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Abstract: This deliverable (D4.4) presents the outcomes of WP4. The SERRANO platform 
successfully addresses the challenges of accelerating kernels in an HPC environment by 
incorporating the power of HPC systems and parallelization techniques. The platform offers 
flexibility in performance and energy efficiency tradeoffs by integrating GPU- and FPGA-
accelerated versions. Additionally, the platform incorporates transprecision and 
approximation computing techniques to enhance performance, and optimise the utilisation 
of compute and memory resources. 

To manage the uncertainties introduced into the SERRANO platform, a Verification, Validation, 
and Uncertainty Quantification (VVUQ) framework has been developed. The VVUQ framework 
quantifies uncertainties and suggests optimal parameters to improve performance and energy 
efficiency.  

Plug&Chip framework facilitates the development of FPGA and GPU accelerators with 
automatic optimization. The framework ensures enhanced performance without manual 
intervention and emphasises memory-efficient designs for FPGA applications. 

Furthermore, the vAccel framework, enhanced by NBFC and partners, enables the execution 
of hardware-accelerated operations as serverless functions in isolated contexts, expanding 
the platform's capabilities. 

Keywords: SERRANO architecture, SERRANO platform, HPC services, FPGA, GPU accelerator, 
approximation and transprecision computing, VVUQ, vAccel, Plug&Chip 
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1 Executive Summary 

The SERRANO platform has successfully developed an HPC service at HLRS that aims to 
accelerate kernels proposed by use case providers within an HPC environment. This service 
incorporates the power of HPC systems and parallelization techniques using OpenMP/MPI, 
enabling efficient processing of large volumes of data and compute-intensive applications 
with minimal runtime.   

AUTH has successfully developed GPU- and FPGA-accelerated versions for all edge and cloud 
devices available on the SERRANO platform. These accelerated versions, along with the HPC 
versions, consider various performance and energy efficiency tradeoffs. As a result, they 
provide the orchestration framework developed in WP5 with multiple degrees of freedom, 
allowing for flexible optimization options. 

In response to the challenges, such as limited computing and memory resources, HLRS has 
integrated transprecision and approximation computing techniques into the kernel 
implementation within the HPC service. This integration enables the execution of the kernel 
with varying data precision and allows for minimised and adaptable computations within the 
kernel.  

AUTH has also applied approximation techniques to FPGA-accelerated application versions, 
such as precision scaling, approximate memoization, and loop perforation. These techniques 
contribute to increased energy efficiency and enrich the range of available UC applications. 

The utilisation of these techniques introduces parameters and uncertainties. Verification, 
Validation, and Uncertainty Quantification (VVUQ) is designed to quantify uncertainty and 
effectively manage the trade-off between accuracy and execution runtime. By suggesting 
optimal parameters for kernel execution, the VVUQ framework aims to maximise 
performance and improve energy efficiency. 

To estimate execution time and energy consumption for different data batches, the VVUQ 
framework employs the Gradient Descent method. This method enables the development of 
a non-linear formula that provides accurate estimations, facilitating efficient resource 
allocation and planning within the HPC service. 

The Plug&Chip framework has been introduced into the SERRANO platform by AUTH, which 
enables the development of FPGA and GPU accelerators. This framework incorporates 
automatic optimization techniques, allowing for performance enhancements without 
requiring manual intervention. AUTH also focuses on developing a methodology for creating 
memory-efficient accelerators specifically for FPGA applications. 

NBFC and the involved partners used and enhanced the vAccel framework to allow an 
arbitrary hardware-accelerated operation to be executed as a serverless function in an 
isolated context.  
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2 Introduction 

This deliverable constitutes the final release of the SERRANO platforms, frameworks, and tools 
developed in WP4 and demonstrates the progress achieved during the project period second 
iteration of the SERRANO implementation plane(M16-M30). In the scope of WP4, the 
SERRANO project progressed in different dimensions, such as the development of the 
accelerated kernels, the application of approximation techniques, the introduction of 
Plug&Chip, and vAccel frameworks. 

During the reporting period, the SERRANO platform enriched a range of accelerators, from 
energy-efficient devices at the network edge to high-performance, massively parallel devices 
in the cloud and HPC. Different applications’ versions, including HPC, GPU, and FPGA-
accelerated versions, have been developed for various devices on the platform, considering 
performance and energy efficiency tradeoffs. These options provide flexibility to the 
orchestration framework developed in WP5. 

Moreover, in order to overcome challenges such as limited computing and memory resources, 
transprecision and approximation computing techniques have been integrated into the kernel 
implementation of the HPC service. This approach allows for flexible execution with different 
data precisions and minimised computations. To address uncertainties and trade-offs 
between accuracy and execution runtime, a Verification, Validation, and Uncertainty 
Quantification (VVUQ) framework has been developed, suggesting parameters for kernel 
execution to optimise runtime and energy consumption. Additionally, approximation 
techniques such as precision scaling, approximate minimisation, and loop perforation have 
been employed in FPGA-accelerated application versions to enhance energy efficiency and 
expand the library of UC applications. Furthermore, work on algorithmic transprecise 
adaptation for distributed streaming applications edge/cloud computing systems were 
performed, aiming to reduce network latency and increase bandwidth. 

WP4 also focused on meeting the increasing demands for high-performance computing and 
energy-efficient designs. It addresses the challenge of efficiently designing and deploying 
compute-intensive applications on accelerated platforms such as GPUs and FPGAs. The project 
developed FPGA and GPU accelerators using the Plug&Chip framework, which enables the 
automatic optimization of kernels for performance without human intervention and also 
introduces a methodology for memory-efficient accelerators on FPGAs. 

Scaling the execution of hardware accelerated operations was addressed using the vAccel 

framework. This framework exposes hardware acceleration functionality to isolated serverless 

functions, allowing efficient execution and device selection. Enhancements are made to the 

vAccel framework in SERRANO to support arbitrary function execution, device selection, and 

remote execution through virtual or TCP sockets, thus enabling seamless deployment of 

hardware-accelerated applications in multi-tenant environments.  
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2.1 Document Structure 

The document is structured as follows: 

● This section (Section 1) introduces the activities performed during the reporting 

period. 

● Section 2 provides an overview of kernel acceleration techniques in HPC, FPGA, and 

GPU devices. It presents the achieved speedup and energy gain resulting from these 

acceleration methods. 

● Section 3 describes the transprecision and approximation computing techniques 

employed in kernel acceleration. It shows how these techniques contribute to 

improving execution time and reducing energy consumption.  

● Section 4 demonstrates the Plug&Chip framework and the essential tools required for 

developing FPGA and GPU accelerators. 

● Section 5 showcases the enhanced vAccel framework, which enables the execution of 

arbitrary hardware-accelerated operations as serverless functions within isolated 

contexts. 

● Section 6 concludes the document, summarizing the developments in WP4. 
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3 HW/SW Acceleration Techniques & SERRANO 

Infrastructure Characterization 

In this section the design, implementations and the evaluation results of the execution of the 

kernels of the UCs with FPGA, GPU and HPC accelerators for the cloud, edge and HPC resources 

are described. The accelerators that are described in this section compose the library of the 

accurate accelerators that are used in the SERRANO platform, as opposed to the 

approximation techniques described in Section 3. 

The SERRANO platform features accelerators ranging from energy-efficient devices at the 

edge (e.g., NVIDIA Jetson and Xilinx MPSoC) to high-performance, massively parallel devices 

in the cloud (e.g., NVIDIA T4 and Xilinx Alveo), as well as Hawk supercomputer at HLRS. For 

more information on the devices used, refer to Deliverables D4.1 and D4.2. NVIDIA GPUs along 

with the programming model CUDA was used, while High Level Synthesis was used to create 

the designs for the FPGAs. For more information on the FPGA and GPU optimizations used by 

the team at AUTH, see Deliverable D4.1, which provides detailed explanations of each 

optimization. 

 

With respect to HPC, the SERRANO platform incorporates HPC services that accelerate the 

kernels proposed by the use case providers in an HPC environment. The framework has been 

developed at HLRS, and the kernels were optimised to be executed on the Hawk 

supercomputer (Hawk). With the help of thousands of compute nodes, the kernels can process 

large volumes of data requiring intensive computation at a considerably faster rate. 

The HPC kernels were accelerated by applying parallelization techniques, such as 

parallelization in shared and distributed memory using OpenMP/MPI. The MPI [1] 

communication library provided us with the protocol to communicate data across different 

processes that had disjoint memory address space, while OpenMP [2] provided us with 

parallelization in shared memory using multithreading. By leveraging these frameworks, we 

were able to speed up the execution time of the kernels and minimise energy consumption 

across different input data sizes provided by the use case providers. 

 

3.1 Acceleration of the Secure Storage (UC1, Chocolate 

Cloud) Algorithms 

Table 1 summarises the algorithms used in the workflow of the secure storage UC1. As 

baseline for execution time and the energy consumption, the metrics that are obtained by 

executing these algorithms on x86 and ARM based processor architectures are considered. 
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Table 1: Secure Storage (UC1) algorithms 

Algorithm Description 

Encoder (EC) Erasure coding encryption algorithm 

Decoder (EC) Erasure coding decryption algorithm 

AES Encryption AES-GCM 256 bits encoding algorithm 

AES Decryption AES-GCM 256 bits decoding algorithm 

3.1.1 Erasure-Coding (EC) Encoder 

Random Linear Network Coding (RLNC) is a coding scheme that maps the input data to 

encoded output symbols through finite field arithmetic operations. In the context of the 

specific scenario, RLNC erasure coding is used for encoding and decoding the encrypted data 

before dispatching them in multiple secure locations. For more details on erasure-coding, 

refer to D4.1. 

3.1.1.1 Design and Implementation 

Two implementations of the accelerators for the EC encoder were developed. One exploits 

the computational resources of the acceleration cards (Alveo U50 and Alveo U200) and 

enables encoding to be performed in data chunks of up to 10MB each. This approach reduces 

the memory transfer time between the card's global memory and the compute region. The 

second implementation is deployed on the MPSoC FPGAs (ZCU102 and ZCU104) and performs 

encoding in smaller data chunks, limited by the platform's on-chip memory resources, with a 

maximum size of 100KB each. Consequently, frequent off-chip memory transactions are 

necessary when encoding large files. As described in D4.1, the computationally intensive 

kernel in the EC encoding algorithm involves multiplications and accumulations of large 2D 

arrays over a Galois Field. The number of columns in the arrays primarily depends on the size 

of the input data that will be encoded. 

3.1.1.1.1 Alveo FPGA Acceleration Cards 

An acceleration approach similar to loop-tiling was adopted to design the accelerator. Initially, 

the input data matrix is divided into N parts, with each part representing a portion of the initial 

input matrix containing input bytes stored in a number of TILE rows. Consequently, based on 

the design parameter TILE, the number of sub-matrices that constitute the input data is 

determined. 

A MAC FPGA accelerator is designed and optimised to perform matrix multiplication on TILE-

sized arrays. This optimization is achieved using the HLS unroll directive, resulting in the 

generation of multiple multipliers executed in parallel to calculate each output row. This 

optimization methodology is illustrated in Figure 51 in D4.1. 
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The optimised MAC accelerator calculates the output sub-matrix for the first TILE-sized array 

and transfers the result back to the card's global memory. It then reads the next TILE bytes 

and performs MAC operations on the subsequent sub-matrix. This process continues until all 

input sub-matrices have been processed. 

For the design of the Alveo FPGA cards, the TILE parameter was set to 2000, and the number 

of parallel executed multipliers was set to 20. Figure 1 below illustrates the design of this 

accelerator. 

 
Figure 1: Acceleration design 

 

Additionally, to enhance the overall acceleration, multiple compute units (CUs) were 

developed to perform the aforementioned operations in parallel. 

For the design executed on the Alveo U50 card, 6 compute units were instantiated. On the 

other hand, the design implemented on the Alveo U200 card utilises 8 compute units. 

3.1.1.1.2 Xilinx MPSoC FPGAs 

The approach described in the previous subsection can be applied to design similar 

accelerators on the MPSoC platforms by adjusting the design parameters, such as TILE, the 

number of parallel executed multipliers, and the number of compute units. However, reducing 

the TILE parameter leads to more frequent off-chip memory transactions. Since the MPSoC 

platforms lack high-speed memories like the HBM memories available on the Alveo U50 card, 

this can result in significant execution overhead. 

Therefore, for the design of the EC encoder accelerators on MPSoC FPGAs, the approach 

outlined in D4.1 is followed. Here is a brief summary: 

On the MPSoC ZCU104 platform, two compute units are instantiated. Each compute unit is 

highly optimised for performing MAC operations on matrices of 100KB. These optimizations 

involve storing the input data matrix in multiple on-chip memories (BRAMs) and enabling 
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parallel multiplications. The input data is divided into chunks of 100KB each and processed by 

the two compute units. 

A similar design is implemented on the ZCU102 platform, but in this case, 6 compute units are 

used in parallel for improved performance. 

It is important to note that in these designs, although the number of memory transactions is 

higher compared to the Alveo implementations, the accelerators are aggressively optimised 

for the 100KB data sizes. Therefore, the overhead from frequent off-chip communication is 

not considered a bottleneck to the overall acceleration. 

3.1.1.2 Evaluation Results 

The results that are presented in the sections below show the application’s execution and 

energy gains when it is executed on the selected FPGA platforms. Note that the application 

time consists of the time that is also required to set the execution environment, initialise the 

platform’s buffers, perform all the memory transactions, and store the results in the host’s 

memory space. 

3.1.1.2.1 Alveo FPGA Acceleration Cards 

Figure 2 shows the execution time speedup and the energy gains when those accelerators are 

executed on the Alveo Xilinx acceleration cards. The execution time speedups are 2x and 2.1x 

for the U50 and U200 , while the energy gains are 3.1x and 1.7x respectively. 

 
Figure 2: Execution time speedup and energy gains on the Alveo Xilinx acceleration cards 

3.1.1.2.2 Xilinx MPSoC FPGAs 

Figure 3 shows the execution time speedup and the energy gains when those accelerators are 

executed on the Xilinx MPSoC FPGAs. The execution time speedups are 5.8x and 6.6x for the 

ZCU102 and ZCU104, while the energy gains are 10.6x and 7x respectively. 
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Figure 3: Execution time speedup and energy gains on the Xilinx MPSoC FPGAs 

3.1.2 Erasure-Coding (EC) Decoder 

The EC decoder algorithm takes input the coding coefficients, the encoded data and performs 

gaussian elimination on the encoded matrix. D4.1 provides more details on the algorithm. 

3.1.2.1 Design and Implementation 

Similar to the encoder’s computationally intensive kernel, the core of this algorithm is the 2D 

matrix multiplication over the Galois Field. The FPGA designs are analogous to the ones that 

are mentioned in the section before (i.e the EC encoder) and perform the decoding in chunks 

of data. 

3.1.2.1.1 Alveo FPGA Acceleration Cards 

The designs for the Alveo U50 and U200 acceleration cards perform the decoding task in 

chunks up to 10MB each.  The accelerator’s ports that communicate with the global memory 

and transfer the encoded data, the coding coefficients and the decoded output were mapped 

to different memory banks in order to avoid latencies induced by a shared communication 

channel. 

To enable a parallel computation of the elements that compose the decoded matrix, the 

ARRAY_PARTITION HLS directive was used on the encoding coefficients to store them in 

multiple on-chip memories and perform memory read and write operations in parallel. 

Finally, to enable a task level parallelism scheme 10 compute units are instantiated both on 

the Alveo U50 and Alveo U200 card and are executed in parallel. 

3.1.2.1.2 Xilinx MPSoC FPGAs 

Similar to the MPSoC EC encoder accelerators, the accelerators developed for the decoder 

operate on chunks up to 100KB each. To optimise the accelerators’ performance the HLS 

UNROLL directive was used to generate multiple GF multipliers that operate in parallel. 
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3.1.2.2 Evaluation Results 

3.1.2.2.1 Alveo FPGA Acceleration Cards 

Figure 4 shows the execution time speedup and the energy gains when those accelerators are 

executed on the Alveo Xilinx acceleration cards. The execution time speedups are 1.8x and 2x 

for the U50 and U200, while the energy gains are 3.1x and 1.6x respectively. 

 
Figure 4: Execution time speedup and energy gains on the Alveo Xilinx acceleration cards 

3.1.2.2.2 Xilinx MPSoC FPGAs 

Figure 5 shows the execution time speedup and the energy gains when those accelerators are 

executed on the Xilinx MPSoC FPGAs. The execution time speedups are 4.1x and 5.1x for the 

ZCU102 and ZCU104, while the energy gains are 6.1x and 5.9x respectively. 

 
Figure 5: Execution time speedup and energy gains on the Xilinx MPSoC FPGAs 

3.1.3 AES-GCM Encryption 

AES-GCM is an encryption scheme based on Galois Message Authentication Code (GMAC.) It 

consists of two main functions, block cipher encryption and multiplication and is preferred for 

the high speed of authenticated encryption and data integrity that it provides. AES-GMC 
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Encryption is suitable to be employed in communication or electronic applications.  For more 

information about AES-GCM Encryption, refer to D4.1. 

3.1.3.1 Design Implementation 

The AES-GCM encryption method was accelerated on GPU with CUDA programming model, 

following the methodology described in Deliverable D4.1. The implemented acceleration 

consists of three main parts. The first part is to read the AES block array and the key array and 

transfer them to the pageable GPU memory, using the cudaMalloc() and cudaMemcpy() 

methods. The second part, which is the core of the acceleration, is to define and execute the 

AES-GCM kernel. In practice we converted the serial C written loops to parallel CUDA kernels. 

The final third step is to transfer the encrypted result from the GPU memory to the CPU 

memory and write in a file the encrypted result. The shared memory was also adopted and 

thus a more efficient implementation was reached. Finally, we launched the encryption kernel 

with totally N threads organised in blocks of 1024 threads where N is the AES’ block number. 

3.1.3.1.1 NVIDIA Tesla T4 GPU 

The acceleration for the NVIDIA Tesla T4 GPU is, as mentioned above, based on the three basic 

steps: (i) the Host to Device memory copy, (ii) the kernel execution, (iii) and the Device to Host 

memory copy. The cudaMemcpy() method was adopted for the first and last steps. For the 

kernel part, the serial for loops of the AE S-GCM encryption was parallelized using the CUDA 

programming model. For the parallelization and acceleration, the kernel was launched with 

totally of N threads(N:AES’ block number) separated at blocks with 1024 threads per block 

that all had access to the shared memory, which was also adopted to optimise the 

implementation. 

As depicted in Figure 6, shared memory is accessed from all the threads that are placed in the 

same block. All the threads from the same block can access data loaded from the global 

memory to the shared memory, and thus, the resulting kernel is more efficient. Finally, due to 

the fact that data were shared between threads, the danger of race conditions existed. 

Theoretically, all threads from a block run in parallel, but in practice, it is infeasible that all the 

threads will finish their execution synchronously. Thus, the threads have to be synchronised. 

For this purpose, __syncthreads() function was adopted, to be able to synchronise the threads 
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Figure 6: GPU Grid for NVIDIA Tesla T4 GPU 

 

3.1.3.1.2 NVIDIA Jetson AGX 

Similar to the Tesla T4 acceleration, the implementation for the NVIDIA Jetson AGX also had 

the same structure of the three basic stages, host to device memory copy, kernel execution, 

and device to host memory copy. Again, the adopted block size was 1024 with total of N 

threads (AES’ block number). Finally, also in this case shared memory and threads 

synchronisation were also adopted to increase the efficiency of the acceleration. 

3.1.3.2 Evaluation Results 

The evaluation of the AES-GCM encryption acceleration was implemented on a 32MB custom 

input text file. 

3.1.3.2.1 NVIDIA Tesla T4 GPU 

Figure 7 shows the execution time speedup and the energy gains when this accelerator is 

executed on the Nvidia Tesla T4 GPU. The execution time speedup is 229.02x, while the energy 

gain is 301.8x. 
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Figure 7: Execution time speedup and the energy gains on the Nvidia Tesla T4 GPU 

3.1.3.2.2 NVIDIA Jetson AGX 

Figure 8 shows the execution time speedup and the energy gains when this accelerator is 

executed on the Nvidia Jetson AGX GPU. The execution time speedup is 147.55x, while the 

energy gain is 45.7x. 

 
Figure 8: Execution time speedup and the energy gains on the Nvidia Jetson AGX GPU 

3.1.4 AES-GCM Decryption 

Similar to the AES-GCM Encryption, the AES-GCM Decryption scheme is also based on Galois 

Message Authentication Code (GMAC) and consists of block cipher encryption and 

multiplication operations.  For more information, refer to D4.1. 

3.1.4.1 Design Implementation 

The AES-GCM decryption acceleration is similar to the implementation of the encryption. 

Again, it consists of three major steps, where the first and last one are for the data copy from 

the host to the device and from the device to the host, respectively. Also, the second step is 

the cuda kernel execution, where the for loop parallelization is implemented. 

3.1.4.1.1 NVIDIA Tesla T4 GPU 
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For the Nvidia Tesla T4 GPU acceleration of the AES-GCM decryption, the above mentioned 

three basic steps were implemented. Additionally, the kernel launched totally N threads (AES’ 

block) organised at blocks with block size 1024 threads per block. Finally, shared memory was 

once again leveraged to develop an efficient decryption acceleration. 

3.1.4.1.2 NVIDIA Jetson AGX 

Similar to the T4 acceleration, the acceleration for the Nvidia Jetson AGX GPU, was also 

implemented following the above three described steps (host to device memory copy, kernel 

execution and device to host memory copy). Finally, the same grid size and block size with the 

above T4 implementation were adopted. Analytically, a total number of N threads (N is the 

AES’ block) was adopted and organised in blocks where the block size was set at 1024 threads 

per block. Similarly, we took advantage of shared memory, as described in Figure 6. 

3.1.4.2 Evaluation Results 

For evaluation purposes, a 32MB custom text file was firstly used, for encryption, with the 

encryption kernel which was described at the previous section and then the output was used 

to be decrypted with the implemented accelerated decryption function. 

3.1.4.2.1 NVIDIA Tesla T4 GPU 

Figure 9 shows the execution time speedup and the energy gains when this accelerator is 

executed on the Nvidia Tesla T4 GPU. The execution time speedup is 113.94x, while the energy 

gain is 155.25x. 

 

 
Figure 9: Latency and energy gains of AES decryption on T4 GPU  

3.1.4.2.2 NVIDIA Jetson AGX 

Figure 10 shows the execution time speedup and the energy gains when this accelerator is 

executed on the Nvidia Jetson AGX GPU. The execution time speedup is 58.25x, while the 

energy gain is 14.43x. 
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Figure 10: Latency and energy gains of AES decryption on Xavier AGX GPU 

Figure 11 below summarises the results for all the FPGA and GPU designs for the UC1 

algorithms. 

 

Figure 11: UC1 FPGA and GPU designs 

3.2 Acceleration of the Fintech Analysis (UC2, InBestMe) 

Algorithms 

Table 2 summarises the algorithms used in the workflow of the fintech UC2. As baseline for 

execution time and the energy consumption the metrics that are obtained by executing those 

algorithms on x86 and ARM based processor architectures are considered. 

Table 2: Fintech Analysis (UC2) algorithms 

Algorithm Description 

Savitzky-Golay A moving window digital filter used for smoothing time-series 

Kalman A digital filter used for smoothing time-series 

Wavelet A db4 wavelet filtering transformation used for smoothing time-series 

Black-Scholes A mathematical formula for the calculation of the European call and put options 
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3.2.1 Savitzky-Golay (SAVGOL) Filter 

The Savitzky-Golay [3] filter is a powerful tool in digital signal processing utilised for smoothing 

experimental data sets and reducing signal noise. By applying polynomial functions and 

considering neighbouring data points, this filter effectively removes high-frequency 

components from signals while preserving their overall shape and features. Details on the 

Savitzky-Golay filter can be found in Deliverable D4.1. 

3.2.1.1 Design Implementation 

Different accelerators for the execution of the Savitzky-Golay filter were implemented for its 

deployment at cloud and edge FPGA and GPU devices as well as and for HPC platforms. For 

the acceleration on FPGA and GPU devices, a design methodology has been developed  [4]. 

3.2.1.1.1 Alveo FPGA Acceleration Cards 

The designs for the Alveo U50 and U200 acceleration cards were developed following the 

design methodology that is described in Deliverable D4.1. Briefly, a dataflow mechanism that 

is composed of three distinct subunits was designed. This mechanism performs the memory 

read, write and the filter’s moving window computations in a pipelined manner. In addition, 

to achieve a task level parallelism 10 compute units are instantiated. The execution of the 

SAVGOL filter on the UC time-series is performed on batches of 10, allowing the 10 compute 

units to work independently on the calculations of 10 different signals. 

3.2.1.1.2 Xilinx MPSoC FPGAs 

The dataflow design methodology that was developed for the FPGA acceleration of the 

SAVGOL filter leads to the generation of designs that utilise few computational resources, 

therefore the same design can be implemented on the MPSoC devices as well. However, in 

this case due to the platforms’ limited resources 5 compute units are instantiated. This means 

that the UC timeseries are fed into the accelerators in batches of 5. 

3.2.1.1.3 NVIDIA Tesla T4 GPU 

For the implementation of the Savitzky-Golay filter acceleration on the Nvidia Tesla T4 GPU, 

we took advantage of the unified memory scheme that this GPU supports. Analyticity, instead 

of using different system (CPU) and device (GPU) memory we used the unified memory that 

is accessible from both CPU and GPU targeting to reduce the communication time cost and 

simplify the total implementation. The unified memory scheme is depicted in Figure 12. The 

acceleration flow in this case started with unified memory allocation using the 

cudaMallocManaged() method, and then, the kernel execution took place. The parts of 

memory copy at the beginning and at the end of the classical CUDA flow, in this case do not 

exist and thus, a better acceleration is reached. The grid size that we adopted in this case was 

ceil(N/Block Size) blocks, where N is the total number of data points of the time series and the 
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block size that we adopted was 32 threads per block. Also, some extra function for the data 

reading and writing were defined. All the data points for all the time series of the input dataset 

were read at the beginning of the execution and similarly, all the output data points for all the 

time series were written at the end of the execution. 

 

 
Figure 12: Unified memory scheme for CPU and GPU 

 

3.2.1.1.4 NVIDIA Jetson Orin and Nano GPUs 

The acceleration of the Savitzky-Golay filter for the Nvidia Jetson Orin, Nano and Xavier NX 

GPUs is based on the classical CUDA acceleration flow. First the data is transferred from the 

system (CPU) memory to the device (GPU) memory using malloc() and cudaMalloc() to 

allocate CPU and GPU memory respectively, and cudaMemCpy() method to copy the data. 

Then the kernel execution takes place and finally, the data transfer from the device (GPU) 

memory to the system (CPU) memory is implemented. For the kernels’ implementation, the 

main task of the kernel is the parallelization of the for loop of SAVGOL filter. In practice the 

kernel was launched at a grid with block size at 32 threads per block for the Orin and 64 for 

the Nano and Xavier NX and grid size at ceil (N/Block Size), where N is the total number of data 

points of the input time series. Totally, N threads were used for the kernel launch. 

3.2.1.1.5 HPC 

In our collaboration with INBestMe, we received input data in CSV format, specifically asset 

prices. However, before utilising this data in the HPC environment, preprocessing was 

necessary. To accomplish this, we employed a data converter tool that has been developed 

alongside the HPC system. This tool converts the input data into a binary format, that is 

memory efficient compared to the original CSV format. Moreover, the data converter tool has 

the capability to generate data in various data precisions, including lower precision formats, 

such as float. Furthermore, the tool generates signals in a disjointed format with consecutive 

indexes. This format facilitates the uniform distribution of signals across multiple processes 

within the HPC system. By dividing the signals into disjoint segments, each process can handle 

a specific subset of the data independently, enabling parallel processing and enhancing overall 

performance and efficiency. 
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Once the data preprocessing with the data converter tool is complete, the original CSV data is 

transformed into disjoint segment signals in binary format. The task parallelization strategy 

can be employed in this scenario. By distributing the workload among multiple processes, each 

process can handle a specific subset of the data independently.  This enables parallel 

processing, where multiple tasks are executed simultaneously. By utilising the Savitzky-Golay 

filter locally in each process, the signals can be filtered individually. This localised filtering 

approach can significantly enhance overall performance and efficiency. 

3.2.1.2 Evaluation Results 

3.2.1.2.1 Alveo FPGA Acceleration Cards 

Figure 13 shows the execution time speedup and the energy gains when those accelerators 

are executed on the Alveo Xilinx acceleration cards. The execution time speedups are 2.1x and 

2.5x for the U50 and U200, while the energy gains are 2.1x and 1.3x respectively. 

 

 
Figure 13: Latency and energy gains of SAVGOL on Alveo FPGAs 

 

3.2.1.2.2 Xilinx MPSoC FPGAs 

Figure 14 shows the execution time speedup and the energy gains when those accelerators 

are executed on the Xilinx MPSoC FPGAs. The execution time speedups are 1.9x and 2.1x for 

the ZCU102 and ZCU104, while the energy gains are 1.8x and 2.2x respectively. 
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Figure 14: Latency and energy gains of SAVGOL on MPSoC FPGAs 

3.2.1.2.3 NVIDIA Tesla T4 GPU 

Figure 15 shows the execution time speedup and the energy gains when this accelerator is 

executed on the NVIDIA Tesla T4 GPU. The execution time speedup is 4.21x, while the energy 

gain is 4.48x. 

 
Figure 15: Latency and energy gains of SAVGOL on T4 GPU 

 

3.2.1.2.4 NVIDIA Jetson Orin and Nano GPUs 

Figure 16 shows the execution time speedup and the energy gains when those accelerators 

are executed on the NVIDIA Jetson Orin and NVIDIA Jetson Nano GPUs. The execution time 

speedups are 2.6x and 1.1x for the Orin and the Nano, while the energy gains are 3.94x and 

2.99x respectively. 
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Figure 16: Latency and energy gains of SAVGOL on Orin and Nano GPUs 

3.2.1.2.5 HPC 

InBestMe supplied multiple data batches containing 100, 500, 1000, 2000 and 4879 asset 

prices. We conducted tests on the execution time and energy consumption of the kernel filters 

using these data sets on the Hawk compute nodes at HLRS. For this experiment, we utilised 

only one Hawk compute node with 128 cores, and its hardware architecture is described in 

the D4.2. Table 3 displays the speedup and energy gain of Savitzkey-Golay on the HPC system. 

Table 3: Speedup and energy gain of Savitzky-Golay on HPC system 

InBestMe Data Speedup 

Energy 
gain 

 

Accuracy 
% 

 

Minimum 
execution time 

(sec) 

Minimum energy 
consumption 

(Joule) 

100 Asset Data 2X 2X 100% 0.217 48.01 

500 Asset Data 17X 3X 100% 0.123 115.82 

1000 Asset Data 29X 3X 100% 0.155 291.33 

2000 Asset Data 20X 2X 100% 0.484 1813.51 

4879 Asset Data 10X 2X 100% 2.035 3760.48 

3.2.2 Kalman Filter 

The Kalman filter [5], referred to as linear quadratic estimation, is a powerful technique used 

for estimating unknown variables and handles noise in measurements by taking into account 

statistical properties of the system dynamics and the measurement errors. The filter finds 

applications in diverse fields such as navigation, guidance, and finance. Details on Kalman 

filtering can be found in Deliverable D4.1. 

3.2.2.1 Design Implementation 

Kalman filtering has been implemented on all the different FPGA devices available on the 

SERRANO platform. It was also implemented using SERRANO’s HPC infrastructure. The 
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accelerators for the cloud and edge devices were developed using the design methodology 

described in Deliverable D4.1. The provided input dataset contains 4890 stock price signals 

with 20000 data points and a total size of 4.5 GB. 

3.2.2.1.1 Alveo FPGA Acceleration Cards 

To provide an accurate FPGA-accelerated design, we do not use the Kalman filter 
implementation described in D4.1. Our acceleration strategy is based on the observation that 
the execution of the filtering algorithm is independent for different stock price time series and 
can therefore be easily parallelized. Task-level parallelism can be realised by instantiating 
multiple computational units on the FPGA, each of which performs Kalman filtering. We 
instantiate 8 compute units on the Alveo U50 FPGA, using the available High Bandwidth 
Memories (HBM). On the Alveo U200, 4 compute units are instantiated using the available 
Dynamic Random-Access Memories (DDR). Although the Alveo U200 contains more resources 
than the U50 FPGA, no more than 4 compute units can be instantiated during synthesis due 
to place-n-route issues.  
 
In the Kalman filter kernel, the loops responsible for transferring data to/from the 
programmable logic and the loop that performs the actual computation are pipelined with an 
initiation interval of one. Besides the calculation loop, where the target initiation interval 
cannot be achieved due to data dependencies, the other loops are pipelined with the targeted 
initiation interval. 

3.2.2.1.2 Xilinx MPSoC FPGAs 

We use the same Kalman filtering acceleration strategy for the MPSoC ZCU104 and ZCU102 
devices. The proposed implementation does not require many resources and can therefore 
be implemented on the resource-constrained edge FPGAs of the SERRANO platform. For both 
devices, we instantiate 2 compute units using the available High Performance (HP) memories. 
For the Kalman filter kernel, we use exactly the same approach as described for the cloud 
FPGAs. 

 

The main difference between the accelerated versions targeting the edge FPGAs is based on 
the available RAM memory of the boards. In particular, the MPSoC ZCU104 has 2 GB RAM 
memory, while the MPSoC ZCU102 has 4 GB. The final version of the stock price dataset 
provided by INB has a size of about 4.5 GB, which makes clear that it cannot be processed at 
once. To overcome the memory limitation, we divide the dataset into smaller parts that fit 
into the memory and process them one by one. The official dataset is divided into 30 equally 
sized stock price datasets for the MPSoC ZCU104 device and 15 for the MPSoC ZCU102. 

3.2.2.1.3 HPC 

The parallelization strategy employed in the Kalman filter is similar to that of the Savitzky-

Golay filter. In this case, the data preprocessing step involves converting the data into binary 

format, divided into disjoint segments with their respective indices. The signals are then 

distributed across multiple processing units, allowing for workload distribution. 
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Once the signals are distributed, the Kalman filter operates independently on each signal to 

filter out noise and produce the desired output result. This parallel processing approach 

enables efficient noise removal and estimation of the true state of each signal. 

3.2.2.2 Evaluation Results 

3.2.2.2.1 Alveo FPGA Acceleration Cards 

Figure 17 shows the speedup and energy gains of the accurate version of the Kalman filter for 

the Alveo U50 and U200 FPGAs compared to the Python single-threaded execution on an 

Intel(R) Core (TM) i5-6500 CPU @3.2GHz. The speedups are 3074x and 1880x for the U50 and 

U200, while the energy gains are 5049x and 1884x, respectively. It is evident that our 

implementation outperforms the baseline. We can also see that the Alveo U50 FPGA is able 

to achieve a higher speedup compared to the Alveo U200, which is due to the fewer 

instantiated compute units. 

 
Figure 17: Latency and energy gains of Kalman on Alveo FPGAs 

 

3.2.2.2.2 Xilinx MPSoC FPGAs 

Figure 18 shows the speedup and energy gains of the accurate version of the Kalman filter for 

the MPSoC ZCU104 and ZCU102 FPGAs compared to the Python single-threaded execution on 

an ARM Cortex A53 @800MHz. The speedups are 1510x and 869x for the ZCU104 and ZCU102, 

while the energy gains are 2875x and 1806x, respectively. With respect to the Python baseline, 

the same observations can be made as for the cloud FPGAs. Another interesting observation 

is that the design for the MPSoC ZCU104 achieves a higher speedup compared to the 

corresponding design for the MPSoC ZCU102. This is due to the fact that it takes more time to 

allocate the buffers on ZCU102 compared to ZCU104. In particular, buffer allocation on 

ZCU102 takes about 30 seconds, whereas on ZCU104 it takes only 7 seconds (4.3x faster). 
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Figure 18: Latency and energy gains of Kalman on MPSoC FPGAs 

Finally, the designs targeting the cloud FPGAs lead to higher speedups and energy gains due 
to the RAM limitation of the edge FPGAs. Processing the input dataset in batches introduces 
an overhead, making the cloud accelerators more suitable for Kalman filter processing. 

3.2.2.2.3 HPC 

Table 4 displays the speedup and energy gain of the parallel Kalman filter inside HPC service. 

HLRS conducted an experiment using multiple asset prices data batches from InBestMe. 

Similarly, the data used for the Savitzky-Golay filter. 

Table 4: Speedup and energy gain of Kalman Filter on HPC system 

InBestMe Data Speedup Energy gain 

 

Accuracy % 

 

Minimum 
execution 
time (sec) 

Minimum energy 
consumption 

(Joule) 

100 Asset Data 4X 2X 100% 0.105 23.36 

500 Asset Data 13X 3X 100% 0.178 166.7 

1000 Asset Data 37X 4X 100% 0.105 198.1 

2000 Asset Data 14X 2X 100% 0.530 1324.5 

4879 Asset Data 10X 2X 100% 2.035 4476.98 

3.2.3 Wavelet Filter 

Discrete time wavelet transforms have found engineering applications in computer vision, 

pattern recognition, signal filtering and most widely in signal and image compression. A 

wavelet is a waveform of effectively limited duration that has an average value of zero and 

nonzero norm. In numerical analysis and functional analysis, a discrete wavelet transform 

(DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other 

wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it 

captures both frequency and location information (location in time). Similar to the Savitzky 

Golay and Kalman filters, wavelet is used to smooth the UC time series. The UC2 uses the 

Daubechies 4 (db4) [6] wavelet for the smoothing procedure. In the Daubechies wavelets the 
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filter’s length is typically equal to eight (8) and this is the length that was selected by the UC2. 

More information on the UC2 wavelet algorithm can be found in the deliverable D4.1. 

3.2.3.1 Design Implementation 

Accelerators for the computationally intensive DWT part of the wavelet filtering algorithm 

were developed for the cloud and edge FPGA and GPU devices as well as for the HPC 

platforms.  Note, that the process of inverting the filtered signal to reconstruct the original 

(but smoothed prices) is not executed on the developed accelerators but on the general-

purpose host devices. 

3.2.3.1.1 Alveo FPGA Acceleration Cards 

Similar to the Savitzky Golay filter, the Discrete Wavelet Transform (DWT) process is executed 

using a moving window mechanism. At each point, the coefficients of the db4 wavelet are 

convolved with the input time-series. To accelerate this process, a dataflow execution 

mechanism, similar to the one implemented for the Savitzky Golay filter on the Alveo U50 and 

U200 acceleration cards, was adopted in this case. First, the coefficients for the high-pass 

decomposition and the low-pass reconstruction are transferred into the FPGA’s local memory. 

Next, two circuits that perform the convolutions on the first eight and the last eight input 

values are designed and executed in parallel. Last, the dataflow mechanism performs the DWT 

computations for the rest input points following a pipelined approach. To design this 

mechanism ping pong buffers [7] that enable out-of-order read and write operations are used 

for storing temporarily the input data.  Figure 19 illustrates this design. 

 

 
Figure 19: Wavelet acceleration mechanism 

Finally, the outputs from the DWT algorithm are transferred back to the host device where 

the inverse discrete wavelet transform (IDWT) is executed and the smoothed prices are 

produced. To enable a task-level parallelism 6 compute units are instantiated on both the U50 

and the U200 and are executed in parallel. 
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3.2.3.1.2 Xilinx MPSoC FPGAs 

Similar design implementations to the ones that were developed for the Alveo cards were 

created for the two MPSoC FPGAs. However, due to the limited resources of those devices, 

two compute units instead of six are instantiated and are executed in parallel. 

3.2.3.1.3 NVIDIA Tesla T4 GPU 

In the case of Wavelet filter acceleration, the implemented acceleration was based on the 

methodology described in Deliverable D4.1 (M15). In advance, the classical CUDA acceleration 

flow was followed. This flow includes memory to device copy at the pageable GPU memory, 

kernel execution and device to host memory copy. Then we launched our kernel with N total 

threads, where N is the length of the input array of the input signal to be processed. Also, the 

block size was set at 32 threads per block and thus, the grid size was set at ceil (N/block size). 

It has to be mentioned that the dwt_sym_stride() function, which is the wavelet’s most time 

consuming algorithmic part, was accelerated on the CUDA kernel. 

3.2.3.1.4 NVIDIA Jetson AGX GPU 

Similar to the T4 implementation, the acceleration for the Nvidia Jetson AGX is also based on 

the classical CUDA acceleration flow. And also in this case the block size was set at 32 threads 

per block and the grid size was set at ceil (N/block size). 

3.2.3.2 Evaluation Results 

3.2.3.2.1 Alveo FPGA Acceleration Cards 

Figure 20 shows the execution time speedup and the energy gains when those accelerators 

are executed on the Alveo Xilinx acceleration cards. The execution time speedups are 3.5x and 

3.9x for the U50 and U200, while the energy gains are 3.8x and 2.4x respectively. 

 
Figure 20: Latency and energy gains of Wavelet on Alveo FPGAs 
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3.2.3.2.2 Xilinx MPSoC FPGAs 

Figure 21 shows the execution time speedup and the energy gains when those accelerators 

are executed on the Xilinx MPSoC FPGAs. The execution time speedups are 1.9x and 2x for the 

ZCU102 and ZCU104, while the energy gains are 1.2x and 1.6x respectively. 

 
Figure 21: Latency and energy gains of Wavelet on MPSoC FPGAs 

3.2.3.2.3 NVIDIA Tesla T4 GPU 

Figure 22 shows the execution time speedup and the energy gains when this accelerator is 

executed on the NVIDIA Tesla T4 GPU. The execution time speedup is 5.84x, while the energy 

gain is 47.5x. 

 

Figure 22: Latency and energy gain of Wavelet on T4 GPU 

3.2.3.2.4 NVIDIA Jetson AGX GPU 

Figure 23 shows the execution time speedup and the energy gains when this accelerator is 

executed on the NVIDIA Jetson AGX  GPU. The execution time speedup is 2.87x, while the 

energy gain is 58.1x. 
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Figure 23: Latency and energy gains of Wavelet on Xavier AGX GPU 

3.2.4 Black-Scholes Algorithm 

The Black-Scholes [8] also known as the Black-Scholes-Merton model, is a mathematical 

formula used to calculate the theoretical price of options. The formula provides a way to 

estimate the fair value of European-style options, which are financial derivatives that give the 

holder the right to buy (call option) or sell (put option) an underlying asset at a predetermined 

price (strike price) within a specific time period. By considering various factors, such as the 

current price of the underlying asset, the strike price, the time to expiration, the risk-free 

interest rate, and the volatility of the asset's price, the Black-Scholes formula produces an 

option price that reflects the market's expectations. 

3.2.4.1 Design Implementation 

UC2 uses the Black-Scholes formula to calculate the call and put options for each price of every 

one of their assets. Therefore, the calculation of the following two formulas for all the prices 

is accelerated: 

Table 5: Black-Scholes formula 

Call option: C = S * N(d1) - X * e^(-r * T) * N(d2) 

Put option: P = X * e^(-r * T) * N(-d2) - S * N(-d1), 

Where: 

d1 = (ln(S/X) + (r + (σ^2)/2) * T) / (σ * sqrt(T)) 

d2 = d1 - σ * sqrt(T) 

In those formulas: 

- C represents the price of the call option. 
- P represents the price of the put option. 
- S is the current price of the underlying asset. 
- X is the strike price of the option. 
- T is the time to expiration of the option, expressed in years. 
- r is the risk-free interest rate. 
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- N(x) represents the cumulative standard normal distribution function. 

Accelerators for the calculation of the Black-Scholes put and call option prices were developed 

on cloud and edge FPGA and GPU devices as well as on HPC resources. 

3.2.4.1.1 Alveo FPGA Acceleration Cards 

To accelerate the calculations of the put and call option prices, the designs that were 

developed on the U50 and U200 perform the computations using a dataflow mechanism. 

Specifically, in every clock cycle the accelerator reads a price and its expiry date from an asset 

and stores them in two First-In-First-Out (FIFO) buffers. The arithmetic circuits (multipliers and 

adders) that are required for the calculation of the Black-Scholes formulas are implemented 

to utilise the platform’s DSP blocks for enhanced performance. Then, based on the user’s 

request for the calculation of call or put options, multiplexers enable the arithmetic blocks 

that compute the call or put options respectively. 

Finally, in order to parallelize the computations for the two option prices, two compute units 

are instantiated on both Alveo platforms. The first compute unit calculates only the put 

options for all prices while the second only the call, as a result the two options are computed 

in parallel for every price. Figure 24 below illustrates the design for the Black-Scholes 

acceleration. 

 

Figure 24: Acceleration approach 

3.2.4.1.2 Xilinx MPSoC FPGAs 

The  designs that were developed for the Alveo cards can be also used on the MPSoC platforms 

without modifications. Due to the dataflow approach the number of the utilised 

computational resources is limited and doesn’t exceed the MPSoCs available resources. 

3.2.4.1.3 NVIDIA Tesla T4 GPU 

For the acceleration of put and call options computation on the Nvidia Tesla T4, we took 

advantage of the unified memory. Unified memory is accessible from both CPU and GPU and 
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thus reduces the development complexity (simplifies the implementation) and also reduces 

the total execution time. The acceleration contains the unified memory allocation part, with 

the cudaMallocManaged() method and the kernel execution part. At the kernel for loops for 

the put and the call option prices computation were parallelized using CUDA. The adopted 

grid size for this implementation was ceil (N/block size), where N is the length of the processed 

signal and the adopted block size was 32 threads per block. 

3.2.4.1.4 NVIDIA Jetson Orin and Nano GPUs 

In the case of Jetson Orin, Nano and Xavier NX GPUs, the implemented acceleration was based 

on the classical CUDA acceleration flow which contains memory to device copy at the GPU 

memory, kernel execution and device to host memory copy. Then the kernel was launched 

with N total threads, where N is the length of the input array of the input signal to be 

processed. Also, the block size was set at 32 threads per block and the grid size was set at ceil 

(N/block size).  

3.2.4.1.5 HPC 

To accelerate the Black-Scholes kernel, a similar strategy as the Savitzky-Golay kernel is 

employed. In this case, the data will be initially converted into binary representation based on 

its indices. The signals will then be distributed among multiple processes. Each process will 

compute the output parameters such as put price and option price locally for the batch data 

prices. This approach helps to parallelize the computation and enhance the performance of 

the Black-Scholes kernel. 

3.2.4.2 Evaluation Results 

3.2.4.2.1 Alveo FPGA Acceleration Cards 

Figure 25 shows the execution time speedup and the energy gains when those accelerators 

are executed on the Alveo Xilinx acceleration cards. The execution time speedups are 36x and 

52.5x for the U50 and U200, while the energy gains are 47.8x and 42x respectively. 

 
Figure 25: Latency and energy gains of Black-Scholes on Alveo FPGAs 
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3.2.4.2.2 Xilinx MPSoC FPGAs 

Figure 26 shows the execution time speedup and the energy gains when those accelerators 

are executed on the Xilinx MPSoC FPGAs. The execution time speedups are 130x and 117x for 

the ZCU102 and ZCU104, while the energy gains are 81x and 72x respectively. 

 
Figure 26: Latency and energy gains of Black-Scholes on MPSoC FPGAs 

3.2.4.2.3 NVIDIA Tesla T4 GPU 

Figure 27 shows the execution time speedup and the energy gain when this accelerator is 

executed on the NVIDIA Tesla T4 GPU. The execution time speedup is 39615.62x, while the 

energy gain is 60947.1x. 

 

 
Figure 27: Latency and energy gains of Black-Scholes on T4 GPU 

3.2.4.2.4 NVIDIA Jetson Orin and Nano GPUs 

Figure 28 shows the execution time speedups and the energy gain when these accelerators 

are executed on the NVIDIA Jetson Orin and Nano GPUs. The execution time speedups are 

12874x for the Jetson Orin and 1545.28x for the Jetson Nano, while the energy gains are 

26626.69x and 4204.85x, respectively. 
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Figure 28: Latency and energy gains of Black-Scholes on Orin and Nano GPUs 

3.2.4.2.5 HPC 

Table 6 demonstrates the speedup and energy consumption of the Black-Scholes inside the 

HPC service, an experiment was conducted by HLRS using multiple asset price data batches 

from InBestMe, similar to the data used for the Savitzky-Golay filter. 

 

Table 6: Speedup and energy gain of Blach-Scholes on HPC system 

InBestMe Data Speedup Energy gain 

 

Accuracy 
% 

 

Minimum 
execution time 

(sec) 

Minimum energy 
consumption 

(Joule) 

100 Asset Data 29.4X 21X 100% 0.0738 16.285 

500 Asset Data 60X 11X 100% 0.1642 153.59 

1000 Asset Data 136X 13X 100% 0.1551 290.11 

2000 Asset Data 322X 14X 100% 0.1352 505.89 

4879 Asset Data 572X 12X 100% 0.1856 4476.98 

 

Figure 29 below summarises the results for all the FPGA and GPU designs for the UC1. 
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Figure 29: UC2 FPGA and GPU designs  

3.3 Acceleration of the Anomaly Detection in Manufacturing 

Settings (UC3, IDEKO) Algorithms 

Table 7 summarises the algorithms used in the workflow of the anomaly detections in 

manufacturing environments UC3. As baseline for execution time and the energy 

consumption the metrics that are obtained by executing those algorithms on x86 and ARM 

based processor architectures are considered. 

Table 7:  Algorithms’ acceleration for Anomaly Detection in Manufacturing Settings 

Algorithm Description 

DBSCAN Unsupervised learning clustering algorithm used for the anomaly detection 

K-Means Unsupervised learning clustering algorithm used for the anomaly detection 

k-NN Supervised learning clustering algorithm used for the anomaly detection 

1D-FFT 1 dimensional Fast Fourier Transform (FFT) used for smoothing signals 

3.3.1 DBSCAN Clustering Algorithm 

Density-based spatial clustering of applications with noise [9] (DBSCAN) is a density-based non 

parametric clustering algorithm, i.e. given a set of data elements in a given space, it groups 

the elements that are close to each other and flags the data elements that are alone in low-

density regions as outliers. In the IDEKO use case, DBSCAN is used to detect anomalies in a set 

of signals (i.e., to classify them as anomalous or non-anomalous), indicating a machine 

malfunction. To quantify the similarity between two signals, the Dynamic Time Warping [10] 

(DTW) algorithm is used. 
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After analysing the provided source code, we concluded that the computationally intensive 

part is the calculation of the DTW distances of all the different signals, so we only accelerated 

the DTW distance calculation. Details on DBSCAN can be found in Deliverable D4.1. 

3.3.1.1 Design Implementation 

DBSCAN has been implemented on all the different FPGA devices available on the SERRANO 

platform. The accelerators for the edge and cloud devices were developed using the design 

methodology described in Deliverable D4.1. The provided input dataset contains 110 signals 

with 3400 data points and a total size of 7.3MB 

3.3.1.1.1 Alveo FPGA Acceleration Cards 

Our acceleration approach is based, as in the Kalman filter, on parallelism at the task level. In 

particular, the calculation of the DTW distance of two signals does not depend on other DTW 

distance calculations and can therefore be calculated in parallel. We instantiate 8 compute 

units on the Alveo U50 FPGA, using the available HBMs. On the Alveo U200, 4 compute units 

are instantiated using the available DDRs. Although the Alveo U200 contains more resources 

than the U50 FPGA, no more than 4 compute units can be instantiated during synthesis due 

to place-n-route issues. 

DTW is a dynamic programming algorithm, which means that the calculation of the current 

element depends on the calculation of previous ones. The dependencies in dynamic 

programming algorithms make parallel computing difficult. Our approach, therefore, was to 

pipeline the loops responsible for transferring data to/from the programmable logic and the 

loop that performs the actual computation. Apart from the calculation loop, where the target 

initiation interval cannot be achieved due to data dependencies caused by dynamic 

programming, the other loops are pipelined with an initiation interval of one. 

3.3.1.1.2 Xilinx MPSoC FPGAs 

We use the same acceleration strategy for the MPSoC ZCU104 and ZCU102 devices. The 

proposed implementation does not require many resources and can therefore be 

implemented on the resource-constrained edge FPGAs of the SERRANO platform. For both 

devices, we instantiate 2 compute units using the available High Performance (HP) memories. 

For the DTW distance computation kernel, we use exactly the same approach as described for 

the cloud FPGAs. 

3.3.1.2 Evaluation Results 

3.3.1.2.1 Alveo FPGA Acceleration Cards 

Figure 30 shows the speedup and energy gains of the accurate version of the DTW distance 

computation for the Alveo U50 and U200 FPGAs compared to the Python execution. The 

speedups are 343x and 99x for the U50 and U200, while the energy gains are 152x and 26x, 
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respectively. It is obvious that our implementation performs better than the baseline solution 

in terms of execution time and energy consumption. We can also see that the Alveo U50 FPGA 

is able to achieve a higher speedup compared to the Alveo U200, which is due to the fewer 

instantiated compute units. 

 
Figure 30: Latency and energy gains of DBSCAN on Alveo FPGAs 

3.3.1.2.2 Xilinx MPSoC FPGAs 

Figure 31 shows the speedup and energy gains of the accurate version of the DTW distance 

computation for the MPSoC ZCU104 and ZCU102 FPGAs compared to the Python single-

threaded execution. The speedups are 17.8x and 13.6x for the ZCU104 and ZCU102, while the 

energy gains are 42.5x and 36x, respectively. As in the case of the Kalman filter, this is due to 

the fact that buffer allocation on ZCU102 takes more time compared to ZCU104. In particular, 

buffer allocation on ZCU102 takes about 54 seconds, while on ZCU104 it takes only 4.4 seconds 

(12.3x faster). 

 
Figure 31: Latency and energy gains of DBSCAN on MPSoC FPGAs 
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3.3.2 1D-FFT Algorithm k-Means Clustering Algorithm 

The Fast Fourier Transform [11] (FFT) is an algorithm that computes the discrete Fourier 

transform (DFT) of a sequence or its inverse (IDFT). Fourier analysis converts a signal from its 

original domain to a frequency domain representation and vice versa. The DFT is obtained by 

decomposing a sequence of values into components of different frequencies. This operation 

is useful in many fields, but computing directly from the definition is often too slow. An FFT 

quickly computes such transformations by decomposing the DFT into a product of sparse 

factors. This can reduce the complexity of computing DFT from O(N^2), which results from 

simply applying the definition of DFT, to O(NlogN), where N is the data size. 

3.3.2.1 Design Implementation 

FFT has been implemented on all the different FPGA devices available on the SERRANO 

platform. It was also implemented using SERRANO’s HPC infrastructure. The accelerators for 

the edge and cloud devices were developed using the design methodology described in 

Deliverable D4.1. The provided input dataset contains 520 signals with 16384 data points and 

a total size of 81MB. 

3.3.2.1.1 Alveo FPGA Acceleration Cards 

Our approach to accelerating the FFT kernel is based on Xilinx's FFT IP library [12] and dataflow 

processing [13]. The dataflow mechanism consists of three subunits that perform reading, 

writing, and FFT calculation in a pipelined manner. In addition, to achieve task-level 

parallelization, multiple computational units are instantiated to process different signals in 

parallel. We instantiate 4 compute units on the Alveo U50 and U200 FPGAs and use the 

available HBMs and DDRs, respectively. 

3.3.2.1.2 Xilinx MPSoC FPGAs 

We use the same acceleration strategy for the MPSoC ZCU104 and ZCU102 devices. The 

proposed implementation does not require many resources and can therefore be 

implemented on the resource-constrained edge FPGAs of the SERRANO platform. For both 

devices, we instantiate 2 compute units using the available High Performance (HP) memories. 

For the FFT kernel, we use exactly the same approach as described for the cloud FPGAs. 

3.3.2.1.3 HPC 

IDEKO provides signal data in CSV format for processing, which needs to be preprocessed 

before it can be processed in the HPC environment. The data converter tool is used for this 

purpose. Firstly, it reads signals by their indices from the original CSV format, and secondly, it 

converts the signals into binary format using specific data precision, such as double or single 

precision (Figure 32). 
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Figure 32: Converting the CSV data into binary format 

Once the conversion process is complete, the disjoint signals are produced in binary format, 

as shown in Figure 32, and are ready for processing by kernels such as FFT. To achieve optimal 

performance, a parallelization strategy is employed, specifically task parallelization. This 

approach involves distributing the signals by their index to different processes (Figure 33), 

allowing for workload distribution among many processes. Each process can process a batch 

of signals, as there is no data dependency, and each signal can be processed independently. 

 

Figure 33: Uniform distribution of signals among processors 

Figure 33 illustrates the uniform distribution of signals across different processes. Each 

process is assigned specific signals, with process 0 accessing signal_0, signal_1, and process n-

1 assigned to process signal_n-1 and signal_n. By distributing signals uniformly among 

processors, each processor has a roughly equal workload, ensuring optimal performance. This 

approach is based on task distribution and helps to maximise efficiency while reducing 

processing time. 

Once the signals have been available locally by each processor, the FFT filter can act on each 

time series signal independently, as shown in Figure 34.  
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Figure 34: FFT performs on signals batches in processor 

Taking the FFT of these signals, they are transformed into the frequency domain, and the 

amplitude of the spectrum is extracted as the output. In the final stage, the output data is 

aggregated, a CSV file is generated, and then returned to the providers of the use case. The 

data workflow of parallel FFT, which is the strategy we will apply in the remaining kernels, is 

presented in Figure 35. 

 

Figure 35: Data workflow of parallel FFT 
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3.3.2.2 Evaluation Results 

3.3.2.2.1 Alveo FPGA Acceleration Cards 

Figure 36 shows the speedup and energy gains of the accurate version of the FFT for the Alveo 

U50 and U200 FPGAs compared to the Python single-threaded execution. The speedups are 

38.2x and 48.4x for the U50 and U200, while the energy gains are 50x and 34.8x, respectively. 

It is obvious that our implementation performs better than the baseline solution in terms of 

execution time and energy consumption. We can also see that the Alveo U200 FPGA is able to 

achieve a higher speedup compared to the Alveo U50, which is due to the more available 

resources of the device, allowing the creation of a more efficient design in terms of 

performance. However, the higher performance comes at the cost of higher power 

consumption. For example, the power consumption of the Alveo U200 is 50.6 watts, while 

that of the Alveo U50 is 27.8 watts (1.8x lower). 

 
Figure 36: Latency and energy gains of 1D-FFT on Alveo FPGAs 

3.3.2.2.2 Xilinx MPSoC FPGAs 

Figure 37 shows the speedup and energy gains of the accurate version of the Kalman filter for 

the MPSoC ZCU104 and ZCU102 FPGAs compared to the Python single-threaded execution. 

The speedups are 18.9x and 7.2x for the ZCU104 and ZCU102, while the energy gains are 30x 

and 11.2x, respectively. This is due to (a) the fact that buffer allocation takes more time on 

the ZCU102 compared to the ZCU104, and (b) the timing issues encountered during the 

synthesis process when the target frequency for the ZCU102 was set at 300 MHz. To obtain 

the final design, we set a target frequency of 250 MHz, which results in higher execution time 

and thus higher energy consumption. 
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Figure 37: Latency and energy gains of 1D-FFT on MPSoC FPGAs 

3.3.2.2.3 HPC 

HLRS conducted tests on our parallelization framework using several batches of signals 

provided by IDEKO. Initially, we examined the effects of increasing the number of processes 

on the execution runtime and energy consumption time of 104 acceleration signals. Our 

findings showed in Figure 38 that increasing the number of processors resulted in a decrease 

in execution runtime and energy consumption. HLRS has presented in Table 8 the speedup 

and energy gain through the parallelization of the FFT kernel with various signal batches 

provided to us by IDEKO, and verifying the accuracy of the results, were done by them. 

Table 8: Speedup and energy gain of FFT on HPC system 

IDEKO Signal Speedup Energy 
gain 

 

Accuracy 
% 

 

Minimum 
execution 
time (sec) 

Minimum energy 
consumption 

(Joule) 

26 cycle signal 5X 4X 100% 0.072 33.21 

104 cycle signal 29X 10X 100% 0.053 23.76 

156 cycle signal 26X 12X 100% 0.099 33.21 

208 cycle signal 37X 7X 100% 0.079 79.82 

234 cycle signal 85X 15X 100% 0.040 35.48 

260 cycle signal 72X 11X 100% 0.057 64.33 
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Figure 38: FFT Filter Energy Consumption and Execution across the number of processors 

3.3.3 K-Means Clustering Algorithm 

K-Means is a clustering algorithm that can be used for the classification of time series signals. 

The basic idea of K-Means is to group data points into a specified number of clusters, based 

on their similarity to one another. In this instance, we are grouping position time series signals 

into two clusters based on their similarity. The signals are classified into clusters that are in 

close proximity to each other. Typically, the Euclidean metric is used to measure distance in 

K-Means, but in this case, we use DTW [14] (Dynamic Time Warping) as it offers greater 

flexibility when matching time series signals with varying shapes, lengths, and alignments.  

The left side of Figure 39 displays the time series position signals, which serve as the input 

data for K-Means classification. Upon application of K-Means classification with DTW metric, 

the position signals will be separated into two distinct clusters. 

 

Figure 39: K-Mean classification method 
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3.3.3.1 Design Implementation 

In the timeseries K-Means algorithm with DTW metric we also leverage LB_Keogh. LB_Keogh 

is a technique that provides an envelope (lower and upper bounds) around each time series 

sequence. It allows for a faster calculation of the distance between sequences by considering 

only the deviations that fall outside the envelope. This method is particularly useful when 

dealing with large datasets and provides us a lower computational complexity, when using the 

DTW algorithm, by leveraging a fast approximation approach in the algorithm level, which 

does not have a negative impact on the quality of results. 

3.3.3.1.1 Alveo FPGA acceleration cards 

Below is the general end-to-end algorithm implementation for the FPGAs. 

 
Table 9: End-to-end K-Means implementation for the FPGAs 

1. Initialization: 
a. Choose the parameters such as number of iterations or number of series. 
b. Assign the two centroids to the first two timeseries. 

2. Assignment step: 
a. For each time series in the dataset, calculate the DTW distance to each cluster 

centroid. Accelerate this compute intensive kernel using the FPGA. 
b. Apply the LB_Keogh lower bounding technique to minimise the time of the distance 

calculations. LB_Keogh provides an approximate lower bound on the DTW distance, 
allowing for early pruning of dissimilar series. 

c. Assign each time series to the cluster with the closest centroid based on the DTW 
distance. 

3. Update step: 
a. Recalculate the centroids of each cluster based on the assigned time series. 
b. The centroid of a cluster is the time series that minimises the sum of DTW distances 

to all the series assigned to that cluster. 
c. This step ensures that the cluster centroids are representative of the time series 

within their respective clusters. 
4. Iteration: 

a. Repeat the assignment and update steps until the maximum number of iterations is 
reached. 

5. Final Clustering: 
a. The algorithm outputs the final cluster assignments for anomaly (‘1’) or normal (‘0’) 

for each time series. 

Below is the illustration of the algorithm. The DTW kernel is accelerated using the FPGA fabric 
taking advantage of the low latency on-chip storage (BRAMs) and transferring the result back 
to the host CPU. The algorithm continues to compute DTW distance with all the required 
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timeseries according to LB_Keogh values until the algorithm reaches the user-defined 
iteration limit. 

 

Figure 40: Illustration of timeseries K-Means for FPGAs 

3.3.3.1.2 Xilinx MPSoC FPGAs 

The designs created for Alveo cards can be seamlessly applied to MPSoC platforms without 

any modifications. The dataflow approach ensures that the utilisation of computational 

resources remains within the limits of the available resources in MPSoCs. 

3.3.3.1.3 NVIDIA Tesla T4 GPU 

For the GPU architecture we followed a different acceleration approach. In particular, we 

chose for acceleration the LB_Keogh kernel, as it has a high parallelization factor which is a 

good fit for GPUs. Taking advantage of the task level parallelization we computed the vector 

of all possible LB_Keogh values which are needed for the algorithm. This approach was very 

efficient for GPU devices and thus provided successful results in terms of throughput and 

latency 

3.3.3.1.4 NVIDIA Jetson Orin and Nano GPUs 

Similar to the server GPUs, Edge GPU devices such as Orin or Nano followed the same 

acceleration approach each with its own acceleration potential according to the device 

hardware capabilities. 

3.3.3.1.5 HPC 

Parallelizing K-Means Classification in an HPC environment involves applying the techniques 

discussed in the FFT kernel. Initially, we distribute the signals across processors and randomly 

assign two centroid signals in the first iteration (Figure 41). These centroids are then 

broadcasted to all processors, and each process computes the distance of each signal to the 
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random centroid locally. Subsequently, each signal is assigned to the centroid class with a 

closer distance, and we compute the new centroid by averaging the signals that belong to the 

same class. After computing the new centroid, we broadcast them to all processes in each 

loop iteration. We repeat this loop ten times, which gives us sufficient classification. 

 

Figure 41: Parallelization of K-Means on the HPC system 

 

3.3.3.2 Evaluation Results 

3.3.3.2.1 Alveo FPGA Acceleration Cards 

Below, we present the speed-up ratios for the performance and energy gains for each device 

for the accurate designs. All metrics were obtained using 110 timeseries as input dataset. 

Figure 42 shows the execution time speed-up and the energy gains when we applied 

acceleration using the Alveo U200 and Alveo U50 FPGAs. Specifically, the performance speed-

ups obtained are 120x and 123x and the energy gain speed-ups were 233x and 256x 

respectively. 
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Figure 42: Latency and energy gains for K-Means on Alveo FPGAs 

3.3.3.2.2 Xilinx MPSoC FPGAs 

Figure 43 shows the execution time speed-up and the energy gains when we applied 

acceleration using the MPSoC FPGAs. Specifically, the performance speed-ups obtained is 

97.4x and the energy gain speed-up is 117x. 

 

Figure 43: Latency and energy gains for K-means on MPSoC FPGAs 

 

3.3.3.2.3 NVIDIA Tesla T4 GPU 

Below, we present the results from the GPU acceleration card, specifically the Nvidia Tesla T4 

GPU. Figure 44 shows the execution time speedup and the energy gains. The execution time 

speedup is 976.8x while the energy gain is 1061x. 
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Figure 44: Latency and Energy gains for K-Means on Nvidia T4 GPU 

3.3.3.2.4 NVIDIA Jetson Orin and Nano GPUs 

Below, we present the results from the edge GPU devices, specifically the Nvidia Orin and 

Nano GPUs. Figure 45 shows the execution time speedups and the energy gains. The execution 

time speedups are 788x and 270x while the energy gains are 736x and 240x respectively. 

 

Figure 45: Latency and Energy gains for K-Means on Orin and Nano GPU devices. 

3.3.3.2.5 HPC 

HLRS tested parallelization techniques for K-Means using several position signal batches 

provided by IDEKO. Table 10 shows the achieved K-Means speedup, energy gain, and 

minimum execution time by running K-Means on compute nodes at Hawk supercomputer in 

HLRS for 110, 330, 550, ..., and 1100 position signals. 

 
Table 10: Speedup and energy gain of K-means on HPC system 

IDEKO Signal Speedup Energy 
gain 

 

Accuracy % 

 

Minimum 
execution time 

(sec) 

Minimum energy 
consumption 

(Joule) 

110 position signal 71X 53X 100% 10.9545 4416.55 
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330 position signal 199X 51X 98%-100% 7.59292 5145.27 

550 position signal 311X 48X 100% 8.21393 9276.83 

770 position signal 449X 52X 100% 8.19523 12958 

990 position signal 558X 55X 100% 8.05906 15031.3 

1100 position signal 368X 32X 100% 13.1062 27405.4 

 

IDEKO has generated acceleration data by using accelerometers at different parts on the screw 

balls. As a result, each signal has six coordinates, meaning that six signals must be considered 

as one signal. The K-means classification method also applied to these signal formats. 

Therefore, we have developed a new parallel implementation of K-means for this purpose, 

using the same parallelization strategy as applied for the K-means in position signals. 

HLRS have performed parallel K-Means on the acceleration data using several data batches 

provided by IDEKO, that the speedup and minimum execution time are presented in Table 11. 

Table 11: Speedup and energy gain of K-means for acceleration data on HPC system 

IDEKO Signal Speedup Energy gain Accuracy 
% 

 

Minimum 
execution time 

(sec) 

Minimum energy 
consumption 

(Joule) 

26 cycle signal 82X 34X 90%- 100% 24.007 10067.4 

104 cycle signal 433X 74X 100% 25.217 29466.8 

156 cycle signal 634X 69X 100% 25.743 47280.2 

208 cycle signal 518X 44X 100% 42.08 98357.6 

234 cycle signal 566X 44X 100% 43.354 112164 

260 cycle signal 580X 38X 100% 47.035 141346 

3.3.4 KNN Clustering Algorithm 

The K-Nearest Neighbor [15] algorithm is a supervised machine learning technique used for 

classification, with applications in image processing and generative models. In the context of 

this study, KNN is employed for the classification of time series signals. 

The fundamental idea behind KNN is to classify time series signals based on labelled training 

datasets. Figure 46 illustrates the training dataset, which consists of labelled signals 

represented by red and blue signals, as well as inference signals represented by green signals. 

The KNN method for time series signals calculates the distance between the inference signals 

and the training signals using the DTW metric and identifies the K-Nearest neighbors. The class 

label of the inference signal is determined by the majority label of these K-Nearest neighbors. 
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Figure 46: The inference signal, represented by green signals, is classified into the blue group using the KNN 

classification method, where the training signals are labelled as blue and red 

3.3.4.1 Design Implementation 

In the Timeseries KNN algorithm with DTW metric we also leverage LB_Keogh. It uses the 

concept of envelope to approximate the upper and lower bounds of the time series. The 

envelope is computed by taking a window around each point in the time series and 

constructing an envelope that encloses the potential range of values within the window. 

LB_Keogh helps reduce the number of distance calculations required by DTW and thus 

improves its efficiency. 

3.3.4.1.1 Alveo FPGA Acceleration Cards 

Our acceleration strategy for the FPGAs is as follows.  

 
Table 12: KNN acceleration strategy for the FPGA 

1. Compute LB_Keogh Envelopes: For each time series in the training set, compute the 
LB_Keogh envelope. 

2. Query Processing: Given a query time series, compute its LB_Keogh envelope. 

3. Distance Calculation: Calculate the DTW distance between the query time series and each 
time series in the training set, using the LB_Keogh envelope as an upper bound. If the DTW 
distance exceeds a threshold defined by the LB_Keogh envelope, the time series can be 
pruned from further consideration. 

 

kNN Classification: Select the K-nearest neighbors based on the smallest DTW distances and 

use their labels to classify the query time series. 

 

The illustration of the high-level algorithm is presented below: 
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Figure 47: Illustration of TimeSeries KNN for FPGAs 

 

3.3.4.1.2 Xilinx MPSoC FPGAs 

The designs created for Alveo cards can be seamlessly applied to MPSoC platforms without 

any modifications. The dataflow approach ensures that the utilisation of computational 

resources remains within the limits of the available resources in MPSoCs. 

3.3.4.1.3 NVIDIA Tesla T4 GPU 

For the GPU architecture, we employed a different method to enhance its performance. 

Specifically, we opted to utilise the LB_Keogh kernel for acceleration due to its high degree of 

parallelization, which aligns well with GPUs. To leverage task-level parallelization, we 

calculated the vector of all possible LB_Keogh values required for the algorithm. This approach 

proved highly efficient on GPU devices, delivering successful outcomes in terms of throughput 

and latency. 

More specifically, we employed GPU shared memory to establish a shared region of memory 

accessible to threads within a block. Within this memory block, we stored the input series 

used for computing LB_Keogh values. Additionally, we utilised shared memory to retain 

intermediate sum values of LB_Keogh. By employing a technique known as reduced sum, we 

synchronised and computed the sum across the threads in each block. This synchronisation 

was crucial to ensure proper data sharing and prevent race conditions. In essence, the GPU 

carried out simultaneous calculations on multiple data points, taking advantage of the 

extensive parallel architecture of the GPU. Consequently, this significantly accelerated the 

processing compared to sequential execution on a CPU. 

The illustration of the high-level algorithm is presented below: 
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Figure 48: Illustration of TimeSeries KNN for GPUs 

3.3.4.1.4 NVIDIA Jetson Orin and Nano GPUs 

Similar to the server GPUs, Edge GPU devices such as Orin or Nano followed the same 

acceleration approach each with its own acceleration potential according to the device 

hardware capabilities. 

3.3.4.1.5 HPC 

To speed up the KNN algorithm, the training datasets were first distributed uniformly into 

processes. Next, the inference signal was broadcasted to all processes, as shown in Figure 49, 

and the distance between the inference signal and the training signals was computed locally 

within each process. These distances were then gathered into process 0. Finally, the class label 

of the inference signal was determined based on the majority label of the K-nearest neighbors. 

                           
Figure 49: Parallelization of the KNN on the HPC system 
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3.3.4.2 Evaluation Results 

3.3.4.2.1 Alveo FPGA Acceleration Cards 

Below, we present the speed-up ratios for the performance and energy gains for each device 

for the accurate and approximate designs. All metrics were obtained using 110 timeseries as 

trained dataset and single timeseries for the query. 

Figure 50 shows the execution time speed-up and the energy gains when we applied 

acceleration using the Alveo U200 and Alveo U50 FPGAs. Specifically, the performance speed-

ups obtained are 52.8x and 65x and the energy gain speed-ups were 114.3x and 150.7x 

respectively. 

 
Figure 50: Latency and Energy gains for K-NN on Alveo FPGAs 

3.3.4.2.2 Xilinx MPSoC FPGAs 

Figure 51 shows the execution time speed-up and the energy gains when we applied 

acceleration using the MPSoC FPGAs. Specifically, the performance speed-up obtained is 

123.6x and the energy gain speed-up is 61.1x. 

 
Figure 51: Latency and Energy gains for K-NN on MPSoC devices. 
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3.3.4.2.3 NVIDIA Tesla T4 GPU 

Below, we present the results from the edge GPU devices, specifically the Nvidia T4 GPU. 

Figure 52 shows the execution time speedup and the energy gains. The execution time 

speedups are 164.3x and while the energy gains are 198x respectively. 

 

Figure 52: Latency and Energy gains for K-NN on T4 GPU device. 

3.3.4.2.4 NVIDIA Jetson Orin and Nano GPUs 

Below, we present the results from the edge GPU devices, specifically the Nvidia Orin and 

Nano GPUs. Figure 53 shows the execution time speedup and the energy gains. The execution 

time speedups are 417x and 383x while the energy gains are 189x and 145x respectively, 

 

Figure 53: Latency and Energy gains for K-NN on Nvidia Orin and Nano GPU devices. 

3.3.4.2.5 HPC 

HLRS tested the parallelization of the KNN kernel using multiple training datasets and 

inference data provided by IDEKO. The training datasets consisted of time series signals with 

associated labels, and KNN was used to classify the inference signals. The results of our tests, 

including the speedup and minimum execution time, are presented in Table 13. 
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Table 13: Speedup and energy gain of KNN on the HPC system 

IDEKO Signal Speedup Energy 
gain 

 

Accuracy 
% 

 

Minimum 
execution time 

(sec) 

Minimum energy 
consumption (Joule) 

110 training signal 61X 46X 100% 0.42 96.4233 

330 training signal 157X 39X 100% 0.49 334.166 

550 training signal 257X 39X 100% 0.51 580.295 

770 training signal 351X 38X 100% 0.52 830.691 

990 training signal 418X 40X 100% 0.57 1079.75 

1100 training signal 374X 33X 100% 0.71 1485.88 
 

IDEKO supplied us with acceleration data consisting of six signals that were combined into one 

signal. We applied K-Means to this data and utilised their labels to categorise the acceleration 

inference signals. We also implemented a new KNN for acceleration data and tested 

parallelization with training signals in Table 14. 

Table 14: Speedup and energy gain of KNN for acceleration data on the HPC system 

IDEKO Signal Speedup Energy 
gain 

 

Accuracy % 

 

Minimum 
execution time 

(sec) 

Minimum energy 
consumption 

(Joule) 

26 cycle signal 87X 36X 100% 1.25 525.05 

104 cycle signal 261X 45X 100% 1.87 2153.36 

156 cycle signal 514X 57X 100% 1.37 2532.12 

208 cycle signal 516X 44X 100% 1.86 4361.16 

234 cycle signal 505X 41X 100% 2.03 5271.06 

260 cycle signal 546X 38X 100% 2.09 6280.81 

 

Figure 54 below summarises the results for all the FPGA and GPU designs for the UC3. 

 
Figure 54: UC3 FPGA and GPU designs 
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4 Performance Maximization Under Maximum 

Affordable Error for HW and SW IPs 

Section 2 outlined the acceleration of kernels in the FPGA, GPU and HPC system, which was 

required by use case providers. However, these computations demand vast compute and 

memory resources. In Task 4.2 of SERRANO, we were required to tackle these challenges by 

employing transprecision and approximation computing techniques [16] at the cost of 

deteriorating accuracy. In this section, we will explain how these techniques function and how 

we applied them in developing kernels for the FPGA, GPU and HPC system. By using these 

techniques, we will demonstrate the extent to which execution runtime and energy 

consumption have improved. 

For the design of approximate accelerators on FPGAs, two versions are developed per 

accelerator and platform, each offering a different level of approximation. One version aims 

for a low approximation error, resulting in a smaller trade-off between error and energy gain, 

while the other version intentionally introduces a higher approximation error. It should be 

noted that the quantification of error metrics depends on the input dataset. The specific 

values for low and high approximation errors are calculated based on the provided by the use 

cases datasets for each algorithm. 

There are numerous approximate computing methods applied to hardware platforms to meet 

the requirements of critical embedded applications with ultra-low power consumption and 

small footprint. AUTH has mainly used the techniques of a) precision scaling, which aims to 

reduce the precision of operands, b) approximate memoization, which is used to approximate 

operations that require many clock cycles on hardware, such as the logarithm function, and c) 

loop perforation, which skips loop iterations that incur significant overhead. For more 

information, refer to Deliverable D4.2. Finally, application-specific approximations were used 

based on the algorithmic characteristics of the application under test. 

While using these techniques introduces several parameters and uncertainties, a Verification, 

Validation and Uncertainty Quantification (VVUQ) framework was developed to quantify 

these uncertainties. This framework helps to choose parameters, such as the number of 

processes, data precision and computation density to minimise execution time and energy 

consumption, while balancing the accuracy of the kernel and execution time trade-off. 

Moreover, the Gradient Descent method is used to develop a non-linear formula estimating 

the execution time and energy consumption of the HPC service for different data batches. 
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4.1 Approximation of the Fintech Analysis (UC2, InBestMe) 

Algorithms 

4.1.1 Savitzky-Golay (SAVGOL) Filter 

4.1.1.1 Approximate and Transpresicion Techniques 

Approximate versions of the Savitzky-Golay filter FPGA and HPC accelerators have been 

developed. 

4.1.1.1.1 Alveo FPGA Acceleration Cards 

The Alveo U50 and U200 FPGA acceleration cards utilise approximate designs that leverage 

HLS arbitrary precision data types to quantize the inputs and intermediate operands. In the 

low approximation error variant, the floating-point values are converted to the ap_fixed<15, 

12, AP_RND_CONV> data type. This fixed-point representation allocates 15 bits for the 

integral part and 3 bits for the fractional part. Additionally, a rounding circuit is implemented. 

Similarly, the high approximation error variant employs the ap_fixed<14, 12, AP_RND_CONV> 

data type, reducing the fractional part to 2 bits. 

4.1.1.1.2 Xilinx MPSoC FPGAs 

The quantization schemes that were used in the Alveo designs were also employed for the 

design of the approximate accelerators in the MPSoC platforms. 

4.1.1.1.3 HPC 

Transprecision techniques are an approach used in computation that aims to optimise the use 

of memory resources. By applying lower data precision in the computation, this approach 

reduces the memory footprint and minimises the execution run time and energy 

consumption. Despite the use of lower precision data, the accuracy of the final result does not 

necessarily have to be compromised. 

There are several transprecision computing techniques that have been developed. We apply 

the Mixed-precision computing [17]: This technique involves using different precision levels 

within a single computation. To implement this technique, we use templated data type, 

allowing us to template all the input and output data involved in the implementation. As 

illustrated in Figure 55, we use two distinct data types for input and output data, with 'I' 

representing input data precision and 'O' representing output data precision. As a result, we 

are able to change the data type inside the implementation dynamically. 
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Figure 55: Template data type for transprecision techniques 

Approximation computing techniques are used to improve the performance and reduce the 

execution time of computations. One well-established approach is loop perforation, which 

involves skipping some iterations in repetitive loops. This reduces the workload and results in 

a significant reduction in execution time. However, this approach can also lead to changes in 

the quality and accuracy of the output compared to the original code. It is a straightforward 

method used when the computation can be reduced, and some degree of error can be 

tolerated. 

There are several ways to implement loop perforation. One common approach is to use a 

technique called "step skipping." Step skipping involves skipping some of the loop iterations 

by incrementing the loop counter by a larger amount than one. For example, if a loop iterates 

over an array of values, step skipping may involve only processing every third or fourth 

element in the array instead of processing every single element. Figure 56 demonstrates the 

application of loop perforation, which transforms the canonical loop into a tuned loop. The 

perforation stride 's' is used to indicate how many iterations of the original loop are skipped. 

 
Figure 56: Loop perforation in approximation computing techniques 

4.1.1.2 Evaluation Results 

4.1.1.2.1 Alveo FPGA Acceleration Cards 

Figure 57 shows the execution time speedup and the energy gains when the accelerators with 

the low approximation error are executed on the Alveo Xilinx acceleration cards. The 

execution time speedups are 2.1x and 2.6x for the U50 and U200, while the energy gains are 

2.4x and 1.3x respectively. The Mean Absolute Error (MAE) is 0.17. 

Figure 58 shows the execution time speedup and the energy gains when the accelerators with 

the high approximation error are executed on the Alveo Xilinx acceleration cards. The 

execution time speedups are 2.1x and 2.7x for the U50 and U200, while the energy gains are 

2.6x and 1.6x respectively. The Mean Absolute Error (MAE) is 6.4. 
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Figure 57: Latency and energy gains of the low approximate SAVGOL on the Alveo FPGAs 

 

Figure 58: Latency and energy gains of the high approximate SAVGOL on the Alveo FPGAs 

4.1.1.2.2 Xilinx MPSoC FPGAs 

Figure 59 shows the execution time speedup and the energy gains when the accelerators with 

the low-approximation error are executed on the Xilinx MPSoC FPGAs. The execution time 

speedups are 2x and 2.2x for the ZCU104 and ZCU102, while the energy gains are 2.7x and 3x 

respectively. The Mean Absolute Error (MAE) is 0.17. 

 

 

Figure 59: Latency and energy gains of the low approximate SAVGOL on the MPSoC FPGAs 
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Figure 60: Latency and energy gains of the high approximate SAVGOL on the MPSoC FPGAs 

Figure 60 shows the execution time speedup and the energy gains when the accelerators with 

the high-approximation error are executed on the Xilinx MPSoC FPGAs. The execution time 

speedups are 2.2x for the ZCU104 and ZCU102, while the energy gains are 3.1x and 3.2x 

respectively. The Mean Absolute Error (MAE) is 6.4. 

4.1.1.2.3 HPC 

Transprecision techniques will be applied into the Savitzkey-Golay kernel. By employing two 

different data types: double precision and single precision (float), for both input and output 

data types, denoted as I and O in Figure 55, respectively. Table 15 presents how combining 

these different data types can potentially improve the execution runtime and reduce energy 

consumption. 

 
Table 15: Transprecision techniques in the Savitzkey-Golay 

Input data  

precision 

Output data  

precision 

Execution  

time (sec) 

 

Energy 
consumption 

(Joule) 

Execution 
time 

improvement  

Energy 
consumption 
improvement 

double   double 0.1169 109.358         -        - 

double    float 0.0742 69.401       36%      36% 

float   double 0.0999 93.499       14%       15% 

float   float 0.0429 40.153      63%       64% 

 

Loop perforation as approximation computing techniques has been utilised in Savitzky-Golay 

implementation. It is important to note that loop perforation cannot be applied to critical 

loops in kernels, as it would lead to execution errors. Table 16 showcases the results of loop 

perforation in the Savitzky-Golay with input data from InBestMe, where different perforation 

strides {1, 2, 4, 8} were used.  
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Table 16: Approximation techniques in the Savitzkey-Golay 

Perforation 
strides 

Execution 
time 

Energy 
consumption 

(Joule) 

L2 
error 
norm 

Execution 
time 

improvement  

Energy 
consumption 
improvement 

Error 
increment 

1 0.0025 0.0427 91.605 - - - 

2 0.0021 0.0367 113.68 16% 14% 24% 

4 0.0020 0.0338 123.25 20% 21% 34% 

8 0.0018 0.0328 127.87 28% 23% 38% 

4.1.2 Kalman Filter 

4.1.2.1 Approximate and Transpresicion Techniques 

We provide two approximate versions for each FPGA-accelerated version of the Kalman filter, 

targeting the different devices available on the SERRANO platform. 

4.1.2.1.1 Alveo FPGA Acceleration Cards 

Our approximation strategy is based on the implementation of the batched Kalman filter 

described in Deliverable D4.1. In particular, we divide each signal into k equal parts and 

perform Kalman filtering for each of these parts. This source transformation makes it possible 

to break the dependency and to calculate the Kalman filter for each partial signal in parallel. 

As we show in D4.1, the error caused by this transformation is negligible due to the error 

tolerance of the Kalman filter. The number of batches is set at 10 for the low approximation 

variant and 50 for the high approximation variant for the Alveo U50. For the Alveo U200 FPGA, 

the batch size for both variants is set to 50, since timing problems occurred when synthesising 

the low-approximate version with a batch size of 10. 

We further approximate the batched Kalman filter using the precision scaling approximation 

technique described in Deliverable D4.2. In the variant with small approximation error, the 

floating-point values are converted to the data type [18] ap_fixed<19, 13, AP_RND>. This 

fixed-point representation provides 13 bits for the integer part and 6 bits for the decimal part. 

For the variant with high approximation error the data type ap_fixed<14, 13, AP_RND> is used, 

which reduces the decimal part to 1 bit. These data types are used for the approximation 

variants of the two devices. 

4.1.2.1.2 Xilinx MPSoC FPGAs 

The approximation schemes used in the Alveo designs were also used to design the 

approximate accelerators in the MPSoC platforms. 
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4.1.2.1.3 HPC 

The transprecision techniques applied in the Kalman filter are similar to the approach used in 

the Saitzkey-Golay filter. Different precisions, particularly lower precision, can be employed 

by utilising templated data types for input and output data. This leads to a reduction in 

execution time while maintaining the accuracy of the final output. 

Also, approximation techniques such as loop perforation, as explained in the Saitzkey-Golay 

filter section, can be utilised in the Kalman filter. Some of the loop iterations within the Kalman 

filter kernel can be skipped to reduce the workload and decrease execution time, however, at 

the expense of altering the accuracy of the final results. 

4.1.2.2 Evaluation Results 

4.1.2.2.1 Alveo FPGA Acceleration Cards 

Figure 61 shows the speedup and energy gains of the low approximation error version of the 

Kalman filter for the Alveo U50 and U200 FPGAs compared to the Python single-threaded 

execution. The speedups are 5064x and 4352x for the U50 and U200, while the energy gains 

are 7719x and 3899x, respectively. The low approximation error version can achieve 1.65x and 

2.3x higher speedups and 1.5x and 2.1x higher energy gains compared to the accurate Alveo 

U50 and U200 FPGAs versions. These benefits are associated with negligible errors, as the 

average Mean Absolute Error (MAE) for the 4890 stock price signals is about 0.05. 

Figure 62 shows the corresponding results for the version of the Kalman filter with high 

approximation error. The speedups are 5586x and 4468x for the U50 and U200, while the 

energy gains are 7801x and 4100x, respectively. The high approximation error version can 

achieve 1.82x and 2.4x higher speedups and 1.55x and 2.2x higher energy gains compared to 

the accurate Alveo U50 and U200 FPGAs versions. These benefits are associated with an 

average MAE of 1.15. 

 
Figure 61: Latency and energy gains of the low approximate Kalman on the Alveo FPGAs 
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Figure 62: Latency and energy gains of the high approximate Kalman on the Alveo FPGAs 

4.1.2.2.2 Xilinx MPSoC FPGAs 

Figure 63 shows the speedup and energy gains of the low approximation error version of the 

Kalman filter for the MPSoC ZCU104 and ZCU102 FPGAs compared to the Python single-

threaded execution. The speedups are 2707x and 1170x for the ZCU104 and ZCU102, while 

the energy gains are 4948x and 2139x, respectively. The low approximation error version can 

achieve 1.79x and 1.35x higher speedups and 1.7x and 1.2x higher energy gains compared to 

the accurate versions for the MPSoC ZCU104 and ZCU102 FPGAs. As in the case of cloud 

devices, the average MAE is 0.05. 

 
Figure 63: Latency and energy gains of the low approximate Kalman on the MPSoC FPGAs 

 

Figure 64 shows the corresponding results for the version of the Kalman filter with a high 

approximation error. The speedups are 2905x and 1510x for the ZCU104 and ZCU102, while 

the energy gains are 4023x and 2380x, respectively. The high approximation error version can 

achieve 1.9x and 1.75x higher speedups and 1.4x and 1.3x higher energy gains compared to 

the accurate versions for the MPSoC ZCU104 and ZCU102 FPGAs. An interesting observation 

is that for the MPSoC ZCU104, the energy gains are higher for the low-approximation version, 

which is counterintuitive. This is due to the increase in batch size and thus parallelism, which 

translates into higher DSP and LUT utilisation. The higher use of DSPs and LUTs is responsible 
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for the 1.3x increase in power consumption that accounts for the lower energy gain in the high 

approximation error design. Similar to cloud devices, the average MAE is 1.15. 

 

 
Figure 64: Latency and energy gains of the high approximate Kalman on the MPSoC FPGAs 

4.1.2.2.3 HPC 

To assess the impact of transprecision techniques on the Kalman filter, two different data 

types were used: double precision and single precision for both input and output data. Table 

17 shows the execution time and energy improvements achieved by implementing mixed data 

precision in the Kalman filter. 

 
Table 17: Transprecision techniques in Kalman filter 

Input data 

precision 

Output 
data 

precision 

Execution 

time (sec) 

 

Energy 
Consumption 

(Joule) 

Execution time 
improvement 

Energy 
consumption 
improvement 

double double 0.1782 166.7 - - 

double float 0.1007 94.23 43% 44 % 

float double 0.0761 71.25 57% 58% 

float float 0.0135 12.63 92% 94% 

 

Table 18 illustrates the impact of loop perforation on the Kalman filter. Different perforation 

strides, namely {1, 2, 4, 8}, were applied. As a result, the execution time and energy 

consumption of the kernel were reduced. However, it should be noted that the error norm 

increased, indicating a loss of accuracy in the final results. 
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Table 18: Approximation techniques in Kalman Filter 

Perforation 
strides 

Execution 
time 

Energy 
Consumption 

(Joule) 

L2 error 
norm 

Execution 
time 

improvement 

Energy 
consumption 
improvement 

Error 
increment 

1 0.00043 0.0733 97.097 - - - 

2 0.00031 0.0531 115.987 28% 27% 18% 

4 0.00024 0.0419 124.344 44% 41% 27% 

8 0.00021 0.0366 128.432 50% 51% 31% 

4.1.3 Wavelet Filter 

4.1.3.1 Approximate and Transpresicion Techniques 

Approximate versions of the wavelet filter accelerators have been developed for the FPGA 

platforms and the HPC resources. 

4.1.3.1.1 Alveo FPGA Acceleration Cards 

The approximate versions of the wavelet kernel implemented on the Alveo U50 and U200 

platforms utilise different data types, resulting in variations in error, resource utilisation, 

power consumption, and performance metrics. 

In the accurate version of the wavelet filter, the double data type is employed for both the 

filter's input signal and the wavelet coefficients. In contrast, the low-approximate version uses 

the float data type, which leads to the utilisation of fewer resources. 

For the high-approximate version, the accelerator's inputs undergo quantization, similar to 

the quantization method used for the approximate Savitzky-Golay accelerators. In this 

quantization process, the HLS ap_fixed<19,16> data type is utilised, allocating 19 bits for 

number representation. Out of the 19 bits, only 3 are dedicated to the fractional part of the 

numbers. 

4.1.3.1.2 Xilinx MPSoC FPGAs 

The approximation approach that is described in the sub-section above was followed for the 

design of the MPSoC approximate accelerators. The same data types with the ones used on 

the Alveo designs were used. 

4.1.3.2 Evaluation Results 

4.1.3.2.1 Alveo FPGA Acceleration Cards 

Figure 65 shows the execution time speedup and the energy gains when the accelerators with 

the low approximation error are executed on the Alveo Xilinx acceleration cards. The 
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execution time speedups are 3.8x and 4.3x for the U50 and U200, while the energy gains are 

4.8x and 2.9x respectively. The Mean Absolute Error (MAE) is 0.01. 

Figure 66 shows the execution time speedup and the energy gains when the accelerators with 

the high approximation error are executed on the Alveo Xilinx acceleration cards. The 

execution time speedups are 3.8x and 4x for the U50 and U200, while the energy gains are 

4.9x and 2.9x, respectively. The MAE is 22.2. 

 

 

Figure 65: Latency and energy gains of the low approximate Wavelet on the Alveo FPGAs 

 

 

Figure 66: Latency and energy gains of the high approximate Wavelet on the Alveo FPGAs 

 

4.1.3.2.2 Xilinx MPSoC FPGAs 

Figure 67 shows the execution time speedup and the energy gains when the accelerators with 

the low-approximation error are executed on the Xilinx MPSoC FPGAs. The execution time 

speedups are 2.1x and 2x for the ZCU104 and ZCU102, while the energy gains are 2x and 2.4x 

respectively. The Mean Absolute Error (MAE) is 0.01. 
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Figure 67: Latency and energy gains of the low approximate Wavelet on the MPSoC FPGAs 

Figure 68 shows the execution time speedup and the energy gains when the accelerators with 

the high-approximation error are executed on the Xilinx MPSoC FPGAs. The execution time 

speedups are 2.1x for the ZCU104 and ZCU102, while the energy gains are 2.8x and 3x 

respectively. The Mean Absolute Error (MAE) is 22.2. 

 

 

Figure 68: Latency and energy gains of the high approximate Wavelet on the MPSoC FPGAs 

 

4.1.4 Black-Scholes Algorithm 

4.1.4.1 Approximate and Transpresicion Techniques 

Approximate versions for the calculation of the Black-Scholes formula on FPGA and HPC 

platforms have been developed. 

4.1.4.1.1 Alveo FPGA Acceleration Cards 

To design the two approximate accelerators for the Alveo U50 and U200 platforms, two 

approximation schemes are employed. Firstly, similar to the Savitzky-Golay and Wavelet filter 

approximate kernels, quantization is applied to the inputs and operands of the kernels. 
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Specifically, for the low-approximate version, the HLS ap_fixed<23, 13, AP_RND_CONV> data 

type is utilised. This means that a 23-bit arithmetic representation is employed, with 10 bits 

allocated for the fractional part. Conversely, the high-approximate version uses the 

ap_fixed<18, 13, AP_RND_CONV> data type. In this case, an 18-bit representation is used, 

with 5 bits dedicated to the fractional part. 

Furthermore, as outlined in Section 2.2.4, computations involving exponential functions are 

necessary for calculating put and call options. However, performing such calculations on 

hardware presents challenges and necessitates specialised RTL blocks that heavily utilise the 

platform's DSP resources. To approximate these functions, Taylor series expansions are 

employed, enabling the use of polynomials that leverage multipliers and adder trees. The 

choice of the polynomial order determines the trade-off between performance, power 

consumption, resource utilisation, and approximation error. 

For the low-approximate version, a polynomial order of 15 is employed, while the high-

approximate version uses an order of 12. 

4.1.4.1.2 Xilinx MPSoC FPGAs 

The approximation techniques that are described in the section above were also employed for 

designing the two MPSoC approximate accelerators. The same quantization factor and the 

polynomial orders that were described above were used. 

4.1.4.2 Evaluation Results 

4.1.4.2.1 Alveo FPGA Acceleration Cards 

Figure 69 shows the execution time speedup and the energy gains when the accelerators with 

the low approximation error are executed on the Alveo Xilinx acceleration cards. The 

execution time speedups are 39x and 56x for the U50 and U200, while the energy gains are 

75x and 58x respectively. The MAE for the put options is 4.3 and for the call options is 7.5. 

 

Figure 69: Latency and energy gains of the low approximate Black-Scholes on the Alveo FPGAs 
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Figure 70 shows the execution time speedup and the energy gains when the accelerators with 

the high approximation error are executed on the Alveo Xilinx acceleration cards. The 

execution time speedups are 76x and 64x for the U50 and U200, while the energy gains are 

148x and 71x respectively. The MAE for the put options is 180 and for the call options is 181. 

 

 

Figure 70: Latency and energy gains of the high approximate Black-Scholes on the Alveo FPGAs 

 

4.1.4.2.2 Xilinx MPSoC FPGAs 

Figure 71 shows the execution time speedup and the energy gains when the accelerators with 

the high-approximation error are executed on the Xilinx MPSoC FPGAs. The execution time 

speedups are 140x and 118x  for the ZCU104 and ZCU102, while the energy gains are 180x and 

148x respectively. The MAE for the put options is 180 and for the call options is 181. 

 

 
Figure 71: Latency and energy gains of the high approximate Black-Scholes on the MPSoCs 

 

Figure 72 summarises the results for all the low approximate FPGA designs for the UC2, while 

Figure 73 summarises the results for all the high approximate FPGA designs. 
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Figure 72: Summary of all the low approximate FPGA designs for the UC2 

 

 
Figure 73: Summary of all the high approximate FPGA designs for the UC2 

 

 

4.2 Approximation of Anomaly Detection in Manufacturing 

Settings (UC3, IDEKO) Algorithms 

4.2.1 DBSCAN Clustering Algorithm 

4.2.1.1 Design Implementation 

We provide two approximate versions for each FPGA-accelerated version of the Time Series 

DBSCAN, targeting the different devices available on the SERRANO platform. Due to the 

complexity of the DBSCAN algorithm, specifically communication infrastructure complexity, 

an HPC acceleration is still under implementation. 
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4.2.1.1.1 Alveo FPGA acceleration cards 

Our approximation strategy is based on the loop perforation approximation technique 

described in Deliverable D4.2. Considering that N are the DTW distance calculations that need 

to be computed and M is the number of available compute units on the FPGA, a total of N/M 

batches are computed. As with loop perforation, where loop iterations are omitted, we omit 

all DTW distance computations every K batches. The number of K is fixed at 75 for the low 

approximation variant and 25 for the high approximation variant in the Alveo U50 and U200 

FPGAs. 

4.2.1.1.2 Xilinx MPSoC FPGAs 

The approximation schemes used in the Alveo designs were also used to design the 

approximate accelerators in the MPSoC platforms. 

4.2.1.2 Evaluation Results 

4.2.1.2.1 Alveo FPGA Acceleration Cards 

Figure 74 shows the speedup and energy gains of the low approximation error version of the 

Time Series DBSCAN for the Alveo U50 and U200 FPGAs compared to the Python single-

threaded execution. The speedups are 399x and 118x for the U50 and U200, while the energy 

gains are 178x and 31.3x, respectively. The low approximation error version can achieve 1.2x 

higher speedups and 1.2x higher energy gains compared to the accurate versions for the Alveo 

U50 and U200 FPGAs. These advantages are associated with an accuracy of 90%, which means 

that 90% of the examined signals were correctly classified compared to the exact version of 

the algorithm. 

 

Figure 74: Latency and energy gains of the low approximate DBSCAN for the Alveo FPGAs 

Figure 75 shows the corresponding results for the version of the Time Series DBSCAN with 

high approximation error. The speedups are 449x and 131x for the U50 and U200, while the 

energy gains are 200x and 34.7x, respectively. The high approximation error version can 

achieve 1.3x higher speedups and 1.3x higher energy gains compared to the accurate versions 



 

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration 

Platforms and Tools  

 

 

ict-serrano.eu 82/133 
 

for the Alveo U50 and U200 FPGAs. These benefits are associated with an accuracy of 82%. It 

should be noted that we did not use higher values for K to account for the IDEKO requirement 

that accuracy should not be less than 80%. 

 

Figure 75: Latency and energy gains of the high approximate DBSCAN for the Alveo FPGAs 

4.2.1.2.2 Xilinx MPSoC FPGAs 

Figure 76 shows the speedup and energy gains of the low approximation error version of the 

Time Series DBSCAN for the MPSoC ZCU104 and ZCU102 FPGAs compared to the Python 

single-threaded execution. The speedups are 20x and 15.3x for the ZCU104 and ZCU102, while 

the energy gains are 47.8x and 40.5x, respectively.  The low approximation error version can 

achieve 1.12x and 1.13x higher speedups and 1.12x and 1.13x higher energy gains compared 

to the accurate versions for the MPSoC ZCU104 and ZCU102 FPGAs. Similar to cloud devices, 

the accuracy is 90%. 

Figure 77 shows the corresponding results for the version of the Time Series DBSCAN with 

high approximation error. The speedups are 22.4x and 16.5x for the ZCU104 and ZCU102, 

while the energy gains are 53.5x and 43.5x, respectively. The high approximation error version 

can achieve 1.3x and 1.2x higher speedups and 1.3x and 1.2x higher energy gains compared 

to the accurate versions for the MPSoC ZCU104 and ZCU102 FPGAs.  Similar to cloud devices, 

the accuracy is 82%. 

 
Figure 76: Latency and energy gains of the low approximate DBSCAN for the MPSoC FPGAs 
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Figure 77: Latency and energy gains of the high approximate DBSCAN for the MPSoC FPGAs 

4.2.2 1D-FFT Algorithm 

4.2.2.1 Approximate and Transpresicion Techniques 

Approximate versions of the 1D-FFT HPC accelerators have been developed, whereas the 

approximate versions for FPGA, specifically with the precision scaling, were not performed 

due to the usage of a Xilinx IP that does not allow the usage of custom data types (from ap_int 

and ap_fixed libraries). 

4.2.2.1.1 HPC 

The approximation computing techniques, discussed in Section 3.1.2 and Section 3.1.1, for the 

Kalman filter and the Savitzky-Golay filter cannot be directly applied to the FFT (Fast Fourier 

Transform) filter. In the FFT filter, time series signals are transformed into the frequency 

domain. If some of the input data is skipped to reduce the workload, the FFT algorithm will 

generate completely different results. Therefore, approximation computing techniques 

cannot be employed in the FFT filter. However, the transprecision computing techniques 

described in the section can still be applied to the FFT filter. Using lower precision data for 

both input and output, reduce execution time and energy consumption, while maintaining the 

accuracy of the results. 

4.2.2.2 Evaluation Results 

4.2.2.2.1 HPC 

Transprecision techniques have been applied in the FFT kernel. Table 19 demonstrates the 

application of mixed data precision for both input and output data. As a result, the execution 

time and energy consumption have been improved, and the accuracy of the output will not 

be changed. 
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Table 19: Transprecision techniques in FFT with 104 acceleration data 

Input data 

precision 

Output data 

precision 

Execution 

time (sec) 

 

Energy 
Consumption 

(Joule) 

Execution time 
improvement 

Energy 
consumption 
improvement 

double double 0.2914 58.75 - - 

double float 0.2051 41.34 30% 30% 

float double 0.2681 54.05 10% 11% 

float float 0.1888 38.07 35% 64% 

4.2.3 K-Means Clustering Algorithm 

4.2.3.1 Approximate and transpresicion techniques 

Approximate versions of the Timeseries K-Means clustering for FPGA and HPC accelerators 

have been developed. 

4.2.3.1.1 Alveo FPGA Acceleration Cards 

The Alveo U50 and U200 FPGA acceleration cards make use of approximate designs that take 

advantage of HLS (High-Level Synthesis) arbitrary precision data types to quantize the inputs 

and intermediate operands. In the variant with low approximation only 1 K-Means iteration is 

used which trade-offs speed in the algorithm execution but with lower accuracy. In the design 

with the high approximation error, the floating-point values are converted to the 

ap_fixed<25,24,AP_RND, AP_SAT> data type. This particular fixed-point representation 

assigns 24 bits to the integer part and 1 bit to the fractional part. This approximate design can 

be seamlessly compiled using the ‘AXX=1’ flag during compilation. 

4.2.3.1.2 Xilinx MPSoC FPGAs 

The quantization schemes that were used in the Alveo designs were also employed for the 

design of the approximate accelerators in the MPSoC platforms. 

4.2.3.1.3 HPC 

Approximation computing techniques will be implemented in the K-means kernel, and it has 

a significant improvement in the execution time of K-means. This technique is known as 

quality-based control loop. These loops determine how many times certain parts of an 

algorithm are executed until the desired level of convergence is achieved. Quality-based 

control loops continuously monitor an internal metric and halt the iterations when a condition 

based on both internal state and user-specified parameters is met (Figure 78). Typically, users 

rely on default values for these parameters or choose conservative values, which can lead to 

suboptimal performance. 
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To address this issue, approximation computing techniques allow for the relaxation of the 

control parameters. Consequently, the loop may not iterate as much, and the output may 

differ from the default implementation. It is important to mention that control parameters 

must be carefully chosen to ensure that the desired level of quality is maintained. 

 

Figure 78: Quality based control loop 

Quality-based control loop techniques were incorporated into the K-means kernel 

implementation, as explained in Section 2.3.3 Figure 41. By introducing a condition within the 

loop and monitoring the distance between two centroids during each iteration, we can stop 

the iteration and break the while loop if the difference between these centroids is less than a 

control parameter (epsilon). While the default implementation has the loop iterate 10 times, 

we can apply different values such as e-4, e-2, and e-1 for epsilon. The goal is to reduce the 

number of iterations and execution time by using a larger epsilon value, but we also anticipate 

that classification accuracy may suffer due to this approximation technique. 

4.2.3.2 Evaluation Results 

4.2.3.2.1 Alveo FPGA Acceleration Cards 

Figure 79 shows the execution time speedup and the energy gains when the accelerators with 

the low approximation error are executed on the Alveo Xilinx acceleration cards. The 

execution time speedups now are 183x and 192x for the U50 and U200, while the energy gains 

are 359x and 402x respectively. The accuracy of this version is 95.7%. 

 

 

Figure 79: Latency and Energy gains for K-Means with low approximation error on Alveo FPGAs 
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Figure 80 shows the execution time speedup and the energy gains when the accelerators with 

the high approximation error are executed on the Alveo Xilinx acceleration cards. The 

execution time speedups now are 725x and 760x for the U50 and U200, while the energy gains 

are 1410x and 1583x respectively. The accuracy of this version is 75%. 

 

Figure 80: Latency and Energy gains for K-Means with high approximation error on Alveo FPGAs 

Figure 81 shows the execution time speedup and the energy gains when the accelerators with 

the low approximation error are executed on the MPSoC FPGAs. The execution time speedup 

now is  248.7x while the energy gain is 332x respectively. The accuracy of this version is 95.7%. 

4.2.3.2.2 Xilinx MPSoC FPGAs 

Figure 82 shows the execution time speedup and the energy gains when the accelerators with 

the high approximation error are executed on the MPSoC FPGAs. The execution time speedup 

now is 762.5x while the energy gain is 916.2x respectively. The accuracy of this version is 75%. 

 

Figure 81: Latency and Energy gains for K-Means with low approximation error on MPSoC FPGAs 
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Figure 82: Latency and Energy gains for K-Means with high approximation error on MPSoC FPGAs 

 

4.2.3.2.3 HPC 

Table 20 presents the implementation of the quality-based control approximation technique 

on the K-means kernel, which was utilised for the IDEKO position signal. To carry out this 

implementation, we set the epsilon value to e-4 and re-executed the K-means classification 

on the datasets. As a result, we observed a reduction in the number of iterations within the 

loop, which in turn led to improvements in the execution time and energy consumption. 

Notably, the accuracy of classification remained unchanged, and in all datasets, the K-means 

kernel, when implemented with the quality-based control loop approximation technique, 

produced identical classification results. 

Table 20: Approximation computing techniques in the K-Means on the HPC system 

IDEKO signal Epsilon Execution 

time (sec) 

 

Execution time 
improvement 

Energy 
consumption 
improvement 

Accuracy 

110 position signal e-4 2.181 5.0X 8.9X 100% 

330 position signal e-4 2.445 3.1X 3.1X 100% 

550 position signal e-4 3.339 2.4X 2.4X 100% 

770 position signal e-4 3.357 2.4X 2.4X 100% 

990 position signal e-4 3.403 2.3X 2.3X 100% 

1100 position signal e-4 5.726 2.2X 2.2X 100% 

 

Transprecision techniques will be applied into the K-means Kernel. By employing Two different 

data types: double precision and single precision (float), for both input and output data types, 

denoted as I and K, respectively. Table 21 presents how combining these different data types 

can potentially improve the execution runtime and reduce energy consumption. 
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Table 21: Transprecision computing techniques in the K-Means on the HPC system 

Input data 

precision 

Output 
data 

precision 

Execution 

time (sec) 

 

Energy 
Consumption 

(Joule) 

Execution 
time 

improvement 

Energy 
consumption 
improvement 

double double 2.251 907.548 - - 

double float 2.136 861.448 5% 5% 

float double 2.146 865.445 5% 5% 

float float 1.965 792.618 13% 12% 

4.2.4 KNN Clustering Algorithm 

4.2.4.1 Approximate and transpresicion techniques 

Approximate versions of the Timeseries KNN classification algorithm for FPGA and HPC 

accelerators have been developed. 

4.2.4.1.1 Alveo FPGA Acceleration Cards 

The Alveo U50 and U200 FPGA acceleration cards make use of approximate designs that take 

advantage of HLS (High-Level Synthesis) arbitrary precision data types to quantize the inputs 

and intermediate operands. In the design with the high approximation error, the floating-

point values are converted to the ap_fixed<25,24,AP_RND, AP_SAT> data type. This particular 

fixed-point representation assigns 24 bits to the integer part and 1 bit to the fractional part. 

This approximate design can be seamlessly compiled using the ‘AXX=1’ flag during 

compilation. 

4.2.4.1.2 Xilinx MPSoC FPGAs 

The quantization schemes that were used in the Alveo designs were also employed for the 

design of the approximate accelerators in the MPSoC platforms. 

4.2.4.1.3 HPC 

In the KNN kernel, approximation computing techniques are not typically introduced, as they 

can compromise the accuracy of the results. In this specific use case, the KNN kernel is 

responsible for classifying inference signals between two classes, and introducing uncertainty 

through approximation techniques may not be desirable. 

However, transprecision computing techniques can still be applied in the KNN kernel. By 

utilising different and lower precision data types for the input data, execution time and energy 

consumption can be reduced without significantly impacting the accuracy of the classification 

results. 
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4.2.4.2 Evaluation Results 

4.2.4.2.1 Alveo FPGA Acceleration Cards 

Figure 83 shows the execution time speedup and the energy gains when the accelerators with 

approximation are executed on the Alveo Xilinx acceleration cards. The execution time 

speedups now are 61.1x and 85.1x for the U50 and U200, while the energy gains are 133x and 

198.6x respectively. The accuracy of this version is 95.4%. 

 

Figure 83: Latency and Energy gains for approximate K-NN on Alveo FPGAs 

 

4.2.4.2.2 Xilinx MPSoC FPGAs 

Figure 84 shows the execution time speedup and the energy gains when the accelerators with 

approximation are executed on the MPSoC FPGAs. The execution time speedup is now 211x, 

while the energy gain is 116x. 

 

Figure 84: Latency and Energy gains for approximate K-NN on MPSoC FPGAs 
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4.2.4.2.3 HPC 

To assess the impact of transprecision techniques on the KNN kernel, two different data types 

were used: double precision and single precision for both input data. Table 22 shows the 

execution time and energy improvements achieved by implementing mixed data precision in 

the KNN Kernel. 
 

Table 22: Transprecision computing techniques in the KNN on the HPC system 

Input data 
precision 

Execution 
time (sec) 

Energy Consumption 

(Joule) 

Execution time 
improvement 

Energy consumption 
improvement 

double 3.930 1584.61 - - 

float 3.488 1406.66 11.5% 11.6% 

 

Figure 85 below summarises the results for all the low approximate FPGA designs for the UC3. 

Similarly, Figure 86 summarises the results for all the high approximate FPGA designs. 

 

Figure 85: Summary of all the low approximate FPGA designs for the UC3 

 

Figure 86: Summary of all the high approximate FPGA designs for the UC3 

 

4.3 Verification, Validation, and Uncertainty Quantification 

(VVUQ) 

In Sections 3.1 and 3.2, we discussed transprecision and approximation computing techniques 

and how they have been integrated into kernel implementation. Transprecision techniques 

involve utilising limited data precision during kernel execution, and we have observed that 
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using low precision data types can reduce memory footprint, execution run time, and energy 

consumption without compromising the accuracy of the output. We have also applied 

approximation techniques, which consist of loop perforation and quality-based control loops. 

Both of these techniques reduce computation run time and energy consumption at the cost 

of changing the accuracy of the output results. 

 
Figure 87: Verification Validation, and Uncertainty Quantification (VVUQ) 

 

However, a question arises about how we can manage all these parameters and uncertainties 

in the kernel. The SERRANO platform, we have developed Verification, Validation, and 

Uncertainty Quantification [19] (VVUQ) to choose the best combination of input/output data 

precision and loop perforation to minimise computation run time and energy consumption. 

Additionally, VVUQ addresses the trade-off between the accuracy of the results and execution 

time, and helps use case providers choose the best parallel parameter number of processes 

to achieve these optimizations (Figure 87). 

4.3.1  Automated Benchmarking 

Various parameters come into play during kernel execution. Regarding transprecision 

techniques, we consider the mixed data precision scenario for input and output, where 

{double-double, double-float, float-double, float-float} are the available options, as illustrated 

in Figure 88. We use different perforation stride values for approximation techniques, such as 

s={1,2,4,8,16}. Additionally, for parallel kernel execution, we use num_MPI_Procs to denote 

the number of processes, which can take values of {1, 2, 4, 16, 32, 64, 128, 256}. To automate 

benchmarking, we utilise a nested loop structure similar to Figure 88, where we execute the 

kernel for each combination of these parameters and monitor execution time, energy 



 

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration 

Platforms and Tools  

 

 

ict-serrano.eu 92/133 
 

consumption, and application accuracy. Therefore, automated Benchmarking leads to the 

automatic generation of files containing profiling measurements of the kernel in all possible 

combinations. 

 

 

Figure 88: Automated Benchmarking with regard to approximation and transprecision techniques 

 

4.3.2  VVUQ User Interface 

We will describe how users can interact with the VVUQ interface, using the Kalman Filter 

kernel as an example. After conducting Automated Benchmarking on the input data, several 

profiling files are automatically generated, as previously explained. With the VVUQ 

framework, users can explore all of these profiling files and quantify the uncertainty to obtain 

optimal parameters such as the number of processes, input and output data precision, and 

performance stride for executing the Kalman Filter that minimises execution time and energy 

consumption. In the bash script, users can specify the kernel name and input data size while 

leaving the remaining parameters at their default values. 

 

Figure 89: VVUQ configuration Interface 
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By executing the bash script, the VVUQ framework provides the optimal parameters for 

executing the Kalman filter (Figure 90). To achieve minimum execution runtime and energy 

consumption, the kernel needs to be executed with 128 MPI cores and with input and output 

data precision set as float, while using a perforation stride of 4, and the L2 absolute error norm 

would be 48.58. 

 

Figure 90: Optimal parameter received by VVUQ framework to execute Kalman filter in parallel 

We also received information about how the error varies due to loop perforation in 

approximation techniques. Increasing the perforation stride reduces the execution time but 

increases the error. We can adjust the affordable error range for our case by setting the 

parameters for error offset and error end set. Therefore, in task 4.2, we need to balance 

application accuracy and execution runtime. By applying the error_offset of 50 and 

error_endset of 150, we received a new parallel parameter that minimises execution time and 

energy consumption while considering the affordable error we just set. 

 

Figure 91: VVUQ addresses the trade-off between accuracy and execution time 

4.3.3 Kernel Performance Approximation  

In section 3.3.2, we have introduced the VVUQ framework and its ability, in conjunction with 

Automated Benchmarking, to evaluate the accuracy and reliability of results. However, one 

potential drawback of utilising this framework is that it may lead to increased costs, as it 

requires more computational time to consider all combinations of data precision, perforation 

stride, and multiple numbers of cores, and then identify uncertainties and validate the results. 

To tackle these difficulties, we plan to employ the VVUQ framework on a small number of use 

cases. We will then combine these outcomes with AI/ML techniques to determine the best 

parameter values for new data batches. By doing so, we can overcome the computational 

expenses associated with using the VVUQ framework while enhancing the efficiency and 

dependability of the SERRANO digital platform. 
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In Table 4, we have computed the minimum execution time for different data batches in each 

kernel. Consequently, the Gradient Descent method was applied to achieve a nonlinear 

formula that approximates the minimum execution time. This formula is subsequently used 

to estimate the minimum execution time of the random signals we obtained. In this approach, 

the gradient descent method was applied to compute the optimal parameters {a, b, c} in the 

following equation. 

                                                𝑌 =  𝑎 ∗ 𝑒𝑥𝑝(−𝑏 ∗ 𝑥)  + 𝑐 

Table 13 displays the benchmark results for the parallel KNN kernel using several acceleration 

data batches from IDEKO, indicating that we achieved the minimum execution time. With this 

information, we can utilise the Gradient Descent method to determine the most accurate 

nonlinear formula (Table 23) that approximates the minimum execution time of the KNN 

kernel across various data sizes. 

Table 23: Nonlinear formula achieved by gradient descent method 

KNN minimum Execution time approximation Formula 

              Nonlinear function (Gradient Decent)  1.03247*exp(0.0294826*x)  - 0.0302112 

              Linear Function (Linear Regression)    0.0382379*x + 1.11035 

 

Nonlinear formula and linear approximation in addition to the original minimum execution 

time measurement displayed in Figure 92. By applying the nonlinear formula, we can optimally 

approximate the minimum execution time of the KNN kernel for various data sizes. 

 
Figure 92: Nonlinear and Linear approximation of minimum execution time 
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4.4 Detection Methods and Energy Consumption 

This section describes the experiments carried out regarding algorithmic transprecise 

adaptation of ML analysis and detection methods. We aim to investigate models and 

techniques that enable distributed streaming applications to be deployed and redistributed 

across edge/cloud computing systems. By utilising devices that are dispersed through a 

network that is in the proximity of end users, it is possible to reduce network latency and 

increase the available bandwidth. It is important to mention that these types of user networks 

where the target edge devices are located are intrinsically dynamic. In the case of mobile 

devices, it is easy to see that these connect to different end points (base stations) as they 

roam. Thus, these devices might be available in an intermittent manner for computation tasks. 

Our anomaly detection solution described in WP5 deliverable, Event Detection Engine (EDE), 

proposes leveraging these resources from heterogeneous compute and network resources 

utilising algorithmic transprecise adaptation mechanisms. 

Transprecise computing states that computation need not always be exact and proposes a 

disciplined trade-off of precision against accuracy, which impacts computational effort, energy 

efficiency, memory usage, and communication bandwidth and latency. This approach allows 

for dynamic adaptation of precision during computation depending on the underlying system 

context and available resources. In the case of distributed streaming, this adds a new 

dimension to the problem of scheduling streaming applications and will ultimately lead to 

superior performance, energy efficiency, and user experience. The experiments described in 

this section demonstrate the feasibility of this unique approach by developing a transprecise 

stream processing application framework and transprecision-aware middleware. The use 

cases for performance anomaly detection, network anomaly detection, and graph processing 

will guide the research and underpin technology demonstrators as relevant for the EDE 

platform (part of Service Assurance and Remediation) developed in WP5. 

The experiments aim to address three fundamental scientific questions. Firstly, our objective 

is to establish the scope of transprecision in stream processing applications by developing 

algorithms capable of trading-off result accuracy with non-functional properties. This task is 

challenging as not all algorithms, including those based on machine learning, can easily adapt 

to transprecision methodologies. Secondly, we aim to define appropriate programming 

abstractions for transprecise streaming applications. These well-defined abstractions will 

enhance end-user productivity by providing greater control over computation and scheduling 

policies on edge/cloud systems. Lastly, our goal is to achieve dynamic transprecise-aware 

mapping of streaming applications on edge/cloud resources. This involves accurately 

modelling the potential tradeoffs between resources and precision for each application and 

the operators they utilize. 
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4.4.1 Detection and Analysis of Energy Consumption 

In the following subsection we will describe the overall design and goal of our experiments 

regarding algorithmic transprecise adaptation. We selected a wide range of ML methods 

suitable for anomaly detection tasks. Next, we executed several experiments whose main goal 

was to find, using guided Hyper-Parameter Optimization (HPO), the best hyper-parameters 

for each model in order to maximise predictive performance. These experiments were carried 

out during the development of the Service Assurance and Remediation (SAR) component in 

WP5. 

Once we had the best performing hyper-parameters for each ML method we designed a set 

of experiments to basically benchmark what the energy impact of different training and 

inference scenarios  are for each model. For the measurement of power utilisation we used 

the Intel developed Running Average Power Limit (RAPL) interface [20]. It is used for reporting 

accumulated energy consumption for various power domains. Server grade CPUs, largely from 

the Intel Xeon family (post 2010 Sandy Bridge architecture) are supported. These domains are 

largely dependent on the CPU being utilised. Figure 93 shows how each monitorable RAPL 

domains are organised.  Package domain contains information regarding CPU cores, Cache 

memory and integrated GPU (if available). The DRAM domain gathers information regarding 

the working memory. CPU and Integrated GPU measurements can be fetched using the Core 

and Uncore domains respectably. An additional domain regarding Nvidia GPUs can be 

obtained (Starting from Nvidia Volta 2018) using the NVIDIA Management Library (NVML) [21]. 

Because most of our available HPC cluster is based around AMD processors (mostly AMD EPYC 

7702 [22]) not all RAPL domains are supported. In fact in order to utilise RAPL measurements 

some modifications to the Linux kernel had to be made. However, even so we were able to 

gather energy consumption data only for the package domain. If there are two CPU sockets 

on the physical hardware then there are two package domains which need to be monitored 

(PKG 0, PKG 1). In our case, we have a single socket for our testing server. The complete 

specifications of the testing infrastructure can be found bellow (Table 24). 

Table 24: Experiment infrastructure 16 x HPE Proliant DL385 Gen10 

Specification Description 

CPU 128x EPYC 7702 2,0 Ghz/core 

RAM 1024 GB 

Storage 2x 480 GB SSD 

Inter-connect (storage and communications) 2x25GbE adaptors 

Operating system Ubuntu 22.04 LTS (custom kernel) 
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Initial experiments were carried out using the perf [23] Linux tool used for performance 

analysis. It supports hardware performance counters, tracepoints, software performance 

counters, and dynamic probes. An example usage scenario can be found bellow: 

Table 25: Perf usage scenario 

perf stat -e ,power/energy-gpu/,power/energy-pkg/ ede.py -f config.yaml 

 

The previous example collects energy consumptions (in Joules) for the GPU and Package 

domains. While utilising perf for energy measurements we have found that it provides limited 

measurements capabilities for our use-case. For example, when we train/validate a predictive 

model we usually execute some form of cross-validation, while using perf we would require 

to split up each split into separate perf calls, there is no reliable method to split measurements 

otherwise. 

This is the main reason we decided to instrument our code to provide as precise measurement 

as possible. For this we used pyJoules [24]. This library allows us to measure specific code 

fragments. In our case we wished to measure only model training and prediction, ignoring any 

preprocessing operators. For each cross-validation fold we collect training, inference energy 

consumption and duration. We still measure the overall power consumption using perf as a 

form of sanity check. 

 
Figure 93: RAPL Domains (according to pyJoules) 



 

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration 

Platforms and Tools  

 

 

ict-serrano.eu 98/133 
 

4.4.2 Data Set 

The dataset used during the testing phase was described in WP5 deliverables. For the sake of 
completeness we will describe it here as well. The dataset was generated by monitoring a 4 
node deployment of Apache Spark on which a data and compute intensive distributed 
application was being executed. System level metrics were collected with a polling period of 
1 second. For each node we collect 89 features. For the experiments detailed in this 
deliverable we used a single node run, with 4 hardware anomaly classes. Each hardware 
anomaly was induced using a distributed anomaly induction tool developed by the UVT team: 

● CPU Load - Simulates an abnormally high CPU utilisation 
● Memory - Simulates both memory allocation issues as well as memory leaks 
● DDOT - Simulates CPU ALU and Cache memory issues 
● Copy  - Simulates persistent storage I/O issues 

Figure 94 shows the class distribution of the dataset used for the dataset used. We can see 
that the anomalous events are vastly underrepresented in the dataset. Furthermore some 
anomalies have overlapping effects/symptoms DDOT and CPU anomalies have a large CPU 
component while COPY has a large Memory component. 

 
Figure 94: Class distribution 

4.4.3 Experiments and Results 

We based our experiments around the results obtained during WP5 related experiments. 
Specifically, we used the best method parameters obtained after an extensive, guided, hyper-
parameter optimization of each method detection method. The methods chosen for this 
experiment are all decision tree based supervised classification methods. These were chosen 
because they represent on the one hand the most common method types used in these 
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scenarios and on the other hand are very well suited detection tasks in unbalanced datasets. 
The methods used are; AdaBoost, RandomForest, XGBoost, LightGBM, CatBoost. 

The current experiments can be split up into 3 distinct phases. Each of these phases are 
designed to fully describe the tradeoff between energy consumption and predictive 
performance. 

The first phase we execute for each algorithm a 10 fold cross-validation utilising stratified 
method for the splitting of training and validation sets. This enables us to maintain the same 
class distribution for these sets as the original set. If we would split the data randomly some 
classes are likely to be underrepresented or even missing from the training or validation sets. 
This will lead to skewed performance evaluation. The main goal of this phase is to obtain a 
baseline of performance, seeing that the best hyper-parameters are used during this step. 

During the second phase we execute a recursive feature elimination for each method. Training 
predictive models initially on one feature then adding at each iteration an additional feature 
until we obtain the complete featurespace. This allows us to check how the input data size 
affects both power consumption and predictive performance. 

Figure 95 and Figure 96 show the results regarding power consumption during training and 
inference respectively.  We can see AdaBoost has an almost linear increase in power 
consumption while RandomForest and to some extent CatBoost, showcases almost the same 
data usage, independent of input feature space. XGBoost and LightGBM have relatively noisy 
power consumption. Out of all of the methods the highest single energy consumption was 
obtained by XGBoost while the lowest is CatBoost. We should mention that for each iteration 
a the same 10 fold cross-validation methodology is used, meaning that in total 10 * 89 models 
were trained during this process. Figure 97 shows the scores obtained for each iteration. We 
can see that both methods perform well with a relatively small feature space, XGBoost actually 
performing better. 

 
Figure 95: Recursive Feature Elimination - Training 
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Figure 96: Recursive Feature Elimination - Inference 

In phase 3 we take the feature space defined during HPO and see what the impact of each 
parameter value has on predictive performance and energy consumption. Figure 98 shows the 
impact of parameter values on energy consumption. We can clearly see that some parameters 
have a much larger impact than others, a clear pattern can be observed for all 3 methods. 

For the sake of brevity and simplicity we will not list the results for each method and its 
parameters. Instead we will focus on AdaBoost for the simple reason it has the lowest energy 
consumption out of all methods currently tested. Figure 99 shows energy consumption (left-
hand side) and the predictive performance using the F1 score (right-hand side). 

 
Figure 97: RFE scores for CatBoost and XGBoost 
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Figure 98: Validation curves for all hyper-parameter values. 

 

We should mention at this point that all experiments were carried out using a fixed random 

seed to aid in experiment reproducibility. This fixed seed was used for the generation of 

training and validation splits for cross-validation and for method initialization. One interesting 

side effect is how some training and validation dataset pairs during cross-validation cause 

spikes in energy consumption. Specifically, this occurs during training and is linked to some 

underlying characteristics of the data. The exact cause is not yet completely understood and 

requires further research. At this point the most probable cause of this might be related to 

specific events (i.e. rows) and the data distribution and/or entropy. 
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Figure 99: Energy Consumption AdaBoost per parameter value and F1 Score per parameter 

 

Table 26: Classification report for AdaBoost (Fold 8) 

classes pre rec spe f1 geo iba sup 

normal 0.998 0.998 0.991 0.998 0.995 0.991 959.0 

ddot 1.0 1.0 1.0 1.0 1.0 1.0 18.0 

mem 1.0 0.923 1.0 0.960 0.960 0.915 26.0 
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cpu 0.928 1.0 0.999 0.962 0.999 0.99 13.0 

copy 0.984 1.0 0.999 0.992 0.999 0.99 64.0 

avg/total 0.997 0.997 0.997 0.997 0.997 0.997 0.997 

 

Table 26 provides a classification report in case of AdaBoost, it represents a detailed 

breakdown using several scoring measures including F1 score separated for each class in part. 

The “support” column also shows the number of occurrences of each class in the validation 

data. These kinds of reports are generated for each training fold during cross-validation. 

4.4.4 Conclusions and Discussion 

The results presented in this section let us create a repository of both pre-trained predictive 

models and a set of viable hyper-parameters which yield a workable tradeoff between 

predictive performance and energy consumption. We have also observed a strong correlation 

between both training and inference times and energy consumption, thus we can conclude 

that, at least for the methods listed here, a lower energy consumption leads to faster inference 

times. 

We have HPO related results for several deep learning methods however, seeing that they 

require specialised hardware to execute the experimental results are not yet complete as of 

writing this deliverable. Similarly, we are currently working on extending the experimental 

work done with unsupervised detection methods to include energy consumption metrics. For 

both scenarios we further aim to include additional transprecision optimizations, especially in 

the case of deep neural network-based models where mixed precision and post training 

optimizations such as weight quantization and clustering are known adaptations. 

An extended version of the results summarised here are to be published in a journal article in 

the upcoming months by the UVT team. 

 



 

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration 

Platforms and Tools  

 

 

ict-serrano.eu 104/133 
 

5 Seamlessly Integration of Heterogeneous 

Architectures for Improving Developers’ 

Productivity in HW/SW Co-design of Data-

intensive Applications 

The SERRANO platform aims to provide a set of tools and design methodologies that will ease 

the designers to develop performance and power optimised solutions for heterogeneous 

computing platforms deployed at the edge and the cloud. In today's era, the demands for 

high-performance computations and low-power designs are continuously escalating. To meet 

the user requirements for energy efficiency, high throughput, and security in this new 

computing paradigm, the concept of adaptive computing has emerged. Acceleration 

platforms such as GPUs and FPGAs offer higher performance than most conventional 

processing systems, while still fulfilling the user requirements for energy efficiency and 

security. However, the efficient design and deployment of computationally intensive 

applications on these specialised compute units can often be unclear, even for the most 

experienced developers. This challenge is further compounded by the need to expedite the 

development cycle and design solutions within limited timeframes. In the context of the 

SERRANO project those issues are addressed by designing FPGA and GPU accelerators through 

the Plug&Chip framework. 

The components that realise the Plug&Chip framework that facilitates the FPGA and GPU 

developers to speed-up the development cycle by utilising a set of tools is described in this 

section. Namely those tools are: 

1. A tool for the automatic optimization of FPGA accelerated kernels. 

2. A design methodology for the design of memory efficient FPGA accelerators. 

3. A tool for the automatic optimization of CUDA kernels. 

5.1 Automatic Optimization for FPGA Accelerated Kernels  

High-Level Synthesis simplified the hardware development process by allowing developers to 

instruct the compiler how to perform synthesis by adding directives to a C/C++ or OpenCL 

source code. However, manually selecting the appropriate directives is an extremely difficult 

task even for experienced designers, mainly because of a) the huge decision space and b) the 

inherent interdependence with the underlying FPGA architecture. The lack of end-to-end tools 

that provide optimised HLS configurations in an automated manner is therefore one of the 

major obstacles to realising the FPGA Automatic Code Deployment vision [25]. SERRANO fills 

the gap with GenHLSOptimizer, an end-to-end tool for automatically optimising C/C++ kernels 

with respect to the underlying architecture of the target FPGA. 
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5.1.1 GenHLSOptimizer: A Genetic Algorithm-based Optimizer for 

High-Level Synthesis 

SERRANO offers a tool that automatically optimises synthesizable C/C++ kernels for Xilinx 

FPGAs through High-Level Synthesis. This optimization scheme identifies points of interest, 

i.e., loops and arrays, applies directives (e.g., loop unrolling, array partition), and performs 

synthesis to get the latency and resource utilisation. By applying different combinations of 

directives, the optimizer proposes an approximation to the Pareto-optimal designs with 

respect to the underlying architecture of the target device. 

Due to the large design space, the DSE is performed using the algorithm NSGA-II [26]. which is 

implemented in the Python Multi Objective Optimization (PyMOO) library [27]. The goal of the 

Genetic Algorithm (GA) is to minimise the latency and area of the design, taking into account 

the resource constraints of the target FPGA. The population size and offspring of the NSGA-II 

algorithm are set at 40. We also configure the Genetic Algorithm with the random operator 

for sampling and selection, the simulated binary operator for crossover, and the polynomial 

operator for mutation. All operators are configured with the default parameters of the library. 

The termination criterion was set at 24 generations. 

The exploration phase consists of the following steps: a) the configuration population is 

initialised, b) each configuration of the current population is applied to the source code using 

a source-to-source compiler and the output is synthesised using the Xilinx Vitis tool chain [28], 

and c) the synthesis outputs of the population are passed to NSGA-II to build the next 

generation configurations. Steps b) and c) are executed iteratively until the termination 

criterion is reached. Configurations that result in designs that exceed the available resources 

of the target FPGA architecture or require an unreasonable amount of time for the synthesis 

process (1h) are marked as infeasible so that GA can produce feasible solutions when the 

algorithm converges. Assuming that the designs of one generation are evaluated in parallel, 

the 1h threshold for time-consuming synthesis, and the termination criterion, the near-

optimal designs are generated in 24h in the worst case. Readers can find more information in 

deliverable D4.3, which analyses the individual components of the proposed methodology. 

5.1.2 Evaluation 

We evaluate GenHLSOptimizer with C/C++ kernels provided by SERRANO. In particular, we use 

the following kernels: (a) the Black-Scholes algorithm (INB), (b) the Kalman filter (INB), (c) the 

Savitzky-Golay filter (INB), (d) the Wavelet Transform (INB), (e) the Dynamic Time Warping 

Distance Calculation (IDK), and (f) the Encoding part of Erasure Coding (CC). 

For the synthesis of the studied kernels, we use Xilinx Vitis HLS 2021.1, a State-of-the-Art 

framework capable of synthesising source codes for edge and cloud devices. We target the 

Xilinx Alveo U50 and MPSoC ZCU104 FPGAs available on the SERRANO platform. The target 

clock frequency was set to 300 MHz. The genetic algorithm was implemented using the 
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PyMOO library (version 0.5.0). Finally, our experiments were performed on an Intel Xeon Gold 

5218R (@2.10GHz) server with 256GB RAM memory. 

We compare the design provided by GenHLSOptimizer with i) the design provided by the 

kernel without directives (Vitis), which highlights the impact of the optimizations provided 

natively by Vivado-HLS, and ii) the design provided when the source code is optimised by the 

developers of AUTH. iii - iv) We synthesise each of these baselines with/without enabling Vitis' 

default HLS optimizations, i.e. config_compile -pipeline_loops, config_unroll -

tripcount_threshold and config_array_partition -complete_threshold, creating 4 baselines in 

total. 

5.1.2.1 Optimised Design Latency 

Figure 100 shows the relative mean speedup of GenHLSOptimizer compared to each baseline 

for the Xilinx Alveo U50 and MPSoC ZCU104 FPGAs. Our solution outperforms all baselines. It 

achieves an average relative speedup of 425.35x and 2.43x compared to the Vitis and AUTH 

versions, respectively, and an average relative speedup of 5.17x and 1.13x when these 

versions are optimised with Vitis' HLS optimizations for the Xilinx MPSoC ZCU104 FPGA. The 

same picture emerges for the Xilinx Alveo U50 FPGA, where GenHLSOptimizer achieves an 

average relative speedup of 234.53x and 2.4x compared to the Vitis and AUTH versions, and 

an average relative speedup of 5.17x and 1.1x when these versions are optimised with Vitis' 

HLS optimizations. 

An interesting observation is that GenHLSOptimizer is able to achieve higher relative speedup 

on average on the MPSoC ZCU104 compared to the Alveo U50, especially for the Vitis baseline. 

This is due to the limited resources of the Edge compared to the Cloud device. In particular, 

when an application is synthesised for a resource-constrained edge FPGA, the final design is 

likely to have higher latency than the design for a cloud FPGA equipped with more Block RAMs, 

DSPs, Flip-Flops, and Look-Up Tables, especially if no specific optimizations are instructed via 

HLS directives. 

Figure 101 shows the relative speedup per application for both FPGAs to provide insight into 

how our approach optimises each kernel. Note that GenHLSOptimizer is able to achieve higher 

relative speedup for each application when using the MPSoC ZCU104 compared to Alveo U50 

for the Vitis baseline. 
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Figure 100: Average relative speedup for Xilinx Alveo U50 (Right) and MPSoC ZCU104 (Left) 

 

Figure 101: Relative speedup per application for Xilinx Alveo U50 (Right) and MPSoC ZCU104 (Left) 

5.1.2.2 Design Space Exploration Time 

GenHLSOptimizer uses a meta-heuristic to determine the approximate Pareto frontier. 

Therefore, the time to perform the Design Space Exploration is an important aspect of our 

approach. Figure 102 shows the time it takes GenHLSOptimizer to create the optimised design 

for each application for both FPGAs. Our approach takes an average of 11.9 hours and 7.1 

hours to create the optimised designs for the MPSoC ZCU104 and Alveo U50 FPGAs, 

respectively. Average design space exploration times are below the 24-hour threshold, 

highlighting the system's ability to converge much faster. We can also see that the average 

DSE time for the Alveo U50 FPGA is 1.68x lower than that of the MPSoC ZCU104. This also 

happens due to the resource limitations of the edge FPGAs. Since the directive configurations 

are initialised randomly, it is more likely that a directive combination will result in an infeasible 

design on a resource-constrained edge device than on a cloud device. This complicates the 

work of the genetic algorithm to find the approximate Pareto frontier and consequently 

requires more time. 
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Figure 102: DSE time per application for Xilinx Alveo U50 (Right) and MPSoC ZCU104 (Left) 

 

5.1.2.3 Latency and Resources Distributions 

 
Figure 103: Relative Speedup (Left) and Average Resources Utilisation (Right) distributions 

Figure 103 shows the distribution of relative speedup and resource utilisation for the FPGAs 

studied for all baselines. GenHLSOptimizer provides lower latency designs compared to all 

baselines by efficiently utilising the available resources of the target FPGA, as shown by the 

average resource utilisation distribution of each baseline. Finally, as described in deliverable 

D4.3, our approach can always produce a feasible design in terms of resources, which is an 

important differentiator from the Vitis_wO baseline that cannot always produce feasible 

designs. 

5.1.3 Conclusion 

In this section, we present GenHLSOptimizer, an end-to-end tool for optimising C/C++ kernels 

with respect to the underlying architecture of the target FPGA without human intervention. 

Our experimental evaluation shows that our approach is able to outperform all studied 

baselines in terms of latency, considering the resource constraints of an edge and cloud FPGA 

available on the SERRANO platform. 
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5.2 Dynamic Memory Management in High-Level Synthesis 

(HLS) 

SERRANO offers a tool and a co-design methodology for the implementation of memory 

efficient many-accelerator platforms on Xilinx FPGAs. This tool  [29]  [30] is publicly available 

through the SERRANO’s repository [31]. 

5.2.1 Many-accelerators Platforms in HLS 

The implementation and parallel execution of many accelerators on a single FPGA device has 

been suggested as a candidate approach for increasing the application’s throughput [32]. This 

is an execution scheme that allows multiple accelerators to process data batches in parallel 

leading to a significant decrease in the overall execution latency. However, this execution 

scheme implies the synthesis and implementation of multiple circuits on the same FPGA 

platform which may not be feasible on small platforms with limited computational and 

memory resources. Studies [33] have shown that the rapid saturation rate of the platform’s 

on-chip memories is the primary reason that makes the many-accelerator schemes not 

feasible. 

Dynamic memory management in HLS allows accelerators to share and reuse on-chip memory 

resources at their execution time. In those design methodologies heap structures are 

implemented on the FPGA platform for the dynamic memory allocation and deallocation. 

Figure 104 shows the number of the erasure-coding encoder accelerators that can be 

implemented in the Xilinx MPSoC ZCU104 FPGA platform when the typical static and the 

dynamic memory sharing schemes are used. While the static allocation methodology can 

deliver only up to three encoder accelerators before over-utilizing the platform’s memory 

resources, the dynamic memory schemes can deliver up to 28 parallel executed encoder 

accelerators instead. 

 

Figure 104: Dynamic memory allocation for erasure coding encoder accelerators 
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5.2.2 On-chip Defragmentation Methodology 

Despite the benefits of the dynamic allocation methodology, as the number of implemented 

and parallel-executed accelerators increases, there is a higher likelihood of encountering heap 

fragmentation issues. These issues can result in memory allocation failures (MAFs) and 

consequently lead to stalls and exceptions in the execution of the accelerators. Figure 105 [34] 

demonstrates this phenomenon. As the number of synthesised and parallel executed K-means 

accelerators rises the percentage of the MAFs due to heap fragmentation also increases. 

Therefore, a design methodology that nullifies this fragmentation induced MAFs is proposed 

for the design of the SERRANO’s memory-shared accelerators. 

 

Figure 105: Memory allocation failures due to execution of multiple K-means accelerators 

The proposed methodology consists of two stages: 

● An offline analysis stage where the conditions that enable the 

mechanism that optimises the heap usage are determined. 

● An online execution stage where a garbage collection mechanism is executed. 

Figure 106 illustrates this design flow. 
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Figure 106: Design flow for on-chip defragmentation methodology 

The offline analysis phase aims to determine the heap’s fragmentation ratio Θ that triggers 

the FPGA designed garbage collection mechanism. Initially, the memory allocation sizes from 

all the parallel executed HLS accelerators are extracted and their different values form the 

Distinct Allocation Sizes (DAS). Then, a Monte-Carlo simulation analysis is performed to 

compute the fragmentation ratios Θ that minimise the allocation failures. The input to this 

simulation is memory patterns that correspond to an overlapping execution of those 

accelerators, as these are derived from the pattern generator block. This block pseudo-

randomly generates Malloc/Free sequences of the extracted DAS, forming multiple memory 

patterns. 

In this simulation the HLS accelerators and the HLS garbage collector are executed in a 

software emulation mode. The output of this offline simulation is the Pareto front that trades-

off decrease in fragmentation induced memory allocation failures to estimated execution 

latency. The designer selects the Pareto solution 𝛩𝑚 that meets their requirements for 

execution latency and memory fragmentation and synthesises on the FPGA the garbage 

collector for the specific n 𝛩𝑚 parameter. 

During the online execution stage, the accelerators are executed on the FPGA platform on a 

shared heap and the garbage collector is executed every time that the heap’s fragmentation 

ratio exceeds the user-defined 𝛩𝑚 threshold. Details on the implementation of the garbage 

collector on the FPGA can be found in the corresponding publications [35] [36]. 

5.2.3 Evaluation 

The experimental analysis that is presented in this subsection shows the effect of different Θ 

values in reducing the heap’s fragmentation when multiple K-means and multiple moving 

average filters (i.e., an almost identical kernel with the Savitzky-Golay and Wavelet filters) 

accelerators are executed using a dynamic memory allocation scheme and share one heap. 
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Figure 107 shows that the higher the Θ value, the more likely fragmentation-induced MAFs 

are to occur. As Θ increases, the MAFs approach the reference solution (i.e., the one without 

an on-chip garbage collector). Therefore, to design a fragmentation-free shared memory 

system, the Θ should be set as low as possible. However, as it is depicted in Figure 108, the 

lower the Θ value, the higher the execution latency. This happens due to the frequent 

executions of the garbage collector that cause frequent stalls at the accelerator's execution. 

 
Figure 107: Allocation failures for different Θ thresholds 

 

 
Figure 108: Defragmentation latency for different Θ thresholds 

5.2.4 Conclusion 

In this section an HLS co-design methodology and the corresponding framework were 

presented. This tool allows the HLS designers to develop many-accelerator solutions with 

controllable fragmentation of the shared on-chip memories. The evaluation analysis shows 

that it is up to the designer to select the optimal solution that is generated from the offline 

Monte-Carlo analysis that will fulfil their requirements for memory efficiency and 

performance. 
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5.3 Automatic Optimization for CUDA Kernels 

An automatic optimization tool was developed, targeting to produce accelerated and energy 

efficient, HW aware kernels in an automated manner. Generally, the GPUs' programmability 

has been improved the last few years and the kernels’ implementation and execution process 

has been simplified, but the task of optimising the kernels targeting to achieve close-to-close 

peak performance remains complex and time consuming, due to the fact that the variety of 

kernels and different GPU architectures keeps increasing. 

To this end, we developed an automatic kernel optimization tool. The developed tool 

implements an automatic optimization process for the block coarsening transformations 

across different applications, workload input sizes and GPU architectures. The tool is machine 

learning based (uses regression models) and it also consists of an in house source-to-source 

compiler. The tool was tested on Polybench benchmark on 5 different devices and was able 

to achieve speedups up to x2.3 in terms of performance for unseen GPUs and unseen CUDA 

kernels in comparison with native implementations. 

As mentioned the main optimization task of the tool is the block coarsening transformation. 

The term block coarsening transformation refers to the number of blocks’ reduction, leaving 

the block size (threads per block) the same. To succeed this reduction, multiple neighbouring 

blocks’ work loads need to be merged in order to deal with problems associated with extensive 

fine-grained parallelism. Generally, blocks are mapped to SMs (multiprocessors) from the 

GPUs and  threads are organised in wraps at CUDA cores.  Thus, adopting block coarsening 

reduction, will also reduce the number of wraps scheduled by each SM, as the SMs’ workload 

is reduced. 

In order to implement the block coarsening transformation, the CUDA code needs also to be 

transformed. It has to be mentioned that the whole process, if it is manually implemented, is 

in most cases a lot more complex and time consuming and thus, leads to suboptimal kernels’ 

block reductions. 

For this purpose, the developed tool includes a source-to-source compiler-tool based on some 

rules, as depicted in Figure 109. Based on these rules, the tool automates the transformation 

process for all the tested uses-cases and for new unseen kernels.  

 
Figure 109: A source-to-source compiler-tool based on rules 

To implement the block coarsening transformation, a PERL script was developed. The above 

script can apply block coarsening transformation with a given coarsening factor, on every 

CUDA kernel. Also, an extra exploration part of all the possible coarsening factors is 
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implemented and finally, the tool picks the optimal factor, in terms of performance. Both the 

host and the device programs’ source codes are inputted to the tool in order to auto-tune  the 

new grid size and the device kernel located in host and device files respectively. 

As mentioned before, the purpose of the tool is to automatically select the more efficient 

block coarsening transformation. After all the candidate kernels were implemented from the 

PERL script, supervised learning was used to predict each kernel’s version performance and 

then select the more efficient. 

In order to train the unsupervised learning model a dataset that could represent a big variety 

of CUDA programs, various input sizes and different architectures, should be used.  The input 

features included, a static features part, that represented the structure and the body of the 

CUDA kernel and a Hardware features part that described the GPU architecture, the potential 

block coarsening factors and the size of the kernel’s input. 

We took advantage of a work that was published in 2019 (Guerreiro) [37], that automatically 

extracts features from PTX files by extracting the number of occurrences of each different 

instruction per GPU kernel. Also, to automatically convert the CUDA kernels to the PTX 

assembly file we used a python interface.  Finally, the input format included an 101-size vector 

that counts the kernel’s number of 101 different representative PTX instructions and extra 

different architectural features. The next Figure 110 introduces the adopted GPU specification 

for both computation and memory description of each GPU.  The final feature was a 114-size, 

1-D vector that also included the workload input size of the input vector and the block 

coarsening factor of the kernel’s version. 

 
Figure 110: Adopted GPU specification for both computation and memory description 

Figure 111 represents analytically the training and the prediction process. As depicted for the 

training process, a regression model was adopted to be the Machine Learning predictor. More 

specifically, four different regression models were trained and tested and the best one was 

selected. The candidate models were, Simple Linear Regression, Decision Tree Regression, 

Random Forest Regression and Extreme Gradient Boosting (XGBoost) through the Scikit-Learn 

machine learning framework. The final one, XGBoost was able to reach the best MSE and R2 

score on the test set. Also, as Figure 111 depicts, for the prediction, after the training process 

the tool is ready to predict the latency of a given unseen kernel, block coarsening factor and 
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specific GPU and then to decide the optimal block coarsening factor for each kernel on a given 

architecture. 

 
Figure 111: Training and the prediction process 

For evaluation purposes of the introduced tool, the Polybench-ACC open suite [38] was 

adopted. Polybench-ACC contains different CUDA kernels. We run the different CUDA kernels 

to five different NVIDIA GPUs in order to measure their execution latencies for different 

platforms. The used GPUs include TX1, Xavier NX, Xavier AGX, GTX 1070 and V100. For more 

information about the datasets and the GPUs please also refer to deliverable D4.3. It has to 

be mentioned that 90% of the Polybench-ACC dataset was used for training and the rest 10% 

for testing purposes. 

The next Figure 112 represents the experimental results, MSE and R2 score for the different 

regression models that we tested on the dataset. The best one was XGB and was able to 

achieve 0.02 MSE and 0.88 R2 and therefore constitutes our selected regression model. Also, 

it was able to create optimal coarsened kernels with speedups up to x2.3, for new unseen 

GPUs and new unseen kernels, in comparison with native implementations. 
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Figure 112: Experimental results, MSE and R2 score for the different regression models 
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6  Hardware Acceleration for Serverless 

Workloads 

During the past decade, there has been a shift in terms of the ownership of the hardware 

resources on which applications are being deployed. Increasingly, application execution is 

being delegated to infrastructures outside the organisation of the application owner to reduce 

costs related to the ownership, operation, maintenance, and deployment of software. 

This paradigm dramatically changed how we develop, package, and deploy applications. 

Migrating application execution to public cloud infrastructures means our code will run side-

by-side with the code of other platform tenants. To tackle issues related mainly to security 

(we want our code and data to be safe from potentially malicious users running on the same 

system) but also resource allocation (we would like to avoid a single user hogging all the 

resources of the underlying system), our applications run inside Virtual Machines or 

containerized environments which provide different degrees of isolation. 

In this environment, the underlying system, i.e., the hypervisor or the container runtime, 

monitors and restricts the user application from accessing resources they do not own. 

However, neither of those systems can control the access to hardware acceleration devices 

with the same granularity or isolation guarantees as they can with other resources such as 

CPU, Network, or Storage. 

The problem is exacerbated by the way we program hardware accelerators nowadays. Such 

devices typically provide hardware drivers and APIs, which they expose to application 

developers. These APIs are device-specific, and sometimes they are incompatible even across 

devices of the same vendor. This has two significant side effects: On one hand, user application 

implementations end-up being device-specific, hindering portability and programmability, 

whereas, on the other hand, the lack of uniform APIs across devices renders it extremely 

difficult to virtualize them in an abstract and efficient way. 

In SERRANO, we introduce vAccel [39], a framework that enables virtualized workloads to 

access hardware accelerators securely and efficiently. vAccel is addressing this situation in two 

ways. Firstly, it enables the development of hardware-independent applications by logically 

separating an application into two parts: (i) the user code, which is part of the application logic 

itself, and (ii) the hardware-specific code, which is part of the application that runs on a 

hardware accelerator. Second, it enables hardware acceleration within virtualized guests by 

employing an efficient API remoting approach at the granularity of function calls to delegate 

accelerable code in a vAccel agent on the host system. 

The vAccel software framework has been described in detail in D4.3 (M15). Additionally, 

OpenFaaS is also described in the deliverable above. In the following sections, we provide a 
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brief overview of the software stack, along with the developments of porting the various 

SERRANO kernels to vAccel and OpenFaaS. 

6.1 vAccel 

vAccel enables workloads to enjoy hardware acceleration while running on environments that 

do not have direct (physical) access to acceleration devices. 

The design goals of vAccel are: 

1. portability: vAccel applications can be deployed in machines with different hardware 

accelerators without re-writing or re-compilation. 

2. security: A vAccel application can be deployed, as is, in a VM to ensure isolation in 

multi-tenant environments. QEMU [40] AWS Firecracker [41]and Cloud 

Hypervisor [42] are currently supported 

3. compatibility: vAccel supports the OCI container format through integration with 

the Kata containers  [43] framework [downstream]. 

4. low-overhead: vAccel uses a very efficient transport layer for offloading "accelerate-

able" functions from inside the VM to the host, incurring minimum overhead. 

5. scalability: Integration with k8s allows the deployment of vAccel applications at scale. 

 

 

Figure 113:  vAccel software stack 

The core component of vAccel is the vAccel runtime library (vAccelRT). vAccelRT is designed 

in a modular way: the core runtime exposes the vAccel API to user applications, and dispatches 

requests to one of many backend plugins, which implement the glue code between the vAccel 

API operations on a particular hardware accelerator. 



 

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration 

Platforms and Tools  

 

 

ict-serrano.eu 119/133 
 

The user application links against the core runtime library, and the plugin modules are loaded 

at runtime. This workflow decouples the application from the hardware accelerator-specific 

parts of the stack, allowing for seamless migration of the same binary to different platforms 

with different accelerator capabilities without recompiling user code. 

6.1.1 Virtualization Abstraction 

Hardware acceleration for virtualized guests is, still, a real challenge. Typical solutions involve 

device pass-through or paravirtual drivers that expose hardware semantics inside the guest. 

vAccel differentiates itself from these approaches by exposing coarse-grain "accelerate-able" 

functions in the guest over a generic transport layer. 

The semantics of the transport layer are hidden from the programmer. A vAccel application 

that runs on baremetal with an Nvidia GPU can run as is inside a VM using our 

appropriate VirtIO backend plugin. 

We have implemented the necessary parts for our VirtIO driver in our forks of QEMU [44] 

and Firecracker [45] hypervisors. 

Additionally, we have designed the above transport protocol over sockets, allowing vAccel 

applications to use any backend, if there is a socket interface installed between the two peers. 

Existing implementations include vsock and TCP sockets. Any hypervisor supporting virtio-

vsock can support vAccel.  

6.1.2 Container Runtime Integration 

To facilitate the deployment of vaccel-enabled applications, we integrate vAccel to a popular 

container runtime, kata-containers [46]. 

Kata Containers enable containers to be seamlessly executed in sandbox Virtual Machines. 

Kata Containers are as light and fast as containers and integrate with the container 

management layers while also delivering the security advantages of VMs. Kata Containers is 

the result of merging two existing open-source projects: Intel Clear Containers and Hyper 

runV. 

vAccel integration to kata comes in both modes: virtio and vsock. An overview of the software 

stack is shown in Figure 114. 

Our current downstream implementation for Kata-containers v3 includes support for both the 

AWS Firecracker sandbox and their custom, tailor-made Dragonball backend, using the vsock 

mode of vAccel. 
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Figure 114: vAccel integration with container runtimes 

6.1.3 Framework and Language Bindings 

To facilitate the use of vAccel, we provide bindings for popular languages apart from C. 

Essentially, the vAccel C API can be called from any language that interacts with C libraries. 

Building on this, we provide support for Python [47] and Rust while working on extending 

support for various other high- or low-level languages. In SERRANO, the serverless function 

implementation for all kernels uses the vAccel Python bindings. 

Additionally, we have implemented a subset of Tensorflow [48] and PyTorch APIs so that the 

user can execute an application written for those frameworks over vAccel with minimal and/or 

no changes. 

6.1.3.1 Python Bindings 

The vAccel Python API enables communication and interaction between application code and 
the underlying libvaccel.so, offering the ability to import the API into a Python codebase 
and gain access to a wide range of functions, classes, and utilities. By utilising this API and 
harnessing the power of vAccel plugins, developers can build Python applications that 
seamlessly interface with libvaccel.so, leverage its specialised functionality, and execute 
custom operations tailored to their specific requirements. 
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The Python bindings offer developers a wide range of operations, giving developers direct 
access to the rich functionalities of the underlying library or framework. These operations 
facilitate integration and interaction with the core features. 

In the context of SERRANO, we use the vaccel-exec operation, so we will present the python 
bindings for these specific functions. All the available bindings are available at the 
documentation website [49]. 

6.1.3.2 Generic Executor 

6.1.3.2.1 Genop 

Genop is a class that implements vaccel_genop(), the generic function of vAccel that issues 
a generic operation request to the core library.  

Input parameters: 

● session: A Python Session instance to manage and maintain the state and context of 
the operation 

● arg_read: A list of “struct vaccel_args” containing a pointer to a buffer and its length. 
These arguments are parsed from the plugin to form the actual function arguments 
used in the plugin implementing the respective functionality 

● arg_write: A list of “struct vaccel_args” objects that specify the arguments to be 
written or modified by the genop operation 

Output results: 

● A list that contains the output or results of the genop operation. The specific content 
of the result list depends on the implementation of the genop method and the 
purpose of the operation.  

6.1.3.2.2 Exec with Resource 

Exec with resource expands the capabilities of the Python bindings by enabling seamless 
integration with a shared library, giving the opportunity of extending use-case scenarios. By 
utilising exec_with_resource(), we can execute code stored within the shared library while 
effectively managing a specific resource tied to a given symbol. 

Input parameters: 

● object: The path of a shared library (.so file) containing the desired operations and 
functions 

● symbol: The identifier associated with the object called for the execution 

● arg_read: A list of “Any” type that can accept a variable number of arguments of any 
type. We use the class “Vaccel_Args” to transform those arguments to “struct 
vaccel_args”, containing a pointer to a buffer and its length. These arguments are 
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parsed from the plugin to form the actual function arguments used in the plugin 
implementing the respective functionality 

● arg_write: A list of “Any” type that can accept a variable number of arguments of any 
type. We use the class “Vaccel_Args” to transform those arguments to “struct 
vaccel_args” objects that specify the arguments to be written or modified after the 
execution 

Output results: 

● A list that contains the output or results of the exec operation. The specific content of 
the result list depends on the implementation of the exec method and the purpose 
of the operation. 

The input parameters object and symbol are provided as strings to the 

exec_with_resource() method, allowing flexibility in specifying the shared library and the 

associated symbol. These strings are processed by the class Object we have created to 

ensure the proper handling and utilisation of these strings. This class provides methods that 

facilitate the loading and interaction with the shared library, as well as the identification of 

the desired symbols. 

The class “Object” provides the following methods: 

● __parse_object__: Parses a shared object file and returns its content and size 

● create_shared_object: Creates a shared object from a file and returns a pointer to it 

● object_symbol: Transforms the given symbol  

● register_object: Registers the object for further processing 

● unregister_object: Removes the object from the class 

● destroy_shared_object: Destroys the object 

6.1.4 SERRANO Kernels on vAccel 

To port the SERRANO hardware accelerated kernels on vAccel we focused on hardware 

interoperability and ease-of-deployment. 

6.1.4.1 Interoperability 

One of the key merits of the vAccel framework is the fact that users write their code using the 

vAccel API and the underlying plugin executes this code in the respective accelerator device. 

This enables hardware interoperability as the user does not need to rewrite, or even re-

compile their code if they want to run on a different hardware accelerator. This greatly 

facilitates the scaling of hardware-accelerated applications throughout the cloud-edge 

continuum, as the user builds a container image with their vAccel API code, deploy it in the 

SERRANO platform and this code can use hardware accelerators in the Cloud (Generic, NVIDIA 
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GPUs), at the Edge (Jetson GPUs, Orin/Xavier/Nano), or even CPUs when there is no hardware 

accelerator available (eg. on a RPi4). 

With this in mind, we ported KNN, K-MEANS, Black-Scholes, and SavGol to vAccel, developing 

plugin implementations for CPU, GPU, and FPGA hardware accelerators. In the following 

sections we briefly elaborate on the porting methodology and the performance implications 

this integration imposes. 

6.1.4.1.1 Libification 

The main way of allowing applications to run on the vAccel framework is by separating the 

part we want to abstract away from the core I/O part of the application. Since the actual 

application is essentially the kernel to be abstracted, nearly all the code from the kernel 

resides in the plugin part of the vAccel stack. Instead of developing separate API calls and 

plugins for all the available kernels and execution modes, we chose to abstract this 

functionality to a simple exec operation: we “libify” the hardware-accelerated part of the 

application and build it using the same methods as the generic kernel (e.g. for GPU code, we 

use nvcc, and the output binary is a shared library, eg libknn_app_gpu.so, exposing the 

symbol of the kernel we are porting, eg knn_app).  

We followed the above method for all kernels. The summary of kernels and libraries available 

is the following table. 

Table 27: SERRANO kernels ported to vAccel 

Kernel Symbol Library Hardware 

k-NN knn_app 

libknn_app_cpu.so CPU 

libknn_app_gpu.so GPU 

libknn_app_fpga.so FPGA 

k-MEANS kmeans_app 

libkmeans_app_cpu.so CPU 

libkmeans_app_gpu.so GPU 

libkmeans_app_fpga.so FPGA 

BS bs_app 
libbs_app_cpu.so CPU 

libbs_app_fpga.so FPGA 

SAVGOL savgol_app libsavgol_app_cpu.so CPU 

libsavgol_app_gpu.so GPU 

libsavgol_app_fpga.so FPGA 

 

Essentially, to port the kernels to vAccel, we followed the steps below: 

http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
http://libknn_app_cpu.so/
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- Step1: use the host application as the “frontend”: we replaced the call to the relevant 

function with a library call implemented by all modes of execution for the specified 

kernel. We implemented “plugin” libraries for each of the core code versions (CPU, 

GPU, FPGA) and verified the execution is exactly the same as the original code. 

- Step 2: we replaced this library call with a vAccel-specific call. This library, essentially, 

the “frontend library”, enabled us to set up the necessary data structures to ensure 

input and output consistency. Afterwards, using the same plugin libraries as before, 

we were able to specify which plugin library we want to use for each execution 

example: as we used the vaccel-exec operation, all we needed to do is provide the 

frontend with the shared object to be executed on the host, and a symbol (summarised 

in Table 27). 

 

Figure 115: Libification of original kernel 

 

 

Figure 116: vAccel port 

Figure 115 and Figure 116 illustrate the above process as steps 1 and 2. 

To assess the overhead imposed by this process to the specific kernels, we performed an initial 

evaluation on a Jetson Xavier AGX system (CPU and GPU execution). We measured execution 

time with the identical input provided by the partners that developed the kernels. 
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Figure 117: Performance overhead of vAccel on local execution (library overhead) 

Figure 117 presents the absolute execution time (in ms) for the GPU version of each of the 

three kernels studied, k-NN, k-Means, and SAVGOL. The blue bars present the execution time 

of the stock kernels provided by the partners vs the vAccel-ported ones. Figure 117 shows that 

running the kernels via vAccel on the same host imposes negligible overhead. 

 
Figure 118: Performance overhead of vAccel for VM execution 

Figure 118 shows the normalised execution time of the k-Means kernel to native execution, 

when running on the host (vAccel-GPU, blue bars) and on a virtual machine (vAccel-GPU-VM, 

red bars). We are investigating the source of the overhead imposed on the VM execution. Part 

of this is accounted to the data transfer between the VM and the host. 



 

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration 

Platforms and Tools  

 

 

ict-serrano.eu 126/133 
 

6.2 OpenFaaS 

In SERRANO, we build on OpenFaaS [50] to provide short-lived task execution functionality. 
OpenFaaS is a serverless framework that allows users to deploy functions written in any 
language to a Kubernetes cluster or standalone VM inside containers. It provides auto-scaling 
and metrics for the deployed functions. It abstracts the underlying infrastructure and allows 
users to deploy their services using a high-level CLI tool or Web UI. 

6.2.1.1 Porting the SERRANO Kernels to Serverless Functions 

To accommodate the diverse input/output modes of the kernels, as well as the various modes 

of execution, we used the vAccel python bindings to facilitate the process of porting the 

kernels to serverless functions. 

Essentially, the logic of the execution remains the same; the only thing that changes is the way 

we get the input and we provide the output. 

Since the plugin libraries for executing different algorithms are the same as described in 

Subsection “Libification”, we can use them over the vAccel API by executing the 

exec_with_resource function. We have developed tests to ensure the proper interaction 

and integration between the algorithm and the plugin library, through vAccel which enables 

them to interact efficiently. 

KNN 

For the KNN test, after loading the necessary libraries for the interaction with vAccel, we must 

convert the .csv files that will be processed into a format suitable for execution. We establish 

the appropriate casting for the input and output parameters and pack them appropriately. 

Since the arguments are in the required format we execute the exec_with_resource 

function with the necessary input arguments:  

● object: libknn_app library  

● symbol: The symbol that implements the k-NN algorithm in the context of the plugin, 

eg: knn_app  

● arg_read: The converted read arguments we have packed appropriately. 

● arg_write: The converted write arguments we have packed appropriately. 

K-Means   

For K-Means we are working again in a similar way. After loading the necessary libraries for 

the interaction with vAccel, we convert the .csv files that will be processed into the format 

we want. After doing that we establish the appropriate casting for the input and output 

parameters and pack them appropriately. Since the arguments are in the required format we 

execute the exec_with_resource function with the necessary input arguments:  
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● object: lib_kmeans_app library  

● symbol: The symbol that implements the k-Means algorithm in the context of the 

plugin, eg: kmeans_app  

● arg_read: The converted read arguments we have packed appropriately. 

● arg_write: The converted write arguments we have packed appropriately. 

SAVGOL  

For SAVGOL we are working again in a similar way. After loading the necessary libraries for the 

interaction with vAccel, we convert the .csv files that will be processed into the format we 

want. After doing that we establish the appropriate casting for the input and output 

parameters and pack them appropriately. Since the arguments are in the required format we 

execute the exec_with_resource function with the necessary input arguments:  

● object: savgol_app library  

● symbol: The identifier of savgol library  

● arg_read: The converted read arguments we have packed appropriately. 

● arg_write: The converted write arguments we have packed appropriately. 

An example Python program that calls the K-NN kernel using vAccel is shown in Table 28. 

Table 28: Python snippet that implements the k-NN execution over Python vAccel 

def k-NN_vAccel(INPUT_PATH, LABELS_PATH, MODE, iterations): 
 
    t0 = time.time_ns() // 1_000_000 
    # Setup input  
    start = time.time() 
    timeseries = transformed_time_series(INPUT_PATH).astype(np.float32).flatten() 
    print('Time for dataset read + transform: ', round(time.time() - start,3), 's') 
 
    labels = load_labels(LABELS_PATH).astype(np.int32) 
    golden_labels = labels.copy() 
    nr_iter = iterations 
    w = 200 
 
    # Setup shared object (plugin) CPU/GPU/FPGA 
    obj = "libkmeans_app_%s.so" % MODE 
 
    t1 = time.time_ns() // 1_000_000 
    c1 = timeseries[:N_FEATURES] 
    c2 = timeseries[N_FEATURES+1:2*N_FEATURES] 
    # Setup vAccel parameters 
    pa = ffi.cast(f"float[{len(timeseries)}]", ffi.from_buffer(timeseries)) 
    pc1 = ffi.cast(f"float[{len(c1)}]", ffi.from_buffer(c1)) 
    pc2 = ffi.cast(f"float[{len(c2)}]", ffi.from_buffer(c2)) 
    pc = ffi.cast(f"int [{len(labels)}]", ffi.from_buffer(labels)) 
 
    # Pack arguments 
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    arg_read_local = [pa, nr_iter, w, pc1, pc2] 
    arg_write = [pc] 
 
    t2 = time.time_ns() // 1_000_000 
    # execute command 
    res = Exec_with_resource.exec_with_resource(obj, "kmeans_app", 
arg_read=arg_read_local, arg_write=arg_write) 
    t3 = time.time_ns() // 1_000_000 
 
    labels_new = ffi.unpack(arg_write[0],len(arg_write[0])) 
    total_elements = len(labels_new) 
    matching_elements = sum(a == b for a, b in zip(golden_labels, labels_new)) 
    convergence_percentage = (matching_elements / total_elements) * 100 
 
    t4 = time.time_ns() // 1_000_000 
    print(convergence_percentage) 

 

 

 
Figure 119: Performance overhead of end-to-end operation with sandboxed OpenFaaS container and vAccel 

Figure 119 presents the end-to-end execution time (in ms) for k-NN and k-Means when called 

as serverless functions. To perform this test, we built a serverless function that receives a JSON 

object as input in the format that is presented in Table 29. 

Table 29: Input format for the serverless function 

Parameter  

queue_id  A random UUID, acting as the identifier for the storage backend 

arguments 

position  input data 

labels  input data 

input file  input data 

uuid  a unique id, acting as the identifier for the kernel execution 

mode  the accelerator to be used (CPU, GPU, or FPGA) 



 

D4.4 Final Release of the SERRANO Cloud and Edge Acceleration 

Platforms and Tools  

 

 

ict-serrano.eu 129/133 
 

storage  the storage backend to be used (data broker or s3) 

creds 

ip  ip address of the storage backend 

user  username for the storage backend 

pass  password for the storage backend 

 

Figure 119 identifies a number of issues we are currently investigating: 

● Loading the python libraries on each function invocation is time-consuming 

● fetching and pushing data to the s3 storage backend is almost 10x slower than 

performing the same operation through the data broker 

Overall, spawning the specific kernels from an external client, simulating the end-to-end case 

is an important milestone achieved in Task 4.4. We are working closely with WP5 and WP6 to 

integrate our implementation to the SERRANO platform and optimise the time-consuming 

parts.  
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7 Conclusion 

In conclusion, the SERRANO platform in the WP4 has significantly expanded the range of 

available accelerators, including energy-efficient devices at the network edge as well as high-

performance, massively parallel devices in the cloud and HPC environments. Through the 

development of different applications' versions, including HPC, GPU, and FPGA-accelerated 

versions, the platform offers a wide range of options that consider performance and energy 

efficiency tradeoffs, providing flexibility to the orchestration framework. 

The HPC, GPU, and FPGA kernel implementation has been integrated with transprecision and 

approximation computing techniques. This integration allows adaptive execution with 

different data precisions, leading to minimised computations and improved resource 

utilisation. The Verification, Validation, and Uncertainty Quantification (VVUQ) framework 

further tackles uncertainties and trade-offs by suggesting optimal parameters for kernel 

execution, optimising runtime and energy consumption. 

Using approximation techniques, such as precision scaling, approximate minimisation, and 

loop perforation, in FPGA-accelerated application versions has enhanced energy efficiency 

and expanded the library of available use case applications. Additionally, experiments on 

algorithmic transparencies' adaptation for distributed streaming applications in Edge/Fog 

computing systems were conducted to reduce network latency and increase bandwidth, 

addressing the demands of real-time data processing. 

The Plug&Chip framework played a vital role in developing FPGA and GPU accelerators, 

enabling the automatic optimization of kernels for enhanced performance without human 

intervention. Moreover, a methodology for creating memory-efficient accelerators on FPGAs 

was introduced, further optimising resource utilisation. The vAccel framework has addressed 

the scaling of hardware-accelerated operations by exposing hardware-acceleration 

functionality to isolated serverless functions. 

Overall, the SERRANO platform has made substantial advancements in WP4 in the realm of 

accelerators, optimization techniques, uncertainty quantification, and serverless execution. 

By integrating various hardware acceleration options, addressing resource limitations, and 

enhancing flexibility in deployment and execution, the platform has paved the way for high-

performance, energy-efficient computing in diverse environments, contributing to 

advancements in various use case applications. 
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