in memory allocation failures (MAFs) and

consequently lead to stalls and exceptions in the execution of the accelerators. Figure 105 [34]

demonstrates this phenomenon. As the number of synthesised and parallel executed K-means

accelerators rises the percentage of the MAFs due to heap fragmentation also increases.

Therefore, a design methodology that nullifies this fragmentation induced MAFs is proposed

for the design of the SERRANO’s memory-shared accelerators.

Figure 105: Memory allocation failures due to execution of multiple K-means accelerators

The proposed methodology consists of two stages:

● An offline analysis stage where the conditions that enable the

mechanism that optimises the heap usage are determined.

● An online execution stage where a garbage collection mechanism is executed.

Figure 106 illustrates this design flow.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 111/133

Figure 106: Design flow for on-chip defragmentation methodology

The offline analysis phase aims to determine the heap’s fragmentation ratio Θ that triggers

the FPGA designed garbage collection mechanism. Initially, the memory allocation sizes from

all the parallel executed HLS accelerators are extracted and their different values form the

Distinct Allocation Sizes (DAS). Then, a Monte-Carlo simulation analysis is performed to

compute the fragmentation ratios Θ that minimise the allocation failures. The input to this

simulation is memory patterns that correspond to an overlapping execution of those

accelerators, as these are derived from the pattern generator block. This block pseudo-

randomly generates Malloc/Free sequences of the extracted DAS, forming multiple memory

patterns.

In this simulation the HLS accelerators and the HLS garbage collector are executed in a

software emulation mode. The output of this offline simulation is the Pareto front that trades-

off decrease in fragmentation induced memory allocation failures to estimated execution

latency. The designer selects the Pareto solution 𝛩𝑚 that meets their requirements for

execution latency and memory fragmentation and synthesises on the FPGA the garbage

collector for the specific n 𝛩𝑚 parameter.

During the online execution stage, the accelerators are executed on the FPGA platform on a

shared heap and the garbage collector is executed every time that the heap’s fragmentation

ratio exceeds the user-defined 𝛩𝑚 threshold. Details on the implementation of the garbage

collector on the FPGA can be found in the corresponding publications [35] [36].

5.2.3 Evaluation

The experimental analysis that is presented in this subsection shows the effect of different Θ

values in reducing the heap’s fragmentation when multiple K-means and multiple moving

average filters (i.e., an almost identical kernel with the Savitzky-Golay and Wavelet filters)

accelerators are executed using a dynamic memory allocation scheme and share one heap.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 112/133

Figure 107 shows that the higher the Θ value, the more likely fragmentation-induced MAFs

are to occur. As Θ increases, the MAFs approach the reference solution (i.e., the one without

an on-chip garbage collector). Therefore, to design a fragmentation-free shared memory

system, the Θ should be set as low as possible. However, as it is depicted in Figure 108, the

lower the Θ value, the higher the execution latency. This happens due to the frequent

executions of the garbage collector that cause frequent stalls at the accelerator's execution.

Figure 107: Allocation failures for different Θ thresholds

Figure 108: Defragmentation latency for different Θ thresholds

5.2.4 Conclusion

In this section an HLS co-design methodology and the corresponding framework were

presented. This tool allows the HLS designers to develop many-accelerator solutions with

controllable fragmentation of the shared on-chip memories. The evaluation analysis shows

that it is up to the designer to select the optimal solution that is generated from the offline

Monte-Carlo analysis that will fulfil their requirements for memory efficiency and

performance.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 113/133

5.3 Automatic Optimization for CUDA Kernels

An automatic optimization tool was developed, targeting to produce accelerated and energy

efficient, HW aware kernels in an automated manner. Generally, the GPUs' programmability

has been improved the last few years and the kernels’ implementation and execution process

has been simplified, but the task of optimising the kernels targeting to achieve close-to-close

peak performance remains complex and time consuming, due to the fact that the variety of

kernels and different GPU architectures keeps increasing.

To this end, we developed an automatic kernel optimization tool. The developed tool

implements an automatic optimization process for the block coarsening transformations

across different applications, workload input sizes and GPU architectures. The tool is machine

learning based (uses regression models) and it also consists of an in house source-to-source

compiler. The tool was tested on Polybench benchmark on 5 different devices and was able

to achieve speedups up to x2.3 in terms of performance for unseen GPUs and unseen CUDA

kernels in comparison with native implementations.

As mentioned the main optimization task of the tool is the block coarsening transformation.

The term block coarsening transformation refers to the number of blocks’ reduction, leaving

the block size (threads per block) the same. To succeed this reduction, multiple neighbouring

blocks’ work loads need to be merged in order to deal with problems associated with extensive

fine-grained parallelism. Generally, blocks are mapped to SMs (multiprocessors) from the

GPUs and threads are organised in wraps at CUDA cores. Thus, adopting block coarsening

reduction, will also reduce the number of wraps scheduled by each SM, as the SMs’ workload

is reduced.

In order to implement the block coarsening transformation, the CUDA code needs also to be

transformed. It has to be mentioned that the whole process, if it is manually implemented, is

in most cases a lot more complex and time consuming and thus, leads to suboptimal kernels’

block reductions.

For this purpose, the developed tool includes a source-to-source compiler-tool based on some

rules, as depicted in Figure 109. Based on these rules, the tool automates the transformation

process for all the tested uses-cases and for new unseen kernels.

Figure 109: A source-to-source compiler-tool based on rules

To implement the block coarsening transformation, a PERL script was developed. The above

script can apply block coarsening transformation with a given coarsening factor, on every

CUDA kernel. Also, an extra exploration part of all the possible coarsening factors is

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 114/133

implemented and finally, the tool picks the optimal factor, in terms of performance. Both the

host and the device programs’ source codes are inputted to the tool in order to auto-tune the

new grid size and the device kernel located in host and device files respectively.

As mentioned before, the purpose of the tool is to automatically select the more efficient

block coarsening transformation. After all the candidate kernels were implemented from the

PERL script, supervised learning was used to predict each kernel’s version performance and

then select the more efficient.

In order to train the unsupervised learning model a dataset that could represent a big variety

of CUDA programs, various input sizes and different architectures, should be used. The input

features included, a static features part, that represented the structure and the body of the

CUDA kernel and a Hardware features part that described the GPU architecture, the potential

block coarsening factors and the size of the kernel’s input.

We took advantage of a work that was published in 2019 (Guerreiro) [37], that automatically

extracts features from PTX files by extracting the number of occurrences of each different

instruction per GPU kernel. Also, to automatically convert the CUDA kernels to the PTX

assembly file we used a python interface. Finally, the input format included an 101-size vector

that counts the kernel’s number of 101 different representative PTX instructions and extra

different architectural features. The next Figure 110 introduces the adopted GPU specification

for both computation and memory description of each GPU. The final feature was a 114-size,

1-D vector that also included the workload input size of the input vector and the block

coarsening factor of the kernel’s version.

Figure 110: Adopted GPU specification for both computation and memory description

Figure 111 represents analytically the training and the prediction process. As depicted for the

training process, a regression model was adopted to be the Machine Learning predictor. More

specifically, four different regression models were trained and tested and the best one was

selected. The candidate models were, Simple Linear Regression, Decision Tree Regression,

Random Forest Regression and Extreme Gradient Boosting (XGBoost) through the Scikit-Learn

machine learning framework. The final one, XGBoost was able to reach the best MSE and R2

score on the test set. Also, as Figure 111 depicts, for the prediction, after the training process

the tool is ready to predict the latency of a given unseen kernel, block coarsening factor and

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 115/133

specific GPU and then to decide the optimal block coarsening factor for each kernel on a given

architecture.

Figure 111: Training and the prediction process

For evaluation purposes of the introduced tool, the Polybench-ACC open suite [38] was

adopted. Polybench-ACC contains different CUDA kernels. We run the different CUDA kernels

to five different NVIDIA GPUs in order to measure their execution latencies for different

platforms. The used GPUs include TX1, Xavier NX, Xavier AGX, GTX 1070 and V100. For more

information about the datasets and the GPUs please also refer to deliverable D4.3. It has to

be mentioned that 90% of the Polybench-ACC dataset was used for training and the rest 10%

for testing purposes.

The next Figure 112 represents the experimental results, MSE and R2 score for the different

regression models that we tested on the dataset. The best one was XGB and was able to

achieve 0.02 MSE and 0.88 R2 and therefore constitutes our selected regression model. Also,

it was able to create optimal coarsened kernels with speedups up to x2.3, for new unseen

GPUs and new unseen kernels, in comparison with native implementations.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 116/133

Figure 112: Experimental results, MSE and R2 score for the different regression models

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 117/133

6 Hardware Acceleration for Serverless

Workloads

During the past decade, there has been a shift in terms of the ownership of the hardware

resources on which applications are being deployed. Increasingly, application execution is

being delegated to infrastructures outside the organisation of the application owner to reduce

costs related to the ownership, operation, maintenance, and deployment of software.

This paradigm dramatically changed how we develop, package, and deploy applications.

Migrating application execution to public cloud infrastructures means our code will run side-

by-side with the code of other platform tenants. To tackle issues related mainly to security

(we want our code and data to be safe from potentially malicious users running on the same

system) but also resource allocation (we would like to avoid a single user hogging all the

resources of the underlying system), our applications run inside Virtual Machines or

containerized environments which provide different degrees of isolation.

In this environment, the underlying system, i.e., the hypervisor or the container runtime,

monitors and restricts the user application from accessing resources they do not own.

However, neither of those systems can control the access to hardware acceleration devices

with the same granularity or isolation guarantees as they can with other resources such as

CPU, Network, or Storage.

The problem is exacerbated by the way we program hardware accelerators nowadays. Such

devices typically provide hardware drivers and APIs, which they expose to application

developers. These APIs are device-specific, and sometimes they are incompatible even across

devices of the same vendor. This has two significant side effects: On one hand, user application

implementations end-up being device-specific, hindering portability and programmability,

whereas, on the other hand, the lack of uniform APIs across devices renders it extremely

difficult to virtualize them in an abstract and efficient way.

In SERRANO, we introduce vAccel [39], a framework that enables virtualized workloads to

access hardware accelerators securely and efficiently. vAccel is addressing this situation in two

ways. Firstly, it enables the development of hardware-independent applications by logically

separating an application into two parts: (i) the user code, which is part of the application logic

itself, and (ii) the hardware-specific code, which is part of the application that runs on a

hardware accelerator. Second, it enables hardware acceleration within virtualized guests by

employing an efficient API remoting approach at the granularity of function calls to delegate

accelerable code in a vAccel agent on the host system.

The vAccel software framework has been described in detail in D4.3 (M15). Additionally,

OpenFaaS is also described in the deliverable above. In the following sections, we provide a

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 118/133

brief overview of the software stack, along with the developments of porting the various

SERRANO kernels to vAccel and OpenFaaS.

6.1 vAccel

vAccel enables workloads to enjoy hardware acceleration while running on environments that

do not have direct (physical) access to acceleration devices.

The design goals of vAccel are:

1. portability: vAccel applications can be deployed in machines with different hardware

accelerators without re-writing or re-compilation.

2. security: A vAccel application can be deployed, as is, in a VM to ensure isolation in

multi-tenant environments. QEMU [40] AWS Firecracker [41]and Cloud

Hypervisor [42] are currently supported

3. compatibility: vAccel supports the OCI container format through integration with

the Kata containers [43] framework [downstream].

4. low-overhead: vAccel uses a very efficient transport layer for offloading "accelerate-

able" functions from inside the VM to the host, incurring minimum overhead.

5. scalability: Integration with k8s allows the deployment of vAccel applications at scale.

Figure 113: vAccel software stack

The core component of vAccel is the vAccel runtime library (vAccelRT). vAccelRT is designed

in a modular way: the core runtime exposes the vAccel API to user applications, and dispatches

requests to one of many backend plugins, which implement the glue code between the vAccel

API operations on a particular hardware accelerator.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 119/133

The user application links against the core runtime library, and the plugin modules are loaded

at runtime. This workflow decouples the application from the hardware accelerator-specific

parts of the stack, allowing for seamless migration of the same binary to different platforms

with different accelerator capabilities without recompiling user code.

6.1.1 Virtualization Abstraction

Hardware acceleration for virtualized guests is, still, a real challenge. Typical solutions involve

device pass-through or paravirtual drivers that expose hardware semantics inside the guest.

vAccel differentiates itself from these approaches by exposing coarse-grain "accelerate-able"

functions in the guest over a generic transport layer.

The semantics of the transport layer are hidden from the programmer. A vAccel application

that runs on baremetal with an Nvidia GPU can run as is inside a VM using our

appropriate VirtIO backend plugin.

We have implemented the necessary parts for our VirtIO driver in our forks of QEMU [44]

and Firecracker [45] hypervisors.

Additionally, we have designed the above transport protocol over sockets, allowing vAccel

applications to use any backend, if there is a socket interface installed between the two peers.

Existing implementations include vsock and TCP sockets. Any hypervisor supporting virtio-

vsock can support vAccel.

6.1.2 Container Runtime Integration

To facilitate the deployment of vaccel-enabled applications, we integrate vAccel to a popular

container runtime, kata-containers [46].

Kata Containers enable containers to be seamlessly executed in sandbox Virtual Machines.

Kata Containers are as light and fast as containers and integrate with the container

management layers while also delivering the security advantages of VMs. Kata Containers is

the result of merging two existing open-source projects: Intel Clear Containers and Hyper

runV.

vAccel integration to kata comes in both modes: virtio and vsock. An overview of the software

stack is shown in Figure 114.

Our current downstream implementation for Kata-containers v3 includes support for both the

AWS Firecracker sandbox and their custom, tailor-made Dragonball backend, using the vsock

mode of vAccel.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 120/133

Figure 114: vAccel integration with container runtimes

6.1.3 Framework and Language Bindings

To facilitate the use of vAccel, we provide bindings for popular languages apart from C.

Essentially, the vAccel C API can be called from any language that interacts with C libraries.

Building on this, we provide support for Python [47] and Rust while working on extending

support for various other high- or low-level languages. In SERRANO, the serverless function

implementation for all kernels uses the vAccel Python bindings.

Additionally, we have implemented a subset of Tensorflow [48] and PyTorch APIs so that the

user can execute an application written for those frameworks over vAccel with minimal and/or

no changes.

6.1.3.1 Python Bindings

The vAccel Python API enables communication and interaction between application code and
the underlying libvaccel.so, offering the ability to import the API into a Python codebase
and gain access to a wide range of functions, classes, and utilities. By utilising this API and
harnessing the power of vAccel plugins, developers can build Python applications that
seamlessly interface with libvaccel.so, leverage its specialised functionality, and execute
custom operations tailored to their specific requirements.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 121/133

The Python bindings offer developers a wide range of operations, giving developers direct
access to the rich functionalities of the underlying library or framework. These operations
facilitate integration and interaction with the core features.

In the context of SERRANO, we use the vaccel-exec operation, so we will present the python
bindings for these specific functions. All the available bindings are available at the
documentation website [49].

6.1.3.2 Generic Executor

6.1.3.2.1 Genop

Genop is a class that implements vaccel_genop(), the generic function of vAccel that issues
a generic operation request to the core library.

Input parameters:

● session: A Python Session instance to manage and maintain the state and context of
the operation

● arg_read: A list of “struct vaccel_args” containing a pointer to a buffer and its length.
These arguments are parsed from the plugin to form the actual function arguments
used in the plugin implementing the respective functionality

● arg_write: A list of “struct vaccel_args” objects that specify the arguments to be
written or modified by the genop operation

Output results:

● A list that contains the output or results of the genop operation. The specific content
of the result list depends on the implementation of the genop method and the
purpose of the operation.

6.1.3.2.2 Exec with Resource

Exec with resource expands the capabilities of the Python bindings by enabling seamless
integration with a shared library, giving the opportunity of extending use-case scenarios. By
utilising exec_with_resource(), we can execute code stored within the shared library while
effectively managing a specific resource tied to a given symbol.

Input parameters:

● object: The path of a shared library (.so file) containing the desired operations and
functions

● symbol: The identifier associated with the object called for the execution

● arg_read: A list of “Any” type that can accept a variable number of arguments of any
type. We use the class “Vaccel_Args” to transform those arguments to “struct
vaccel_args”, containing a pointer to a buffer and its length. These arguments are

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 122/133

parsed from the plugin to form the actual function arguments used in the plugin
implementing the respective functionality

● arg_write: A list of “Any” type that can accept a variable number of arguments of any
type. We use the class “Vaccel_Args” to transform those arguments to “struct
vaccel_args” objects that specify the arguments to be written or modified after the
execution

Output results:

● A list that contains the output or results of the exec operation. The specific content of
the result list depends on the implementation of the exec method and the purpose
of the operation.

The input parameters object and symbol are provided as strings to the

exec_with_resource() method, allowing flexibility in specifying the shared library and the

associated symbol. These strings are processed by the class Object we have created to

ensure the proper handling and utilisation of these strings. This class provides methods that

facilitate the loading and interaction with the shared library, as well as the identification of

the desired symbols.

The class “Object” provides the following methods:

● __parse_object__: Parses a shared object file and returns its content and size

● create_shared_object: Creates a shared object from a file and returns a pointer to it

● object_symbol: Transforms the given symbol

● register_object: Registers the object for further processing

● unregister_object: Removes the object from the class

● destroy_shared_object: Destroys the object

6.1.4 SERRANO Kernels on vAccel

To port the SERRANO hardware accelerated kernels on vAccel we focused on hardware

interoperability and ease-of-deployment.

6.1.4.1 Interoperability

One of the key merits of the vAccel framework is the fact that users write their code using the

vAccel API and the underlying plugin executes this code in the respective accelerator device.

This enables hardware interoperability as the user does not need to rewrite, or even re-

compile their code if they want to run on a different hardware accelerator. This greatly

facilitates the scaling of hardware-accelerated applications throughout the cloud-edge

continuum, as the user builds a container image with their vAccel API code, deploy it in the

SERRANO platform and this code can use hardware accelerators in the Cloud (Generic, NVIDIA

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 123/133

GPUs), at the Edge (Jetson GPUs, Orin/Xavier/Nano), or even CPUs when there is no hardware

accelerator available (eg. on a RPi4).

With this in mind, we ported KNN, K-MEANS, Black-Scholes, and SavGol to vAccel, developing

plugin implementations for CPU, GPU, and FPGA hardware accelerators. In the following

sections we briefly elaborate on the porting methodology and the performance implications

this integration imposes.

6.1.4.1.1 Libification

The main way of allowing applications to run on the vAccel framework is by separating the

part we want to abstract away from the core I/O part of the application. Since the actual

application is essentially the kernel to be abstracted, nearly all the code from the kernel

resides in the plugin part of the vAccel stack. Instead of developing separate API calls and

plugins for all the available kernels and execution modes, we chose to abstract this

functionality to a simple exec operation: we “libify” the hardware-accelerated part of the

application and build it using the same methods as the generic kernel (e.g. for GPU code, we

use nvcc, and the output binary is a shared library, eg libknn_app_gpu.so, exposing the

symbol of the kernel we are porting, eg knn_app).

We followed the above method for all kernels. The summary of kernels and libraries available

is the following table.

Table 27: SERRANO kernels ported to vAccel

Kernel Symbol Library Hardware

k-NN knn_app

libknn_app_cpu.so CPU

libknn_app_gpu.so GPU

libknn_app_fpga.so FPGA

k-MEANS kmeans_app

libkmeans_app_cpu.so CPU

libkmeans_app_gpu.so GPU

libkmeans_app_fpga.so FPGA

BS bs_app
libbs_app_cpu.so CPU

libbs_app_fpga.so FPGA

SAVGOL savgol_app libsavgol_app_cpu.so CPU

libsavgol_app_gpu.so GPU

libsavgol_app_fpga.so FPGA

Essentially, to port the kernels to vAccel, we followed the steps below:

http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 124/133

- Step1: use the host application as the “frontend”: we replaced the call to the relevant

function with a library call implemented by all modes of execution for the specified

kernel. We implemented “plugin” libraries for each of the core code versions (CPU,

GPU, FPGA) and verified the execution is exactly the same as the original code.

- Step 2: we replaced this library call with a vAccel-specific call. This library, essentially,

the “frontend library”, enabled us to set up the necessary data structures to ensure

input and output consistency. Afterwards, using the same plugin libraries as before,

we were able to specify which plugin library we want to use for each execution

example: as we used the vaccel-exec operation, all we needed to do is provide the

frontend with the shared object to be executed on the host, and a symbol (summarised

in Table 27).

Figure 115: Libification of original kernel

Figure 116: vAccel port

Figure 115 and Figure 116 illustrate the above process as steps 1 and 2.

To assess the overhead imposed by this process to the specific kernels, we performed an initial

evaluation on a Jetson Xavier AGX system (CPU and GPU execution). We measured execution

time with the identical input provided by the partners that developed the kernels.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 125/133

Figure 117: Performance overhead of vAccel on local execution (library overhead)

Figure 117 presents the absolute execution time (in ms) for the GPU version of each of the

three kernels studied, k-NN, k-Means, and SAVGOL. The blue bars present the execution time

of the stock kernels provided by the partners vs the vAccel-ported ones. Figure 117 shows that

running the kernels via vAccel on the same host imposes negligible overhead.

Figure 118: Performance overhead of vAccel for VM execution

Figure 118 shows the normalised execution time of the k-Means kernel to native execution,

when running on the host (vAccel-GPU, blue bars) and on a virtual machine (vAccel-GPU-VM,

red bars). We are investigating the source of the overhead imposed on the VM execution. Part

of this is accounted to the data transfer between the VM and the host.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 126/133

6.2 OpenFaaS

In SERRANO, we build on OpenFaaS [50] to provide short-lived task execution functionality.
OpenFaaS is a serverless framework that allows users to deploy functions written in any
language to a Kubernetes cluster or standalone VM inside containers. It provides auto-scaling
and metrics for the deployed functions. It abstracts the underlying infrastructure and allows
users to deploy their services using a high-level CLI tool or Web UI.

6.2.1.1 Porting the SERRANO Kernels to Serverless Functions

To accommodate the diverse input/output modes of the kernels, as well as the various modes

of execution, we used the vAccel python bindings to facilitate the process of porting the

kernels to serverless functions.

Essentially, the logic of the execution remains the same; the only thing that changes is the way

we get the input and we provide the output.

Since the plugin libraries for executing different algorithms are the same as described in

Subsection “Libification”, we can use them over the vAccel API by executing the

exec_with_resource function. We have developed tests to ensure the proper interaction

and integration between the algorithm and the plugin library, through vAccel which enables

them to interact efficiently.

KNN

For the KNN test, after loading the necessary libraries for the interaction with vAccel, we must

convert the .csv files that will be processed into a format suitable for execution. We establish

the appropriate casting for the input and output parameters and pack them appropriately.

Since the arguments are in the required format we execute the exec_with_resource

function with the necessary input arguments:

● object: libknn_app library

● symbol: The symbol that implements the k-NN algorithm in the context of the plugin,

eg: knn_app

● arg_read: The converted read arguments we have packed appropriately.

● arg_write: The converted write arguments we have packed appropriately.

K-Means

For K-Means we are working again in a similar way. After loading the necessary libraries for

the interaction with vAccel, we convert the .csv files that will be processed into the format

we want. After doing that we establish the appropriate casting for the input and output

parameters and pack them appropriately. Since the arguments are in the required format we

execute the exec_with_resource function with the necessary input arguments:

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 127/133

● object: lib_kmeans_app library

● symbol: The symbol that implements the k-Means algorithm in the context of the

plugin, eg: kmeans_app

● arg_read: The converted read arguments we have packed appropriately.

● arg_write: The converted write arguments we have packed appropriately.

SAVGOL

For SAVGOL we are working again in a similar way. After loading the necessary libraries for the

interaction with vAccel, we convert the .csv files that will be processed into the format we

want. After doing that we establish the appropriate casting for the input and output

parameters and pack them appropriately. Since the arguments are in the required format we

execute the exec_with_resource function with the necessary input arguments:

● object: savgol_app library

● symbol: The identifier of savgol library

● arg_read: The converted read arguments we have packed appropriately.

● arg_write: The converted write arguments we have packed appropriately.

An example Python program that calls the K-NN kernel using vAccel is shown in Table 28.

Table 28: Python snippet that implements the k-NN execution over Python vAccel

def k-NN_vAccel(INPUT_PATH, LABELS_PATH, MODE, iterations):

 t0 = time.time_ns() // 1_000_000
 # Setup input
 start = time.time()
 timeseries = transformed_time_series(INPUT_PATH).astype(np.float32).flatten()
 print('Time for dataset read + transform: ', round(time.time() - start,3), 's')

 labels = load_labels(LABELS_PATH).astype(np.int32)
 golden_labels = labels.copy()
 nr_iter = iterations
 w = 200

 # Setup shared object (plugin) CPU/GPU/FPGA
 obj = "libkmeans_app_%s.so" % MODE

 t1 = time.time_ns() // 1_000_000
 c1 = timeseries[:N_FEATURES]
 c2 = timeseries[N_FEATURES+1:2*N_FEATURES]
 # Setup vAccel parameters
 pa = ffi.cast(f"float[{len(timeseries)}]", ffi.from_buffer(timeseries))
 pc1 = ffi.cast(f"float[{len(c1)}]", ffi.from_buffer(c1))
 pc2 = ffi.cast(f"float[{len(c2)}]", ffi.from_buffer(c2))
 pc = ffi.cast(f"int [{len(labels)}]", ffi.from_buffer(labels))

 # Pack arguments

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 128/133

 arg_read_local = [pa, nr_iter, w, pc1, pc2]
 arg_write = [pc]

 t2 = time.time_ns() // 1_000_000
 # execute command
 res = Exec_with_resource.exec_with_resource(obj, "kmeans_app",
arg_read=arg_read_local, arg_write=arg_write)
 t3 = time.time_ns() // 1_000_000

 labels_new = ffi.unpack(arg_write[0],len(arg_write[0]))
 total_elements = len(labels_new)
 matching_elements = sum(a == b for a, b in zip(golden_labels, labels_new))
 convergence_percentage = (matching_elements / total_elements) * 100

 t4 = time.time_ns() // 1_000_000
 print(convergence_percentage)

Figure 119: Performance overhead of end-to-end operation with sandboxed OpenFaaS container and vAccel

Figure 119 presents the end-to-end execution time (in ms) for k-NN and k-Means when called

as serverless functions. To perform this test, we built a serverless function that receives a JSON

object as input in the format that is presented in Table 29.

Table 29: Input format for the serverless function

Parameter

queue_id A random UUID, acting as the identifier for the storage backend

arguments

position input data

labels input data

input file input data

uuid a unique id, acting as the identifier for the kernel execution

mode the accelerator to be used (CPU, GPU, or FPGA)

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 129/133

storage the storage backend to be used (data broker or s3)

creds

ip ip address of the storage backend

user username for the storage backend

pass password for the storage backend

Figure 119 identifies a number of issues we are currently investigating:

● Loading the python libraries on each function invocation is time-consuming

● fetching and pushing data to the s3 storage backend is almost 10x slower than

performing the same operation through the data broker

Overall, spawning the specific kernels from an external client, simulating the end-to-end case

is an important milestone achieved in Task 4.4. We are working closely with WP5 and WP6 to

integrate our implementation to the SERRANO platform and optimise the time-consuming

parts.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 130/133

7 Conclusion

In conclusion, the SERRANO platform in the WP4 has significantly expanded the range of

available accelerators, including energy-efficient devices at the network edge as well as high-

performance, massively parallel devices in the cloud and HPC environments. Through the

development of different applications' versions, including HPC, GPU, and FPGA-accelerated

versions, the platform offers a wide range of options that consider performance and energy

efficiency tradeoffs, providing flexibility to the orchestration framework.

The HPC, GPU, and FPGA kernel implementation has been integrated with transprecision and

approximation computing techniques. This integration allows adaptive execution with

different data precisions, leading to minimised computations and improved resource

utilisation. The Verification, Validation, and Uncertainty Quantification (VVUQ) framework

further tackles uncertainties and trade-offs by suggesting optimal parameters for kernel

execution, optimising runtime and energy consumption.

Using approximation techniques, such as precision scaling, approximate minimisation, and

loop perforation, in FPGA-accelerated application versions has enhanced energy efficiency

and expanded the library of available use case applications. Additionally, experiments on

algorithmic transparencies' adaptation for distributed streaming applications in Edge/Fog

computing systems were conducted to reduce network latency and increase bandwidth,

addressing the demands of real-time data processing.

The Plug&Chip framework played a vital role in developing FPGA and GPU accelerators,

enabling the automatic optimization of kernels for enhanced performance without human

intervention. Moreover, a methodology for creating memory-efficient accelerators on FPGAs

was introduced, further optimising resource utilisation. The vAccel framework has addressed

the scaling of hardware-accelerated operations by exposing hardware-acceleration

functionality to isolated serverless functions.

Overall, the SERRANO platform has made substantial advancements in WP4 in the realm of

accelerators, optimization techniques, uncertainty quantification, and serverless execution.

By integrating various hardware acceleration options, addressing resource limitations, and

enhancing flexibility in deployment and execution, the platform has paved the way for high-

performance, energy-efficient computing in diverse environments, contributing to

advancements in various use case applications.

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 131/133

8 References

[1] MPI Forum. Official website: MPI Forum. This website contains information about the activities of

the MPI Forum, which is the standardisation forum for the Message Passing Interface (MPI). Feb. 2022.

URL: https://www.mpi-forum.org.

[2] OpenMP. The OpenMP API specification for parallel programming. OpenMP 5.2 Released with

Improvements and Refinements. Feb. 2022. URL: https : / / www .openmp.org.

[3] Savitzky, A., and Golay, M.J.E. "Smoothing and Differentiation of Data by Simplified Least Squares

Procedures." Analytical Chemistry, vol. 36, no. 8, 1964, pp. 1627-1639.

[4] Oroutzoglou, I., Kokkinis, A., Ferikoglou, A., Danopoulos, D., Masouros, D., & Siozios, K. (2022, June).

Optimizing Savitzky-Golay Filter on GPU and FPGA Accelerators for Financial Applications. In 2022 11th

International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1-4). IEEE.

[5] Welch, G., and Bishop, G. "An Introduction to the Kalman Filter." University of North Carolina at

Chapel Hill, 2006.

[6] Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM.

[7] Specifying Arrays as Ping-Pong Buffers or FIFOs, https://docs.xilinx.com/r/2021.2-English/ug1399-

vitis-hls/Specifying-Arrays-as-Ping-Pong-Buffers-or-FIFOs

[8] Hull, J.C. "Options, Futures, and Other Derivatives." Prentice Hall, 2018.

[9] Khan, Kamran, et al. "DBSCAN: Past, present and future." The fifth international conference on the

applications of digital information and web technologies (ICADIWT 2014). IEEE, 2014

[10] Müller, Meinard. "Dynamic time warping." Information retrieval for music and motion (2007): 69-

84.

[11] Brigham, E. Oran. The fast Fourier transform and its applications. Prentice-Hall, Inc., 1988

[12] Xilinx FFT IP Library (https://docs.xilinx.com/r/2021.1-English/ug1399-vitis-hls/FFT-IP-Library)

[13] Dataflow Processing in HLS (https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-

dataflow)

[14] Keogh, E., and Ratanamahatana, C.A. "Exact indexing of dynamic time warping." Knowledge and

Information Systems, vol. 7, no. 3, 2005, pp. 358-386.

[15] Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification and Scene Analysis. Wiley-

Interscience.

[16] Chen, Y., and Vrudhula, S. "Approximate Computing: A Cross-Layer Perspective." Morgan

Kaufmann, 2014.

[17] Micikevicius, P., et al. (2017). Mixed precision training. arXiv preprint arXiv: 1710.03740.

[18] Xilinx AP Data Types (https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Arbitrary-Precision-AP-

Data-Types)

https://www.mpi-forum.org/
https://docs.xilinx.com/r/2021.1-English/ug1399-vitis-hls/FFT-IP-Library
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-dataflow
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-dataflow
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Arbitrary-Precision-AP-Data-Types
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Arbitrary-Precision-AP-Data-Types

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 132/133

[19] Roache, P. J. (1994). "Verification and validation in computational science and engineering."

Hermosa Publishers.

[20] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-

guidance/advisory-guidance/running-average-power-limit-energy-

reporting.html#:~:text=RAPL%20is%20an%20interface%20for,chip%20(SoC)%20power%20domains.

[21] https://docs.nvidia.com/deploy/nvml-api/index.html

[22] https://www.amd.com/en/products/cpu/amd-epyc-7702

[23] https://perf.wiki.kernel.org/index.php/Main_Page

[24] https://github.com/powerapi-ng/pyJoules

[25] Numan, Mostafa W., et al. "Towards automatic high-level code deployment on reconfigurable

platforms: A survey of high-level synthesis tools and toolchains." IEEE Access 8 (2020): 174692-174722.

[26] Deb, Kalyanmoy, et al. "A fast and elitist multiobjective genetic algorithm: NSGA-II." IEEE

transactions on evolutionary computation 6.2 (2002): 182-197.

[27] Blank, Julian, and Kalyanmoy Deb. "Pymoo: Multi-objective optimization in python." IEEE Access

8 (2020): 89497-89509.

[28] Xilinx Vitis (https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html)

[29] Kokkinis, A., Diamantopoulos, D., & Siozios, K. (2022). Dynamic optimization of on-chip memories

for HLS targeting many-accelerator platforms. IEEE Computer Architecture Letters, 21(2), 41-44.

[30] Kokkinis, A., Diamantopoulos, D., & Siozios, K. (2022, August). Dynamic Heap Management in High-

Level Synthesis for Many-Accelerator Architectures. In 2022 32nd International Conference on Field-

Programmable Logic and Applications (FPL) (pp. 287-293). IEEE.

[31] https://github.com/ict-serrano/MC-DMM-Analysis-HLS

[32] Huang, Sitao, et al. "Accelerating sparse deep neural networks on FPGAs." 2019 IEEE High

Performance Extreme Computing Conference (HPEC). IEEE, 2019.

[33] Diamantopoulos, D., Xydis, S., Siozios, K., & Soudris, D. (2015). Mitigating memory-induced dark

silicon in many-accelerator architectures. IEEE Computer Architecture Letters, 14(2), 136-139.

[34] Kokkinis, A., Diamantopoulos, D., & Siozios, K. (2022, August). Dynamic Heap Management in High-

Level Synthesis for Many-Accelerator Architectures. In 2022 32nd International Conference on Field-

Programmable Logic and Applications (FPL) (pp. 287-293). IEEE.

[35] Kokkinis, A., Diamantopoulos, D., & Siozios, K. (2022, August). Dynamic Heap Management in High-

Level Synthesis for Many-Accelerator Architectures. In 2022 32nd International Conference on Field-

Programmable Logic and Applications (FPL) (pp. 287-293). IEEE.

[36] Kokkinis, A., Diamantopoulos, D., & Siozios, K. (2022). Dynamic optimization of on-chip memories

for HLS targeting many-accelerator platforms. IEEE Computer Architecture Letters, 21(2), 41-44.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html#:~:text=RAPL%20is%20an%20interface%20for,chip%20(SoC)%20power%20domains
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html#:~:text=RAPL%20is%20an%20interface%20for,chip%20(SoC)%20power%20domains
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html#:~:text=RAPL%20is%20an%20interface%20for,chip%20(SoC)%20power%20domains
https://docs.nvidia.com/deploy/nvml-api/index.html
https://www.amd.com/en/products/cpu/amd-epyc-7702
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/powerapi-ng/pyJoules
https://github.com/powerapi-ng/pyJoules
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://github.com/ict-serrano/MC-DMM-Analysis-HLS

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration

Platforms and Tools

ict-serrano.eu 133/133

[37] Guerreiro, A. Ilic, N. Roma, and P. Tomas, “Gpu static modelling using ptx and deep structured

learning,” IEEE Access, vol. 7, pp. 159150–159161, 2019.

[38] https://github.com/cavazos-lab/PolyBench-ACC.

[39] https://vaccel.org.

[40] https://www.qemu.org/

[41] https://firecracker-microvm.github.io/

[42] https://www.cloudhypervisor.org/

[43] https://katacontainers.io/

[44] https://github.com/cloudkernels/qemu-vaccel/tree/vaccelrt

[45] https://github.com/cloudkernels/firecracker/tree/vaccel-0.23

[46] https://katacontainers.io/

[47] https://docs.vaccel.org/python_bindings/

[48] https://docs.vaccel.org/tensorflow_bindings/

[49] https://docs.vaccel.org

[50] https://www.openfaas.com/

https://github.com/cavazos-lab/PolyBench-ACC
https://vaccel.org/
https://www.qemu.org/
https://firecracker-microvm.github.io/
https://www.cloudhypervisor.org/
https://katacontainers.io/
https://github.com/cloudkernels/qemu-vaccel/tree/vaccelrt
https://github.com/cloudkernels/firecracker/tree/vaccel-0.23
https://katacontainers.io/
https://docs.vaccel.org/python_bindings/
https://docs.vaccel.org/tensorflow_bindings/
https://docs.vaccel.org/
https://www.openfaas.com/

