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Abstract: Deliverable D5.4 summarizes the outcomes from all five tasks of Work Package 5 - 

Intelligence Service and Resource Orchestration. It presents the research and development 

activities during the second iteration of the SERRANO incremental implementation plan (M16-

M31). The deliverable builds upon the initial developments, which were reported in M15 at 

deliverables D5.1, D5.2, and D5.3, to provide the remaining functionality and implement the 

complete interfaces for inter-component communication. The deliverable presents the final 

design and developments for: (i) the ARDIA (A Resource reference model for Data-Intensive 

Applications) modelling framework, (ii) AI-Enhanced Service Orchestrator, (iii) multi-objective 

resource allocation and service orchestration algorithms, (iv) AI/ML-driven service assurance 

and re-optimization mechanisms, (v) energy and resource-aware flow mappings, (vi) novel 

network and cloud telemetry framework, (vii) hierarchical resource orchestration, and (viii) 

lightweight virtualization mechanisms. The provided developments are integral parts of the 

cognitive orchestration and transparent deployment mechanisms of the SERRANO complete 

platform prototype that will be used for the final performance evaluations. 

 

Keywords: ARDIA framework models, AI-enhanced Service, Service Assurance, Multi-objective 

Optimization, Resource Optimization Toolkit, HPC Services, Telemetry, Resource 

Orchestration, Lightweight Virtualization, Containers, Unikernels, vAccel. 
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1 Executive Summary  

SERRANO envisages the development and deployment of disaggregated federated cloud and 

edge infrastructures that incorporate hardware-accelerated edge and cloud nodes as integral 

parts of the overall computation and storage chain. In addition, the SERRANO ecosystem 

expansion includes HPC infrastructures that can be utilized for exceptionally computationally 

intensive simulations and data analysis, bridging the gap between these currently largely 

separated computing paradigms.  

Deliverable 5.4 presents a comprehensive report on the progress made in WP5 during the 

second iteration (M16-M31) of the SERRANO implementation plan. The main focus of this 

deliverable is to outline the work accomplished in all five tasks within WP5, which are 

dedicated to the implementation of the SERRANO intelligent service and resource 

orchestration mechanisms, along with lightweight virtualization mechanisms. These tasks 

build upon the initial developments described in D5.1 (M15), D5.2 (M15), and D5.3 (M15) to 

provide the final version of the envisioned mechanisms. 

The deliverable offers an overview of the SERRANO platform and comprehensively details all 

the critical technical developments for finalizing the end-to-end SERRANO orchestration and 

deployment mechanisms.  This is a major milestone that mars a significant achievement for 

the SERRANO project, as it includes the following key functionalities:  (a) workload deployment 

modeling using the ARDIA framework to efficiently utilize available resources, (b) cognitive 

workload hierarchical orchestration, incorporating resource- and service-oriented 

optimization algorithms, (c) AI-enabled service assurance and re-optimization mechanisms, 

considering energy and resource-aware dimensions,  (d) enhanced telemetry mechanisms for 

improved monitoring and data collection, and (e) support for workload deployment in diverse 

execution modes, such as lightweight virtualization, containerization, and unikernels. 

The information provided in this deliverable significantly contributes to the development of 

the SERRANO full platform prototype (M31). Furthermore, the developed mechanisms play a 

significant role in supporting the final evaluation of SERRANO use cases, which will be 

documented in deliverable D6.8 “Final version of business, end user and technical evaluation” 

(M36). In addition, this progress us closer to the final release of the SERRANO platform, which 

will be integrated and comprehensively documented in deliverable D6.7 “Final version of 

SERRANO integrated platform” (M36).   
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2 Introduction  

2.1 Purpose of this document 

Deliverable D5.4 presents the outcomes of all tasks carried out in WP5 throughout the second 

phase (M16-M31) of the work package implementation. The initial progress during the first 

iteration of the implementation plan (M07-M15) was reported on D5.1 (M15), D5.2 (M15), 

and D5.3 (M15).  

T5.1 is dedicated to the development of a series of abstraction models for representing and 

describing resources, services, and applications along with telemetry data. These models serve 

as the building blocks of the ARDIA modelling framework. Additionally, T5.1 includes the 

development of the SERRANO AI-enhanced Service Orchestrator, which effectively translates 

high-level and infrastructure-agnostic deployment requirements into resource-specific 

deployment scenarios. All these developments are described in Section 4. 

T5.2 focuses on the development of multi-objective optimization algorithms for application 

deployment across edge, cloud, and HPC resources, and the data management within the 

distributed secure storage infrastructure of the SERRANO platform. As part of T5.2, the 

Resource Optimization Toolkit has been created, incorporating the developed algorithms. 

These developments are presented in Section 5. Furthermore, this task encompasses the 

development of data-driven service assurance mechanisms and the development of the Event 

Detection Engine, a critical component of the Service Assurance and Remediation service 

within the SERRANO platform. These aspects of T5.2 are presented in Section 6.  

Moving to T5.3, its main objective is to implement an autonomous and data-driven telemetry 

framework within the SERRANO platform. This framework autonomously collects telemetry 

data from multiple and heterogeneous infrastructure resources and as well as metrics from 

the deployed applications. Section 7 covers the design and implementation of the final release 

of the SERRANO telemetry framework.  

T5.4 is responsible for the development of a framework to assist developers in incorporating 

performance and power model functionality into the design and programming of their digital 

services, particularly within the SERRANO platform. Furthermore, T5.4 establishes the 

necessary HPC infrastructure and conducts measurements of the energy efficiency of the 

developed HPC services. Section 8 includes these developments. 

T5.5 focuses on the development of SERRANO hierarchical resource orchestration 

mechanisms, leveraging well-established orchestration solutions at edge, cloud, and HPC 

platforms. Section 9 provides detailed insights into these developments, including technical 

details regarding the integration of the SERRANO orchestration and deployment mechanisms 

with other key SERRANO services. Additionally, T5.5 involves the development of essential 

software components that enable the seamless execution of workloads in various lightweight 

virtualization solutions, hypervisors, and unikernel frameworks. These novel developments 

are described in Section 10. 
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2.2 Document structure 

The present deliverable is split into eight major chapters: 

• SERRANO Intelligent Service and Resource Orchestration Mechanisms 

• Intelligent Service Orchestration 

• Algorithmic Framework 

• Service Assurance and Remediation 

• Network and Cloud Telemetry Framework 

• Energy and Resource Aware Flow Mapping 

• Resource Orchestration Mechanisms  

• Lightweight Virtualization Mechanisms 

 

2.3 Audience 

The deliverable is public and available to anyone interested in the final release of the SERRANO 

intelligent service and resource orchestration mechanisms. Moreover, this document can also 

be useful to the general public for obtaining a better understanding of the framework and 

scope of the SERRANO project.  

 



D5.4 - Intelligent Service and Resource Orchestration Mechanisms 
 

  

ict-serrano.eu  18/158 

3 SERRANO Intelligent Service and Resource 

Orchestration Mechanisms 

The SERRANO architecture was initially introduced in deliverable D2.3 "SERRANO 

architecture" (M09), and subsequently refined in its final version in D2.5 "Final version of 

SERRANO architecture" (M18), incorporating valuable insights from the development 

activities conducted during the first iteration of implementation (M1-M18). D2.5 (M18) 

presents a comprehensive architecture overview, encompassing the SERRANO components, 

their interfaces, and supported workflows. In this section, we offer a concise description of 

the architecture (Figure 1) to facilitate the presentation of the final developments in WP5 

regarding the intelligent service and resource orchestration mechanisms in the SERRANO 

platform. 

 

Figure 1: SERRANO high-level architecture 

 

The Service Layer includes the AI-enhanced Service Orchestrator (Section 4) that analyses 

applications to determine the possible deployment scenarios and translates the given 

application requirements (high-level requirements) to lower-level ones. The Orchestration 

Layer ensures efficient service orchestration and resource management through the SERRANO 

Resource Orchestrator (Section 9). The Resource Optimization Toolkit (Section 5) provides joint 

computational and storage resource allocation and service placement algorithms, leveraging 

various optimization techniques. The Central Service Assurance manages the runtime lifecycle 

of each application deployment across the SERRANO heterogeneous infrastructure. It receives 

notifications from the Service Assurance and Remediation mechanisms (Section 6) that include 

data-driven mechanisms that facilitate the identification of critical situations and trigger 

proactively and reactively re-optimization actions to maintain the required performance 

level.  
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Across the SERRANO ecosystem resides the Infrastructure, Platform, and Application 

Telemetry stack (Section 7) that collects metrics from the SERRANO infrastructure and 

deployed applications. The main components are the Central Telemetry Handler, the 

Enhanced Telemetry Agents, and Monitoring Probes. In addition, the Persistent Monitoring 

Data Storage allows the management of the historical monitoring data, which is required 

mainly by the service assurance and remediation system.  In addition, the Resource Layer 

includes heterogeneous edge, cloud, and HPC computational and storage resources 

encompassing the SERRANO-enhanced resources (Sections 8 and 10), while the Orchestration 

Drivers (Section 9.2) enable efficient and transparent deployment of services across the 

heterogeneous infrastructure. 

The developed intelligent service and resource orchestration mechanisms provide an 

abstraction layer that automates the operation and maximizes the utilization of available 

diverse resources, supporting a develop once, deploy everywhere approach. This integration 

seamlessly links edge, cloud, and HPC resources, facilitating the processing of low-latency 

services that necessitate immediate action at their source. At the same time, computationally- 

and data-intensive applications are intelligently distributed across a diverse set of cloud and 

HPC platforms. The SERRANO platform (Figure 2) is a self-optimizing system that continuously 

adapts based on its ability to sense (detect what is happening), discern (interpret senses), infer 

(understand implications), decide (choose a course of action), and act (take action), within an 

infinite time horizon control loop. Leveraging SERRANO’s abstraction mechanisms, cloud-

native applications are supported towards the edge-cloud-HPC continuum. 

 

 

Figure 2: The SERRANO platform, utilizing edge, cloud and HPC resources and empowering the 
Everything as a Service (EaaS) notion towards the cloud continuum  
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4 Intelligent Service Orchestration 

4.1 AI-enhanced Service Orchestrator   

The intelligent service orchestration in SERRANO is enabled by the cooperation of several 

components of the SERRANO platform, including mainly the AI-enhanced Service Orchestrator 

(AISO) and the Resource Orchestrator but also the Central Telemetry Handler, and the Service 

Assurance Mechanism. For utilising intelligent service orchestration, the users interact with 

the SERRANO platform using the services provided by the AISO either directly or via a GUI. The 

final deployment considerations, as well as the actual deployment of an application to the 

available resources, are performed by the Resource Orchestrator. On the other hand, the 

Central Telemetry Handler and the Central Service Assurance are responsible for collecting 

performance and other data and analysing them to ensure that the application follows the 

specific performance levels. In this section, particular focus is given to the AISO and the ARDIA 

Framework. 

The functionality provided by the AI-enhanced Service Orchestrator and the components’ 

architecture have already been described in the deliverables D5.1 (M15) and D2.5 (M18). In a 

nutshell, the AISO provides a REST API (Figure 3) that facilitates the efficient and intelligent 

deployment of applications to the resources linked with the SERRANO platform. For this 

purpose, the application owners should have already containerised the application. Next, they 

provide the application deployment description in a YAML file and express the application 

requirements and their intent based on the parameters specified in the Application Model 

(part of the ARDIA Framework). The AISO employs underlying mechanisms that utilise domain-

experts-defined mapping rules and telemetry-data-driven ML models and undertakes the 

translation of the given high-level constraints to the ones appropriate for application 

deployment, based on the parameters specified in the Resource Model (also part of the ARDIA 

Framework). Finally, it invokes the relevant Resource Orchestrator services to request the 

application deployment. Considering that the given application requirements and user intent 

can usually be satisfied in more than one way, the output provided to the Resource 

Orchestrator includes several suggested deployment scenarios that are most appropriate in 

each case. 

 

 
Figure 3: AI-enhanced Service Orchestrator Interface 
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4.2 Abstraction Models and Mapping Rules  

The three abstraction models developed in SERRANO, as part of the ARDIA framework, enable 

the interaction among the software components that provide the service orchestration. These 

are the Application, Resource, and Telemetry Data Models that have already been described 

in deliverable D5.1 (M15). The Application Model provides the terminology required to 

express the application requirements, including the user intent. In particular, it enables users 

to specify the internal components (aka microservices) of each application, the relations 

among them, and, more importantly, the particular constraints that they should satisfy, either 

independently from one another or as a whole (an example is presented in Section 4.6). The 

Resource Model specifies the parameters of particular importance for different types of 

resources, including standalone nodes and accelerators (e.g., GPU, FPGA) as well as the 

relations among them. The elements specified in this model are used to formally express 

possible deployment scenarios of each application so that the Resource Orchestrator can 

further process the relevant application requirements. The Telemetry Data model specifies 

the parameters being collected by the Central Telemetry Handler during the deployment and 

execution of an application. The data collected and expressed using this model are used by 

several components of the SERRANO platform, including the AISO.  

 

Table 1: The Parameters of a Mapping Rule 

Parameter Brief Description 

Main Parameters  Source  One or more Application Model parameter  

 Target  One or more Resource Model parameter  

 Transformation  The process that should be followed for expressing 
application to resource model constraints.  

Prerequisites  Conditions  The conditions that should be satisfied so that this mapping 
rule can be potentially applied  

Metadata  Origin  Indicates if this mapping rule has been specified by domain 
experts or through the analysis of collected telemetry data 

 Direction  Indicates if this mapping rule can be used when “moving” 
from source to target or vice versa 

 

The functionality provided by the AISO is based on the Mapping Rules specified. The mapping 

rules were specified either manually (in close collaboration with domain experts) or 

automatically through the analysis of collected telemetry data. Each mapping rule has several 

parameters (Table 1), including but not limited to source and target elements, along with the 

process that should be followed (aka transformation) for moving from one data 

representation to the other one. The source elements are subsets of parameters specified in 

the Application Model, whereas the target elements are the appropriate ones specified in the 

Resource Model. The transformation specifies the process applied for expressing the 

conditions defined based on the source elements to the corresponding ones based on the 

target elements, and it may internally use a pre-trained ML model (as presented in Section 

4.3). Apart from the aforementioned parameters, each mapping rule includes additional data, 
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such as the prerequisites that should be fulfilled so that this mapping rule can be used, and 

metadata, such as the origin of the mapping rule, its direction of usage (i.e., for "moving" from 

source to target elements), etc.  

Several mapping rules have been specified to bridge the gap between Application and 

Resource Models. The design of these mapping rules was driven by (a) analysis of relevant 

publications in this field, (b) ongoing work in other SERRANO tasks / WPs in close collaboration 

with the respective partners and (c) analysis of data collected from the execution of the 

applications. For instance, based on publication [1] it can be presumed that when the aim is 

to avoid high network utilisation or to achieve low response latency, it is preferable to deploy 

an application to an edge device (or fog node) rather than to a cloud provider. Also, when 

security is of great concern during the execution of an application, the particular node tiers 

(Figure 4) should be taken into consideration during deployment by the Resource 

Orchestrator, as described in the deliverable D3.4 (M30). For instance, when isolation is of 

great importance, a Tier 4 node should be selected.  

 
Figure 4: Security Tiers for the SERRANO platform 

 

Regarding hardware accelerators such as GPU and FPGA, it is common knowledge that an 

FPGA consumes less energy that a GPU (or CPU) [2] and can instantly respond to a user’s 

request. Nevertheless, their usage often depends on the application design and development 

(often some parts of an application should be redesigned or even developed from scratch 

using vendor-specific hardware languages) and their capabilities to adapt to computing 

environment changes (e.g., usage of a GPU or FPGA for some parts of the application) through 

their proper configuration.  

The definition of the aforementioned mapping rules was specified in close collaboration with 

the domain experts involved in the SERRANO project. Nevertheless, in many cases, the 

relation among the application and resource model parameters is much more complicated. 

For this purpose, data were collected from the execution of applications (i.e., particular tasks) 

using different SERRANO resources, and the collected data were accordingly analysed and 

used to develop ML models that capture the exact relation among the relevant source and 

target entities. 
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4.3 Telemetry Data Analysis and ML Model Development 

The telemetry data collected from the execution of different parts of the three UC applications 

were further examined, and relevant mapping rules were specified. More complicated 

relations among the elements included in the Application and Resource model were specified 

using ML techniques. More precisely, the respective telemetry data from the execution of a 

particular task of an application under different resource configurations were collected, 

filtered, and accordingly used for the development of the respective ML models. In particular, 

regression models were trained based on the data collected to be accordingly used for 

prediction purposes.  

Data encryption and decryption (UC1) are resource-demanding processes that can be 

significantly improved through GPUs or FPGAs. The data collected indicated that total 

execution time and energy gained can be significantly improved, especially in the case of AES-

GCM Encryption. Nevertheless, the expected improvement level also depends on other 

parameters, such as the number of instantiated computing units, which has to do with the 

particular algorithm implementation. The data available about each one of these two tasks 

(i.e., encryption/decryption) were filtered and accordingly used for training two different 

polynomial regression models that can predict the expected execution speedup and energy 

gain based on the resource type and number of instantiated computing units.  

 

 
Figure 5: Execution speedup in (a) Kalman Filter and (b) Wavelet Transformation using different 

types of resources 

 

The analysis of data collected regarding the Portfolio Analysis (UC2) tasks indicated that the 

time required, and energy consumed for the execution of Kalman filters can be significantly 

improved through the usage of the particular resources (Figure 5 and Figure 6). In this case, 

the type of accelerator used has a tremendous impact on the execution speed-up and the 

energy consumption gains, with the most significant improvement coming from using an Alveo 

U50 accelerator [3]. The time needed and the energy consumed for the execution of a Wavelet 

transformation are also affected by the particular resource type. Nevertheless, in this case, 

the type of resource has a lower impact on the execution time and energy consumption in 

comparison with the corresponding figures noticed for Kalman Filters. The aforementioned 

data were used for training an ML model that can predict the expected energy gain based on 

the type and particular brand/model of the resource device.  
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Figure 6: Energy gain in (a) Kalman Filter and (b) Wavelet Transformation using different types of 

resources 

 

Anomaly detection in manufacturing (UC3) is a challenging process since a considerable 

amount of data should be gathered and analysed to detect potential discrepancies that 

indicate a failure is about to happen. In this manner, equipment can be utilised for their whole 

lifespan and their replacement can be programmed in advance, thus avoiding unexpected 

delays in the production line and unneeded expenses. Hence, continuously monitoring and 

assessing anomalies in real-time is of great importance. The amount of energy ML techniques 

consume in this process is another critical factor [3]. The applications and the respective 

microservices were tested under different resource configurations (i.e., in an edge or HPC 

device) for the processing of different workloads, and the relevant data regarding the total 

execution time of the particular tasks and the energy consumed were recorded (as part of the 

WP4 tasks). 

 

Figure 7: ML model for predicting the Total Execution Time of a particular microservice for 
different workloads in (a) an Edge Device and (b) in HPC 

 

Then, several polynomial regression models were developed to predict the expected 

execution time and energy consumption of different application microservices respectively 

(Figure 7 and Figure 8). For this purpose, the data were split in three groups, i.e., training, 

validation, and testing, so that they could be used for hyper-parameters tuning, model training 

and validation purposes.  
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Figure 8: ML model for predicting the Total Energy Consumption of a particular microservice for 
different workloads in (a) an Edge Device and (b) in HPC 

4.4 Translation Mechanism 

The data provided by the end-user regarding the particular application requirements and user 

intent are used by the AISO to detect the potential deployment scenarios feasible in each case 

so that the given restrictions are satisfied. Each deployment scenario specifies the type and, 

in some cases, the suggested concrete details of the resource. The deployment scenarios are 

expressed in JSON format based on the elements specified in the Resource Model. 

The AISO examines the data provided by the end user along with the Mapping Rules (MRs) 

already specified for translating the given parameters to the appropriate resource constraints. 

More precisely, it focuses on the source and target elements of the MRs defined in order to 

find the ones that can be directly or indirectly applied to the given parameters. These MRs are 

accordingly applied one by one based on their relative order of execution (i.e., priority is 

considered). Also, a branch is created if there is more than one way to achieve the same 

purpose (i.e., satisfy the respective condition). Through this process, the potential deployment 

scenarios are built, each containing several restrictions to the value of the resource model 

parameters that should be simultaneously satisfied without any contradiction among them. 

In the following paragraphs, the focus is given to the detection and usage of a particular MR.  

• Presence of Source Data  

In case all source elements are available (i.e., a constraint has been specified regarding the 

appropriate set or range of their values), a MR can be directly applied for the translation of 

the source parameters (expressed based on the elements of the Application Model) to the 

appropriate target parameters (expressed based on the elements of the Resource Model). For 

instance, when low data transfer latency is necessary, the system will propose deploying the 

application in the Edge Device (i.e., close to the location where the data are being produced) 

rather than in a cloud provider.  

• Presence of Target Data  
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On the other hand, when all target parameters are available, the AISO examines possible 

deployment configurations to satisfy the given application requirements.  More precisely, for 

each possible configuration, it uses the predefined ML models for detecting/predicting the 

expected outcome and hence selecting the ones the outcome of which is compatible with the 

given constraints. For instance, when a particular task should be completed in a limited 

amount of time, the system uses the ML models for predicting the expected amount of time 

(or a relevant parameter that can be directly linked with this one, such as execution speed-up 

factor) for different types of resources and proposes the usage of those resources that should 

produce an outcome that is compliant with the initial requirement.  

It should be noted that both source and target elements may already exist in the parameters 

specified by the end user. In this case, the output of the respective mapping rules should be 

compatible with the user data provided. In particular, the output of the mapping rules fired 

based on the given source data should be a superset of the given one. Also, the expected 

outcome of the possible resource configurations that can take place should be compatible 

with the constraints specified by the end user. For instance, if both constraints above about 

data transfer latency and energy consumption have been specified, the proposed deployment 

scenario should contain those resources that simultaneously satisfy both constraints.   

4.5 Integration with a Graphical Interface 

The creation of the deployment scenarios and the allocation of the appropriate resources for 

the deployment of an application, considering the application requirements and user intent, 

are driven by appropriate JSON and YAML descriptions. The owners of each application should 

prepare both (either manually or with the aid of a GUI) and accordingly provide them to the 

respective SERRANO orchestration and deployment services. 

The application requirements and user intent are enclosed in a SERRANO-specific JSON 

description with a predefined structure based on the Application Model elements (part of the 

ARDIA framework – described in the deliverable D5.1). The AISO checks the JSON structure to 

ensure that it complies with the required one and that the elements included are expected. 

The allocation of the appropriate type and resource quantities for the deployment and 

execution of an application is done using a deployment descriptor. Since the edge and cloud 

platforms in SERRANO are managed by Kubernetes instances, the technical details regarding 

the deployment of each application are expressed in a Kubernetes-specific YAML file using the 

Kubernetes YAML Generator [5].  

An effort was put into integrating the Alien4Cloud (A4C) [6] platform with the AISO and the 

SERRANO platform to simplify the process above and improve user experience.  The A4C 

platform was adequately configured to be able to deploy cloud-native applications to the 

SERRANO platform. A4C is an open-source software platform for managing applications using 

the DevOps paradigm.  This platform is compatible with TOSCA [7], which is a standard 

modelling specification language for describing applications on cloud computing platforms. 

The TOSCA specification was extended for our purposes and an Alien4Cloud Orchestrator 

Plugin was developed to deploy applications on the SERRANO ecosystem. The plugin 
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generates the Kubernetes-based deployment configuration for the application and the intent 

specification JSON description as required by the AISO for deploying the application to the 

appropriate resources. 

The successful integration of the Alien4Cloud platform with the AI-enhanced Service and 

Resource Orchestrators enables users to deploy their applications in the SERRANO platform 

through a user-friendly environment. The Alien4Cloud platform allows users to check the 

status and logs of application components. To this end, the appropriate logic should be 

implemented in the developed plugin for the SERRANO platform. Thus, the plugin uses 

SERRANO telemetry data to show the current status and application information, such as 

kernel executions, component performance, and component restarts. 

4.5.1 SERRANO-TOSCA 

The SERRANO extension to the TOSCA specification contains two main parts: the intent model 

and the Kubernetes model. The intent is modelled using TOSCA data types (strings, numbers, 

lists, maps, scalar units for size), and some input fields are constrained. For example, the Data 

Storage Duration intent allows only two values: Short-Term and Long Term; the Service Level 

Up-Time intent is constrained to match the pattern “>/=[0-9]{1,2}\%”: greater than or 

equal with a number (1 or 2 digits) and a percent sign.  

Figure 9 presents a class diagram for the developed specification. On the right part, there are 

data types, i.e. entities that only contain properties. On the left part, there are Node types, 

i.e. entities that have properties, requirements, and capabilities. A node requirement must be 

satisfied through the connection with another entity that exposes the required capability.  

 
Figure 9: Class diagram for SERRANO-TOSCA entities 

 

The Kubernetes entities selected for modelling the TOSCA extension are Persistent Volumes, 

and Config Maps. The Config Map is a data type defining a name, a mount path, and the data 

map (where each key is a file name, and the corresponding values are the file content). The 
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repository TOSCA type is used to model private Docker Registries, and a new artefact type 

derived from tosca.artifacts.Deployment.Image is introduced to refer to container images.  

Containers and Persistent Volumes are modelled using TOSCA node types. The proposed 

extension defines an abstract SERRANO Service named Container, extending the root type and 

defining the following:  

• Properties – fields that allow the user to change values during application definition  

o Intent – the previously mentioned data type modelling all parameters from the 

Application model of the ARDIA Framework.  

o Config Map – files required for the configuration of the component 

o Labels – labels for the Kubernetes specification of this component 

• Capabilities – fields that expose a given functionality of this component 

o Scalable – allows the user to set a default, min, and max number of replicas for 

this component; this capability exists in the default TOSCA definition.  

o Attach – exposes the capability serrano.cap.PVAttach to attach one or more 

Persistent Volumes to this component; this capability is defined for the project 

The Persistent Volume definition contains all necessary fields extracted from the Kubernetes 

Specification for persistent volumes. This node expresses a requirement for the 

serrano.cap.PVAttach capability, which is exposed by the Container node and all further 

extensions of this node.  

Two additional abstract service definitions have been constructed: Data Broker and Secure 

Storage. Both services are core services the SERRANO platform provides, and the use case 

components can impose requirements over their capabilities. If an application topology 

contains abstract services, these will not be deployed, but all components that depend on 

abstract services will have their configuration files updated with the endpoint of the 

SERRANO-provided core service. The abstract services provided by SERRANO must first be 

registered in the Alien4Cloud administration panel. Moreover, an explicit version of these 

services has been defined, in case the end-user wants to have a private deployment of the 

Data Broker or Secure Storage services. For example, if users want to deploy the microservices 

at the edge, they can also deploy an instance of the Data Broker component nearby instead 

of using the cloud-based Data Broker service provided by SERRANO. 

Finally, the plugin uses the TOSCA life-cycle parameters to update the ConfigMap of a 

component that depends on another component (e.g., uses its API). The developer of a 

SERRANO-TOSCA component has specific keywords in the ConfigMap that are replaced during 

the generation of the YAML file. Then, the developer of the TOSCA definition will add these 

keywords to the create step of the TOSCA life-cycle interface, as presented in the following 

code listing (Table 2). In this case, the ConfigMap must contain the keywords 

INPUT_DATABROKER_IP and INPUT_DATABROKER_PORT, which will be replaced by the actual 

IP address and port of the target component satisfying the mqtt requirement of this 

component.  



D5.4 - Intelligent Service and Resource Orchestration Mechanisms 
 

  

ict-serrano.eu  29/158 

Table 2: TOSCA parameters for updating Kubernetes ConfigMap 

interfaces: 
      Standard: 
        create: 
          inputs: 
            INPUT_DATABROKER_IP: { get_property: [REQ_TARGET, mqtt, ip_address]} 
            INPUT_DATABROKER_PORT: { get_property: [REQ_TARGET, mqtt, port]} 

4.6 Example of Usage  

We utilized the AISO and ARDIA Framework to facilitate the infrastructure-agnostic deploy. 

This deployment comprised three microservices. For a more detailed technical insight into this 

application, refer to Deliverable D6.5 (M27). The requested user intent was the provision of 

instant response to events coming from sensors while keeping energy consumption as low as 

possible. The application was containerised, and the Kubernetes deployment descriptions 

were prepared in advance so that it could be accordingly used for resource allocation and data 

collection for the ML model training. The provided Kubernetes descriptors were used to check 

if the Orchestrator plugin generates the correct configuration. Also, an initial JSON file with 

the application requirements was developed by the partners. The example presented here 

shows how users can create these documents and deploy an application using the plugin 

developed for the Alien4Cloud platform. 

4.6.1 Application requirements, intent specification and deployment 

description 

The Alien4Cloud framework has been properly configured so that the users can express the 

application requirements and their intent along with the application deployment description 

based on the SERRANO Abstraction Models (part of the ARDIA framework). Figure 10  presents 

the visual representation of the application in Alien4Cloud. The application has been 

composed in the Topology Editor interface using the SERRANO-TOSCA definitions specific to 

this use case. The considered application has three components (on the left side in the figure), 

all expressing a requirement (dependency) on the API capabilities exposed by the Data Broker 

and Secure Storage services. In this example and in the Topology Editor, the API dependencies 

are abstract, meaning the SERRANO platform provides them. The Data Manager component 

(the top one in the figure) also requires a Persistent Volume to be mounted in this container 

file system. The volume is used to store data received from a remote location that will later 

be used by the other two components. The other two components (i.e., Classifier Trainer and 

Classifier Inference) receive messages from the Data Manager and use the Storage Service to 

read data for training and classification.  
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Figure 10: Application definition using SERRANO-TOSCA definitions in Alien4Cloud Topology Editor 

 

The intent can be specified for each component extending the Container definition. When 

clicking on one of the components, for example, the Classifier component, the user can set 

different properties, such as the intent. Figure 11 shows the main dialogue for setting the 

intent parameters. The intent is categorised based on different dimensions of the possible 

constraints, however some remain top level, such as Energy Consumption and Overall Cost. 

The figure shows the dropdown when setting the Energy Consumption parameter. The user 

can access the different categories from the left side panel or click the edit button from the 

right panel.  

 

 
Figure 11: Intent Dialogue for one component in Alien4Cloud 

 

Figure 12 presents the intent dialogue for the Application Performance dimension. The total 

execution time is set to low, and all other parameters are not set. Here, as can be observed, 

the user can set constraints on the type of accelerator the component needs (e.g., GPU). The 

example application does not explicitly require any accelerator because the computationally 

intensive part is executed using the Functional as a Service (FaaS) execution model that allows 

the on-demand deployment of accelerated kernels through the SERRANO SDK (Section 9.4.3).  
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Figure 12: Intent dialogue for the application performance dimension 

 

The Orchestrator plugin developed for Alien4Cloud reads the SERRANO-TOSCA topology 

definition, which also contains the intent, and generates the corresponding JSON and YAML 

descriptions. Generating the intent JSON is straightforward. All that is needed is a 

transformation from the TOSCA to JSON format. The generation of Kubernetes-based 

deployment entities is more challenging. Each component is processed, and a Deployment 

object is created. The next step is to create the ConfigMaps associated with each component 

and add it to the Deployment object. Persistent Volumes and Persistent Volume Claims are 

then created and linked with the deployment. Finally, the TOSCA requirements of each 

component are inspected to see if the current component, C1, depends on another 

component, C2.  Component C2 can be either a user-defined component or an abstract service 

the SERRANO platform provides. In the first case, a Kubernetes Service is defined for C2, and 

the config map of C1 is updated to use the Service name as the IP address. In the latter case, 

the plugin is configured to know the address of the SERRANO-provided services that will later 

be used to update the ConfigMap of component C1. Finally, dependencies between 

components are considered when populating the intent JSON, specifically the application 

workflow field. The Orchestrator will impose that C2 will start before C1. 

After all the nodes have been investigated, the request will be sent to the AISO. The AISO will 

respond with the unique deployment identifier the Resource Orchestrator provides. This 

identifier will be used to query the SERRANO telemetry services for information about the 

component status and logs. Figure 13 shows the status during deployment. The two abstract 

services provided by SERRANO are up and running, and the three components from the use 

case application are under deployment. The user can inspect the deployment-related events 

using the Events tab on the right sidebar. Logs and performance metrics can be accessed in 

the Logs interface by clicking the last button on the left sidebar.  
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Figure 13: Deployment runtime interface 

 

SERRANO users, who are not necessarily the developers of an application, can use the 

components in the catalogue to compose their application topology. They can use the 

SERRANO storage and messaging services or deploy their own instance. The developed 

Orchestrator plugin transforms this topology dynamically in a Kubernetes specification. User 

intent can be formulated for each component using a user-friendly dialogue; the intent will be 

transformed to the JSON required by the AISO, taking into consideration dependencies. The 

two descriptions are compiled and sent to the AISO, which in turn contacts the Resource 

Orchestrator. The deployment unique identifier is returned to the Orchestrator plugin and can 

be used to inspect the status of the components and performance metrics.  

4.6.2 Mapping Rules and Translation Mechanism 

The process output described in the previous section is the JSON description with the 

application requirements and user intent, along with the YAML deployment descriptor file 

with additional parameters about the application – microservices deployment (Figure 14). 

The AISO further processes the given descriptions, especially the data recorded in the 

provided JSON description, taking into account the already specified Mapping Rules. In brief, 

the given workload amount is used by the AISO in order to figure out the anticipated execution 

time and energy consumption for resources of different types and eventually select and 

suggest the most appropriate one.  For example, based on the data and modes presented in 

the previous section, the AISO detects that HPC performs much better than an edge device. 

However, considering the size of data and the amount of time necessary for their 

transmission, it proposes the usage of an edge device. The output of the above process is a 

JSON description (Figure 15) with the potential deployment scenarios that can take place (in 

this example, only one deployment scenario is available). 

Finally, the SERRANO Resource Orchestrator utilizes the created descriptions to allocate 

suitable resources and deploy the corresponding microservices. Once the deployment is 

completed, the SERRANO Resource Orchestrator returns a unique identifier, facilitating 

further actions. With this identifier, users can access additional information about the 

application deployment and manage it seamlessly through both the AISO and the Alien4Cloud 

GUI. 
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Figure 14: Overview of the given YAML and JSON files – AISO input 

 

 
Figure 15: AISO Deployment Scenario(s) – JSON File Provided to Resource Orchestrator 
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5 Algorithmic Framework 

The resource allocation problem in heterogeneous, dynamic, and multi-technology 

environments is highly complex, mainly due to the multitude of conflicting objectives involved. 

To address this complexity, the utilization of multi-objective optimization algorithms becomes 

imperative. Towards this direction, we developed a set of algorithms that leverage multi-

objective optimization, AI/ML techniques, and heuristics. These algorithms offer a range of 

trade-offs between optimality and complexity, enabling efficient satisfaction of the diverse 

and stringent requirements of heterogeneous and distributed applications. In addition, a 

selection of these algorithms has been integrated into the Resource Optimization Toolkit 

(ROT). Next, we present the algorithms developed during the second iteration of the 

implementation period (M16-M31), the final developments in the ROT, and the successful 

integration of these algorithms into the toolkit 

5.1 Cloud-native Applications’ Workload Placement in the 

SERRANO Edge-Cloud Continuum 

The standard monolithic application architectures, where all logic resides within a unified and 

inseparable entity, proved quite efficient in the past. Nonetheless, the gradual establishment 

of cutting-edge ICT technologies (5G/6G, optical networks, virtualization) have escalated the 

application design complexity. Coupled with the relentless need for updates to satisfy the 

ever-increasing Quality of Service (QoS) demands, the traditional monolithic approach stands 

inadequate in this rapidly evolving landscape, thereby necessitating a novel application 

architecture. The cloud-native approach presents itself as a compelling alternative: By taking 

full advantage of the cloud computing model and decomposing the applications into 

microservices, it offers the flexibility, scalability, and robustness. Moreover, emerging 

services, interconnected products, and other digitized assets generate massive amounts of 

data at the network’s edge, often requiring ultra-low processing delays. To address these 

challenges, the edge computing paradigm has arisen, where computing units are placed at 

various locations close to the data sources. Moreover, edge resources can be utilized in 

conjunction with the cloud, forming a robust edge-cloud continuum. 

The present work focuses on developing a novel mechanism to appropriately allocate the 

available resources across the various layers of an edge-cloud infrastructure to support the 

incoming workload from cloud-native applications. The aim is to jointly optimize a weighted 

combination of the average (per application) delay and average service cost while 

simultaneously guaranteeing that the delay between dependent microservices and the 

available infrastructure resources align with the applications’ requirements. Initially, the 

problem is modelled as a Mixed Integer Linear Programming (MILP) problem. To tackle the 

excessive execution time of finding the optimal solution, a fast heuristic algorithm is 

implemented, referred to as the Greedy Resource Allocation Algorithm (GRAA). This algorithm 

is further employed by a novel Rollout technique to optimize further the generated solution 

(namely Rollout based on GRAA), relying on Reinforcement Learning (RL) principles. 
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5.1.1 Related work 

The resource allocation problem in virtualized environments is a multi-dimensional research 

area that has attracted the interest of the research community. The modelling of the problem 

among the different works varies according to the considered topology and the adopted 

technologies, while the proposed solutions employ techniques from the wider realm of 

mathematics and computer science.  

Authors in [9] developed “Foggy”, an architectural framework based on open-source tools 

that handles requests from end users in a multi-level heterogeneous fog/edge environment. 

The requests arrive in a FIFO queue, and at each stage, the available nodes are ranked by their 

processing power and their networking towards the end user to extract the best match. The 

authors in [10] proposed a dynamic resource scheduling scheme for critical smart-healthcare 

tasks in a edge-cloud topology. Their model consists of a multi-agent system (MAS) with four 

kinds of agents named personal agent (PA), master personal agent (MPA), fog node agent 

(FNA), and master fog node agent (MFNA). The scheduling strategy relies on effective 

prioritization of the tasks according to their criticality and on balancing network load. In [8] a 

system for microservices placement in a multi-layered fog/edge environment is implemented, 

targeting to place them as close as possible to the data sources.  

Reinforcement learning is a technique that has been gaining momentum in the context of 

resource allocation. The authors in [11] present a deep reinforcement learning approach, 

based on state-action-reward-state-action (SARSA), for addressing the problem of task off-

loading and resource allocation in Mobile Edge Computing (MEC) environments. They model 

user requests as a sequence of sub-tasks, which can be executed by either the nearest edge 

server, the adjacent edge server, or the central cloud. The proposed solution aims to minimize 

service delay and energy consumption by dynamically making offloading decisions and 

allocating resources based on the current state of the infrastructure. Wang et al. [12] present 

a solution for the microservice coordination problem in mobile edge computing environments 

where mobile users (e.g., autonomous vehicles) offload computation to the edge clouds. The 

authors aim to minimize a weighted combination of delay and migration costs by determining 

the optimal deployment locations for microservices. They first propose an offline algorithm 

able to derive the optimal objective and then a Q-learning-based reinforcement learning 

approach that produces a near-optimal solution in real-time. Chen et al. [13] propose a deep 

reinforcement learning solution for microservice deployment in heterogenous edge-cloud 

environments. They consider microservices as a service chain, in which the microservices must 

be executed in a pre-specified order. Simulations are conducted with a combination of real 

and synthetic data, with the objective of minimizing the Average Waiting Time (AWT) of the 

microservices. 

In this work, we explore the assignment of microservice-based applications in a distributed 

edge-cloud infrastructure, considering key operational aspects. Contrary to the mentioned 

works, we address the dependencies formed by communicating microservices as delay 

constraints between the corresponding service nodes to guarantee their seamless 

communication, which is a crucial concern when considering geographically dispersed 
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infrastructures. These dependencies, often in the form of information exchange requirements 

or service chains, are directly affected by communication latency during runtime. In addition, 

to the extent of our knowledge, we are the first to introduce the multi-agent Rollout technique 

in such a scenario. This unique optimization approach, grounded in Dynamic Programming 

and Reinforcement Learning principles, utilizes greedy heuristics to approximate future 

decisions. Albeit easy in understanding and implementation, it can provide significantly 

improved solutions.  

5.1.2 Problem formulation 

We consider a hierarchical edge-cloud infrastructure, with multiple layers of edge resources 

(e.g., on-device, near-edge, far-edge) to serve the incoming cloud-native workload. We 

assume that the edge layers consist of machines with relatively limited resources, such as 

raspberry Pi’s, NVIDIA Jetson, servers, mini – Datacenters, etc. while the cloud layer has 

practically unlimited resources.  

The hierarchical edge-cloud infrastructure is denoted as an Undirected Weighted Graph 𝐺 =

(𝑉, 𝐸). Each node 𝑣 ∈ 𝑉 is described by the tuple 𝜏𝑣 = [𝑐𝑣, 𝑟𝑣, 𝑜𝑣, 𝑛𝑣], where 𝑐𝑣 is node’s 𝑣 

CPU capacity measured in CPU units, 𝑟𝑣 is the node’s RAM capacity measured in RAM units, 

𝑜𝑣 is the node’s operating cost and 𝑛𝑣 is the node’s networking cost coefficient. Operational 

cost relates to the expenses made for purchasing, deploying, and operating the respective 

computing/storage systems. This cost is small for the cloud layer, since providers achieve 

economies of scale, and gradually increases for the edge layers, due to their limited resources, 

the small number of customers and their geographically dispersed placement. Networking 

cost coefficient 𝑛𝑣 results from the usage of any link from the nodes where data are generated 

to the node(s) 𝑣 where computing operations take place and is multiplied by the ingress data 

to deduce the actual networking cost of service. The coefficient is minimal for the near edge 

nodes, where links are shorter in distance and cheaper to install, while it gradually increases 

up to the massive links connecting the cloud nodes. Generally, data is generated at the lower 

levels of the infrastructure that can be either equipped with computing resources or not. As 

they are typically located in the near edge, the delay is small for transferring the data to a 

subset of near edge nodes as they are located closer to the data-source, given their plurality 

and thus higher geographical density, while it increases for the higher layer nodes (far edge, 

cloud). Finally, each link 𝑒 ∈ 𝐸 between two nodes 𝑣 and 𝑣′ is characterized by a weight 𝑙𝑣,𝑣′, 

representing the communication (propagation) delay of nodes 𝑣 and 𝑣′.  

The workload under consideration consists of a set 𝐴 of cloud-native applications. Each 

application 𝑎 ∈ 𝐴 is described by an Undirected Weighted Graph 𝐺𝑎 = (𝑉𝑎, 𝐸𝑎), with the 

nodes 𝑉𝑎 corresponding to the microservices that make up the application and the arcs 𝐸𝑎 

the inter-dependencies (communication requirements) among them. Each cloud native 

application has a source node 𝜋𝑎 ∈ 𝑉 and each microservice 𝑖 = 1, … , |𝐼𝑎| of application 𝑎, 

has specific resource requirements described by the tuple [𝜀𝑎,𝑖, 𝜌𝑎,𝑖, 𝑠𝑎,𝑖], where 𝜀𝑎,𝑖 is the 

microservice’s CPU demand, 𝜌𝑎,𝑖 is its memory demand and 𝑠𝑎,𝑖  is the size of the input data. 

Furthermore, each arc 𝑒 ∈ 𝐸𝑎  between two microservices 𝜄, 𝜄′ ∈ 𝑉𝑎 has a weight 𝜆𝛼,𝜄,𝜄′ that 

represents the maximum acceptable delay between the corresponding service nodes 𝑣, 𝑣′ of 



D5.4 - Intelligent Service and Resource Orchestration Mechanisms 
 

  

ict-serrano.eu  37/158 

these microservices. This is a measure of the intensity of the dependency between these two 

microservices, in a sense that highly dependent microservices should be served by the same 

or geographically approximate nodes to reduce communication costs and guarantee 

application's efficiency with in-time calculations.  

In what follows, we present the mathematical formulation of the cloud native resource 

allocation problem over a cloud-edge infrastructure. The optimization objective is a weighted 

combination of the average (operational and networking) cost and the maximum delay per 

application assignment, with respect to computing and networking constraints imposed by 

the applications requirements and nodes’ resource availability. 

5.1.2.1 MILP formulation 

Table 3: MILP variables  

Notation Interpretation 

𝑉 Total number of nodes 

𝐴 Total number of applications 

𝐼𝑎 Total number of microservices for the 𝑎’th application 

𝑜𝑣 Operating cost of node 

𝜆𝑎,𝑖,𝑖′ Relative upper delay limit between micro- 
services 𝑖, 𝑖’ of an application 

𝑙𝑣,𝑣′ Communication delay between nodes 𝑣 and 𝑣’ 

𝑐𝑣 Total available CPU units of node 𝑣 

𝑟𝑣 Total available memory units of node 𝑣 

𝜀𝑎,𝑖 CPU units required by the 𝑖’th microservice of application 𝑎 

𝜌𝑎,𝑖 Memory units required by the 𝑖’th microservice of application 𝑎 

𝑛𝑣 Networking cost coefficient of node 𝑣 

𝑠𝑎,𝑖 Weighting coefficient to control the optimization objective 

𝑥𝑣,𝑎,𝑖 Binary variable, which is equal to 1 if the 𝑖’th microservice of application 𝑎 
is assigned to node 𝑖, and 0 otherwise 

𝜏𝛼 Integer variable that denotes the monetary cost for serving the application 

𝜃𝛼 Integer variable that denotes the maximum propagation latency of the 
cloud-native application 

  

Objective function: 

min 𝑤 ∙ ∑ 𝜏𝛼

𝛢

𝛼=1

+ (1 − 𝑤) ∙ ∑ 𝜃𝛼

𝛢

𝛼=1

                 (1) 

Subject to the following constraints: 

C.1. Placement of the microservices to nodes. For each application 𝑎 = 1, … , 𝐴 and for each 

microservice 𝑖 = 1, … , 𝐼𝑎  

∑ 𝑥𝑣,𝑎,𝑖

𝑉

𝑣=1

= 1                       (2) 
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C.2. Respect of the relative latency between the applications’ microservices. For each 

application 𝑎 = 1, … , 𝐴, and each pair of microservices of application a, 𝑖, 𝑖′ = 1, … , 𝐼𝑎,  

𝑙𝑣,𝑣′𝑥𝑣,𝑎,𝑖 + 𝑙𝑣,𝑣′𝑥𝑣′,𝑎,𝑖′ ≤ 𝜆𝑎,𝑖,𝑖′ + 𝑙𝑣,𝑣′         (3) 

C.3. The allocated CPU units of the assigned microservices cannot surpass the number of 

available CPU units at each node. For each node 𝑣 = 1, … , 𝑉,  

∑ ∑ 𝜀𝛼,𝑖𝑥𝑣,𝑎,𝑖

𝐼𝑎

𝑖=1

𝐴

𝑎=1

≤ 𝑐𝑣            (4) 

C.4. The allocated Memory units of the assigned microservices cannot surpass the number of 

available Memory units at each node. For each node 𝑣 = 1, … , 𝑉, 

∑ ∑ 𝜌𝑎,𝑖𝑥𝑣,𝑎,𝑖

𝐼𝑎

𝑖=1

≤  𝑟𝑣 

𝐴

𝑎=1

      (5) 

 

C.5. Total monetary application cost 𝜏𝑎calculation. For each application 𝑎 = 1, … , 𝐴 

𝜏𝛼 = ∑ ∑(𝑜𝑣 + 𝑛𝑣 ∙ 𝑠𝑎,𝑖)

𝐼𝑎

𝑖=1

∙ 𝑥𝑣,𝑎,𝑖

𝑉

𝑣=1

      (6) 

C.6. Maximum per application latency (propagation) calculation. For each node 𝑣 = 1, … , 𝑉, 

for each cloud native application   𝑎 = 1, … , 𝐴, and each of its microservices 𝑖 = 1, … , 𝐼𝑎, 

𝜃𝛼 ≥ 𝑥𝑣,𝑎,𝑖 ∙ 𝑙𝜋𝑎,𝑣   (7) 

The objective function (Eq. 1) is the weighted sum of the maximum delay and cost per 

applications’ assignments, where 𝑤 = 0 considers purely the delay minimization problem, 

while 𝑤 = 1 deals with the cost minimization problem. Any intermediate value of w considers 

both of the aforementioned parameters with different contribution in the calculation of the 

total cost. Note that our considered formulation supports general workloads (not strictly 

cloud-native applications) that can take the form of an application with a single microservice. 

5.1.3 Resource allocation mechanisms 

Given the problem is of the NP-hard class [16], the proposed MILP is computationally 

intensive, with prohibitively large execution times even for small-scale problems. Therefore, 

we developed sub-optimal mechanisms. Firstly, we present the Greedy Resource Allocation 

Algorithm (GRAA), designed to deduce the optimal placement for each microservice in a 

greedy fashion. Subsequently, we introduce the multi-agent Rollout mechanism, a meta-

heuristic algorithm that exploits GRAA to deliver an improved solution through an iterative 

process.  
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5.1.3.1 Greedy Resource Allocation Algorithm (GRAA) 

GRAA is a greedy heuristic that seeks to obtain a satisfactory, albeit sub-optimal, solution by 

addressing the application demands in a best-fit manner. GRAA takes as input the 

infrastructure graph 𝐺 = (𝑉, 𝐸) along with all the applications’ demands and its microservices 

described by graph 𝐺𝑎 = (𝑉𝑎, 𝐸𝑎) for application 𝑎, ∀𝑎 = 1, … , 𝐴. Applications are handled 

sequentially. After selecting an application, its first microservice is selected and the candidate 

infrastructure nodes with enough resources are calculated in order to accommodate it. These 

nodes are ranked based on the objective function considering the cost and the latency 

introduced by the assignment of the microservice 𝑖 = 1, … , 𝐼𝑎.  to each node. The best node 

𝑣 ∈ 𝑉 is selected and the demanded by the microservice computing and memory resources 

are reserved. If the application consists of more than one microservices, the next microservice 

is selected. The same process is followed for the following microservice with the addition of 

the relative latency constraint between the communicating microservices. Hence, given the 

first microservice’s location, the nodes 𝑣′ ∈ 𝑉 with communication latency below the 

microservices limit are considered,  𝑙𝑣,𝑣′ ≤ 𝜆𝜇𝑎,1,𝜇𝑎,2
. If multiple nodes meet the criteria, the 

second microservice is placed in the optimal one, which could be identical to the first 

microservice’s node. This process is repeated until the 𝐼𝑎-th microservice of the application is 

served. If a suitable node to host an application’s microservice cannot be found, the procedure 

is re-initiated for the same application considering the second-best node for the first 

microservice and so forth. Once a solution is found, the utilization of the resources is updated 

and the application is marked as served. The above process is repeated for all applications, 

returning the final assignment and the value of the objective function (Eq. 1).  

 

 
Figure 16: Flowchart of the GRAA heuristic. 

 

From the description of the aforementioned procedure, it is possible that the selection of the 

first node can result in an infeasible solution due to the latency constraints among the 

application’s microservices. Although this may occur for edge resources which are 

characterized by limited capacity, this not the case for the abundant cloud resources, which 

can handle application demands at the price of increased propagation latency.  
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The complexity of this approach is polynomial, with a worst-case execution time of 

𝑂(|𝐴| ∙ |𝐼𝑎| ∙ |𝑉|), assuming all the nodes |𝑉| are candidate locations to serve the first 

microservice of each application. Figure 16 illustrates a typical iteration of GRAA.  

5.1.3.2 Multi-agent Rollout 

To further improve the performance of GRAA, we developed a multi-agent Rollout 

mechanism. Rollout [14],[15], one among the most recognized reinforcement leaning 

techniques, aims to provide a close to optimal solution by leveraging a base policy (like GRAA). 

It is an iterative process that takes each time as input an instance of the resource assignment 

problem (concerning applications with microservices) along with a partial solution (some 

microservices assigned to nodes) and constructs the complete solution step-by-step. This 

technique becomes particularly useful when the exact methods are too slow and/or when 

solutions provided by heuristics are inefficient. 

Assuming that the first (𝑎-1) applications have been served and application 𝑎 is up next, the 

multi-agent rollout heuristic gets as input a solution path 𝑜 = [𝑜1, … , 𝑜𝑎−1] of size ∑ 𝑜𝑘 ∙ 𝐼𝑘
𝑎−1
𝑘=1 , 

where states 𝑜𝑘, for 𝑘 = 1, … , 𝑎 − 1  contain the assignment of the microservices of  

application 𝑘 = 1, … . , 𝑎 − 1 to processing nodes. State 𝑜𝑎 is then broken down into 𝐼𝑎  stages 

each corresponding to the assignment of one of the 𝐼𝑎 microservices of application 𝑎 to 

processing nodes. Initially, a number of possible placements 𝑃𝑎,𝑖 for each microservice 𝑖 =

1, … , 𝐼𝑎 are calculated. Then, to determine the placement of a microservice 𝑖, one of the 

available placement options 𝑝 ∈ 𝑃𝑎,𝑖 is selected and the respective service cost is calculated 

based on the provided objective function. Meanwhile, the cost for the remaining 

microservices and applications is computed using the GRAA heuristic (base policy), resulting 

in a total cost 𝜎𝑝. When all the possible placements 𝑃𝑖  of microservice i have been evaluated, 

the one yielding the lowest cost 𝜎𝑖  is selected (Figure 17). The utilization of the node that 

serves the microservice is updated accordingly, the microservice is marked as served and the 

procedure continues with the following microservice.  The placement of the microservice 𝐼𝑎 

of application 𝑎 indicates the transition to state 𝑜𝑎+1  and the same procedure is repeated 

until all the application demands A are served. Finally, the allocation of resources to nodes is 

returned along with the objective value of the performed assignment.  

 

 

Figure 17: Multi-agent Rollout options for serving the i-th microservice of application a 

 

Consider an application 𝑎 consisting of 𝐼𝑎 microservices. Each microservice can be placed (in 

the general scenario) in any node of the infrastructure, resulting in a state size of |𝑉|𝐼𝑎 for the 

collective decision of the application’s placement. When the allocation of resources of an 

application a is segmented into |𝐼𝑎| sequential decisions by agents, the state space is reduced 
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into |𝑉| ∙ |𝐼𝑎| states. In this case, the control space complexity from the different options when 

serving the applications is traded off with state space complexity. 

5.1.4 Performance evaluation 

For our experiments, we considered two topologies for the hierarchical cloud-edge 

infrastructure, with different characteristics regarding the number of nodes at the different 

layers and their computing capacity (Table 4): a basic that consists of 19 nodes and an 

extended one with 53 nodes, with the cloud having enough capacity to serve the examined 

workloads. We assumed that both topologies are organized into a hierarchical infrastructure 

consisting of nodes (locations) belonging to three different layers: the near-edge, far-edge, 

and cloud.  

The basic topology was used for performance comparison between our GRAA heuristic, the 

multi-agent Rollout, and the built-in optimal MILP solver of MATLAB. The execution times for 

the optimal solver became prohibitively large for larger configurations, hence using the basic 

topology. The extended topology considers the same node attributes, but their numbers are 

scaled to 40 near-edge nodes, 10 far-edge nodes, and 3 central cloud locations. The extended 

topology was used for the rest of the experiments to provide a closer-to-real-world scenario 

and demonstrate the scalability of the proposed algorithms. 

Table 4: Characteristics of the computing nodes of the basic and extended topologies 

 Near-Edge Far-Edge Cloud 

Basic topology (#Nodes) 15 3 1 

Extended topology (#Nodes) 40 10 3 

𝑐𝑣 [4, 8] [80-120] 500 

𝑟𝑣 [4, 16] [120-200] 1000 

𝑜𝑣 [2, 3] [1,1.5] [0.3,0.7] 

𝑛𝑣 0.1 0.25 0.5 

 

With regards to the workload, the demands were generated randomly at the near-edge nodes, 

with the number of microservices per application drawn from a uniform distribution in the 

close interval [1,5]. The workload size of each application was also randomly selected in the 

interval [1,5], measured in normalized size units. Dependencies between pairs of 

microservices were created randomly with probability equal to 0.3, while the latency 

constraint among them varies in the close interval [0.5,3.5] latency units. The processing and 

memory requirements of each microservice are drawn from the uniform distribution in the 

close interval [1, 4] and [1, 8] respectively. 

The proposed mechanisms were developed in MATLAB and the experiments were conducted 

on a 6 core 2.6 GHz Intel Core i7 PC with 12 GB of RAM.   

Initially, we benchmarked the performance of the multi-agent rollout and the greedy heuristic 

against the optimal solution provided by the MILP in means of execution time and optimality. 

This was done for randomly selected application demands (ranging from 50 to 300) and for 
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weighting coefficient 0.01. This coefficient corresponds to the latency optimization problem, 

while still considering a minimal cost factor. 

Table 5: The total cost and the execution time for w=0.01 for the different mechanisms 
A

p
p

lic
at

io
n

 
d

em
an

d
s MILP Multi-agent 

Rollout 

GRAA 

Obj. 
value 

Exec. Time 
(sec) 

Obj. 
value 

Exec. Time 
(sec) 

Obj. 
value 

Exec. 
Time (sec) 

50 55.92 92.37 56.31 17.3 56.84 0.12 

100 115.15 507.42 116.17 69.42 117.90 0.22 

150 228.51 2453.16 236.49 147.72 252.38 0.35 

200 409.94 10000 421.6 252.09 438.62 0.47 

250 657.8 10000 675.42 349.74 702.37 0.67 

300 - 10000 1051.8 348.82 1079.2 0.89 

 

Regarding the performance of the proposed mechanisms, GRAA exhibited the worst 

performance, with a gap up to 10% from the optimal solution, whereas the Multi-agent 

Rollout managed to generate solutions within 3.5% of the optimal in all cases. In terms of 

execution time, GRAA exposed the shortest, in the order of milliseconds, even for higher 

workloads. Rollouts execution time while grew polynomially with the workload increment. 

Finally, the MILP solver showcased exponentially increasing execution times, while it was 

unable to produce a feasible solution within the set period for the largest workload.  

 
Figure 18: The pareto efficiency chart 

 

 
Figure 19: The number of microservices 

allocated at the various layers 
 

Figure 18 portrays the allocative efficiency chart for the two objectives that are taken into 

consideration, namely the monetary cost for the application execution and the average 

latency per application for the different weighting co-efficients used in the objective function. 

As anticipated, the lowest cost is attained when cloud resources are highly utilized and thus 

the propagation latency increases as cloud resources are located in a few distant locations to 

which the data are transferred. Conversely, when the single optimization criterion is the 

minimization of latency, the propagation delay is reduced by 70% compared to the previous 

case, while the monetary cost is increased by almost 75%. 
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Next, we examined the utilization of edge and cloud resources for serving 600 cloud native 

application demands for the different weighting coefficients w (Figure 19). Edge resources are 

utilized more in small weight values, as the objective is approaching the delay minimization 

and edge layers consist of nodes in geographic proximity to the data-source. In this case the 

microservices of an application expand over the resources of the edge layer. On the other 

hand, cloud resources are heavily utilized in high w values, as the objective gravitates towards 

monetary cost minimization, thereby favoring the “cheap” cloud nodes. For intermediate w 

values, applications microservices are distributed over the edge-cloud continuum. This 

showcases the importance of edge resources in the minimization of the applications latency 

for time critical operations. 

Finally, we examined the contribution of networking and operational cost for the different 

weighting co-efficient values (Figure 20). When the objective function targets the 

minimization of the monetary cost, the cloud resources are preferred with the operational 

and networking cost contributing almost equally to the total cost, as the processing cost is low 

while the networking cost increases for the transferring the application data to the cloud. On 

the other hand, when the objective is the minimization of latency and edge resources are 

utilized, the processing cost of the edge resources is the main factor of the total monetary 

cost, while networking costs constitute only 12% of the overall cost.  

 
Figure 20: Operational and networking cost for the different objective co-efficients 

5.1.5 Conclusions 

In this study, we addressed the problem of resource allocation in multi-layered edge-cloud 

infrastructures for optimally serving cloud-native applications. We considered multiple 

important yet often overlooked parameters, such as the delay constraints posed by the 

dependencies among microservices. GRAA was developed to provide a sub-optimal solution 

that is further optimized by the Rollout technique. We demonstrated the trade-off between 

delay and monetary cost of service and proved the efficiency of the Rollout technique, which 

provided a significant improvement in the GRAA’s solution, while also maintaining a tolerant 

computational time. 
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5.2  Security-aware Resource Allocation in the SERRANO 

Edge-Cloud Continuum 

 

Allocating resources in a distributed multi-tenant infrastructure poses challenges for a 

centralized orchestrator. In order to address these challenges, hierarchical orchestrator 

architectures are employed to enable a more efficient resource allocation. SERRANO Resource 

Orchestrator follows a declarative approach, instead of an imperative one, for describing the 

workload requirements to the Local Orchestrator. This provides several degrees of freedom 

to the Local Orchestrator for serving in an optimal manner the “request”, satisfying both the 

central orchestrator and the resource’s objectives. Then, the control is passed to Local 

Orchestrators that are responsible for the actual deployment based on the desired 

performance requirements. 

In this work, we assume varying levels of workload isolation achievable through lightweight 

virtualization mechanisms, establishing distinct tiers of security and trustworthiness, each 

with its own quantified computational and storage requirements. We model the respective 

resource allocation problem, i.e., of provisioning edge-cloud continuum resources for cloud-

native applications subject to applications’ performance and security requirements, as a 

Mixed Integer Linear Program. Additionally, a best-fit heuristic is introduced to reduce the 

execution time for real-size scenarios, leveraging clustering algorithms to perform a fast 

assignment of applications to resources while maintaining a tolerable optimality gap. Finally, 

a Multi-agent Reinforcement Learning based mechanism is also proposed to trade off 

execution time of the proposed heuristic with performance. Through extensive simulation 

experiments, we demonstrate the merits of our proposed mechanisms and explore the several 

trade-offs that emerge from conflicting objectives.   

5.2.1 Related work 

To enable the secure execution of cloud-native applications, frameworks are introduced that 

support container execution in a sandboxed environment based on micro-VMs. Recent works 

also recommend unikernels [18][19] that have minimal memory/system footprint, achieve 

high performance, and provide strong isolation equivalent to that of virtual machines. These 

trends give rise to several fundamental challenges related to application deployment, the 

support of heterogeneous infrastructures, and the provided security. The authors in [20] focus 

on the challenges and requirements for building a scalable and trustworthy multi-tenant AIoT 

(Artificial Intelligence of Things) cloud-native platform. They first identify several key 

challenges, including security, privacy, and trust and highlight how these challenges differ in a 

multi-tenant edge environment compared to a central cloud. They also present the state-of-

the-art methods for addressing these challenges and describe open research areas.  

In [21], the authors propose a security-aware dynamic scheduling approach for cloud-based 

industrial applications in a two-tier infrastructure. They introduce a three-level security model 

corresponding to public, semi-public, and private data. Then, a distributed Particle Swarm 

Optimization heuristic is developed to perform resource allocation and a dynamic scheduling 
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mechanism for real-time optimization. The authors in [22] propose a security-aware 

offloading model for a multi-user environment. A new security layer is introduced utilizing the 

AES cryptographic algorithm to prevent attacks such as sniffing, jamming and eavesdropping. 

The resource allocation problem is formulated with the optimization objective of minimizing 

the latency and energy overhead of mobile users, leveraging a Deep Reinforcement learning 

algorithm. The work in [23] presents a security-aware task offloading method for maximizing 

the total profit of edge nodes in an Edge-Cloud computing (ECC) environment. A security 

model is constructed, which utilizes several confidentialities (IDEA, DES, AES etc.) and integrity 

(Tiger, SHA1, MD5 etc.) services for coping with security threats. A genetic algorithm is 

developed to solve the resource-allocation problem.  

Indeed, the dependencies among an application’s microservices, typically manifesting in the 

form of information exchange or service chains, are frequently overlooked. Guaranteeing 

seamless communication among interdependent components is of paramount importance 

when dealing with geographically dispersed infrastructures. In our model, we represent these 

dependencies as communication delay requirements. In addition, application isolation 

mechanisms should be considered, such as virtualization and containerization techniques, 

where applications are executed in sandboxes [24], or even unikernels. Coupled with 

hardware extensions [25], these mechanisms can provide increased security for multi-tenant 

execution. These requirements of applications and resources across the edge-cloud 

infrastructure introduce, from an algorithmic perspective, a high number of constraints that 

need to be addressed simultaneously considering different optimization criteria.   

5.2.2 Infrastructure description 

We focus on a multi-layer edge-cloud infrastructure (Figure 21), encompassing computing and 

storage resources across various layers. The considered infrastructure comprises devices 

positioned at different locations, spanning from “near-edge” (i.e., from on-premises to tens 

of kilometres) to “far-edge” devices (i.e., some hundreds of kilometres) and cloud datacentres 

(i.e., typically several thousand kilometres away, situated in various geographic regions 

worldwide). 

 
Figure 21: Heterogenous resources across the edge-cloud continuum. 
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The management of the infrastructure and the service of the applications is performed 

through a hierarchical two-level system. The high-level orchestrator assigns application 

requests to local orchestrators, each controlling a subset of infrastructure nodes. This provides 

several degrees of freedom to the Local Orchestrator to serve in a highly efficient manner the 

deployment request, satisfying both the central orchestrator and the resource’s objectives, 

with a minimal decision-making timeframe.  

The resources can vary both in size and capabilities, with common examples including micro- 

datacentres, modular datacentres in shipping containers, specialized computing devices (e.g., 

FPGA, GPU), and IoT devices (e.g., Raspberry Pi, NVIDIA Jetson). These can be deployed on 

providers’ premises (e.g., the Central Office - CO), or on other large and small premises (e.g., 

stadiums, malls, businesses, houses). Special hardware can enable trusted execution. Various 

networking mechanisms using wired (optical) and wireless (e.g., 5G) technologies provide the 

required interconnection of the individual edge and cloud layers. These multi-domain and 

multi-technology network paths are typically controlled and managed by multiple telco 

operators. In this work, we abstract the communication paths between the resources in the 

same or different layers as virtual links with specific latency. These values depend on the 

networking locality of the resources, with those nearby resulting in lower latency than those 

far apart. Hence, the propagation delay increases in accordance with the physical distance of 

the data generation point. 

To ensure secure application execution, the infrastructure leverages advanced software 

mechanisms and, in some cases, peripheral hardware. In this way it facilitates varying 

workload isolation levels and trusted execution across layers, even amid untrusted physical 

nodes typical of edge devices. Figure 22 illustrates the diverse levels of workload isolation that 

can be achieved using the novel mechanisms that are also developed in the context of the 

SERRANO project. For clarity, we provide an overview of the supported SERRANO security 

tiers. More technical details are available in the deliverables D3.3 (M15) and D3.4 (M30). 

 
Figure 22: Different levels of workload isolation  
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Tier-0 represents generic containers. Tier-1 embodies microVM sandboxing [18],[26], where 

applications run atop a microVM. This requires booting a complete virtualization stack 

(including VMM, kernel, rootfs), which remains active until the application's termination. 

Despite progress in minimizing the overhead of VMMs regarding CPU and memory footprint, 

even the latest VMMs display a 30% overhead in memory management and address 

translation, plus additional CPU usage for handling I/O and context/mode switches. This also 

considers the extra memory used by the VMM and the necessity for a full OS system (the 

micro-VM) to be active for container spawning. Storage overhead is proportional to the 

application. However, a microVM can support container execution with a minimum rootfs, 

typically in the tens of MBs, with typical applications in the hundreds of MBs. 

Tier-2 is defined by unikernel execution, where CPU, memory, and storage footprints are 

minimized as the application is compiled as a machine image, thereby eliminating unnecessary 

OS and library software stacks. According to [25], this results in at least a 20% reduction in 

CPU and memory overhead, while the application binary footprint decreases by at least 60%. 

This reduction is achieved by excluding the OS/libraries from the application, apart from the 

optimized build. Tier-3 and Tier-4 are similar to Tier-0 and Tier-1, respectively, but with 

enhanced security provided by secure boot. In these cases, a simple peripheral hardware 

(known as Trusted Platform Module) is required to provide hardware-based, security-related 

functions. Additionally, trusted execution in Tier 4 requires the use of an attestation 

mechanism in the hypervisor layer. 

Table 6: Multipliers of the computing and storage requirements for the different security and 
trustworthiness tiers 

Multipliers Tier 0 Tier 1 Tier 2 Tier 3 Tier 4 

CPU  1 1.3 0.8 1 1.3 

RAM  1 1.3 0.8 1 1.3 

Storage  1 1.1 0.4 1 1.1 

 

Each tier imposes distinct demands on computing and storage resources, which we have 

quantified in Table 6. The presented values are normalized with respect to the generic 

workload requirements of Tier 0. Hence, the value of 1.3 of the CPU overhead for Tier 1 

indicates that Tier 1 execution requires 30% more processing resources than Tier 0, whereas 

Tier 2 requires 20% less. Hence, when deploying a cloud-native application, it is essential to 

provide: (i) the computing and storage requirements for each microservice, (ii) specify the 

maximum delay between them for optimal execution in the infrastructure and additionally, 

(iii) the minimum level of security and isolation for each microservice to ensure the 

application's secure and efficient operation. 

5.2.3 Problem formulation 

We assume a hierarchical edge-cloud infrastructure that is denoted by a Complete Undirected 

Weighted Graph 𝐺 = (𝑉, 𝐸). The set of nodes V corresponds to distinct geographical areas 

where a set 𝑀𝑣 of computing resources are available, as well as the locations where workloads 

are generated (which may or may not be capable of local processing). A fixed communication 
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(propagation) latency 𝑙𝑣,𝑣′ is introduced among different nodes 𝑣, 𝑣′  ∈ 𝑉. This latency takes 

into consideration the nodes’ propagation delay, as well as additional delays incurred within 

the nodes during the communication process. Machines 𝑀𝑣 (virtual and/or physical) are 

deployed on the different nodes 𝑣 ∈ 𝑉 and are controlled by low-level orchestrators 𝑂. Each 

low-level orchestrator 𝑜 ∈ 𝑂 controls a subset of nodes 𝑉𝑜 ⊆ 𝑉 and therefore controls 𝑀𝑜 =

⋃ 𝑀𝑣𝑣∈𝑉𝑜
 machines, with two orchestrators controlling distinct set of resources (𝑉𝑜 ∩ 𝑉𝑜′ = ∅, 

for 𝑜, 𝑜′ ∈ 𝑂).  

The machines serve the workloads at different security tiers 𝑆 = {0, 1, 2, 3, 4}, where integers 

from 0 to 4 are used to represent the different workload isolation levels. Also, a subset of the 

machines Mvs
⊆ 𝑀𝑣  are equipped with hardware peripherals (secure boot) to support the 

execution of tier 3 and 4 workloads 𝑆′ = {3,4}. Each machine 𝑚 is described by the tuple 𝜏𝑚 = 

[𝑐𝑚, 𝑟𝑚, ℎ𝑚, 𝑠𝑚, 𝑝𝑚], where 𝑐𝑚 is the CPU capacity of the machine measured in CPU units, 𝑟𝑚 

is the RAM capacity of the machine measured in RAM units, ℎ𝑚 is the storage capacity of the 

machine measured in GB’s, 𝑠𝑚 indicates the existence of secure boot (value 1) or not (value 

0) and 𝑝𝑚 is the operational cost of the machine that is the cost of use for a given period of 

time (time unit). 

The workload in our scenario consists of a set 𝐴 of cloud-native applications. Each application 

𝑎 ∈ 𝐴 is represented by an Undirected Weighted Graph 𝐺𝑎 = (𝑉𝑎, 𝐸𝑎), where the nodes 

𝑉𝑎 denote the microservices that make up the application, and the edges 𝐸𝑎  denote the 

existence of inter-dependencies among them. We adopted an undirected graph 

representation of the cloud-native applications, as we are concerned with the delay constraint 

formed by their communication dependency, which is assumed to be bi-directional in that 

case. The data of each application is generated at node 𝑔𝑎. Each microservice 𝑖𝑎 ∈ 𝑉𝑎, has 

specific requirements described by the tuple [𝜀𝑎,𝑖, 𝜌𝑎,𝑖, 𝜔𝑎,𝑖, 𝜎𝑎,𝑖, 𝜆𝑎,𝑖], where 𝜀𝑎,𝑖 is the 

microservice’s CPU demand, 𝜌𝑎,𝑖 is its memory demand, 𝜔𝑎,𝑖 is the storage demand, 𝜎𝑎,𝑖 is the 

minimum security tier requirement  and 𝜆𝑎,𝑖  is the duration of microservice in time units. Note 

that the computing and storage resources are specified assuming Tier 0 execution. This 

eliminates the need for users to profile the requirements of their applications for the different 

security tiers. Hence, when deploying the microservices in a machine with respect to the 

specified security tier requirement, the CPU, RAM, and storage requirements of the 

microservices need to be considered based on the selected security tier and thus with the 

respective multipliers  𝜀𝜎̂ , 𝜌̂𝜎, 𝜔̂𝜎  (Table 6) to calculate the security-tier-specific computing 

and storage requirements.  

Moreover, each link 𝑒𝑖𝑎,𝑖𝑎
′  that connects two microservices 𝑖𝛼, 𝑖𝑎

′ ∈ 𝑉𝑎, with 𝑖 ≠ 𝑖′ denotes a  

maximum acceptable latency requirement 𝛿𝑖𝑎,𝑖𝑎
′ ; this implies that microservices 𝑖𝛼, 𝑖𝑎

′  can be 

assigned to machines 𝑚, 𝑚′ and corresponding service nodes 𝑣, 𝑣′ only if  𝛿𝑖𝑎,𝑖𝑎
′ ≥

𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′. This delay constraint measures the intensity of the dependency between them 

in the sense that highly dependent microservices should be placed on the same or 

geographically approximate nodes. Finally, each application 𝑎 ∈ 𝐴 has a delay limit 𝐷𝑎, which 

is the maximum acceptable delay between any node that hosts any of the application’s 

microservices and the source node where the application’s demand is generated. This is a 
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general measure of the application’s overall time-sensitivity, in a sense that a time-sensitive 

application requires all its microservices to be processed by nodes with low delay.  

5.2.3.1 MILP formulation 

Table 7: MILP variables  

Variable Interpretation 

𝑥𝑎,𝑖,𝑜 Binary variable equal to 1 if microservice 𝑖 = 1, … , 𝐼𝑎  of application 𝑎 = 1, … , 𝐴 is 
assigned to low level orchestrator 𝑜 = 1, … , 𝑂 

𝑦𝑎,𝑖,𝑚,𝜎 Binary variable equal to 1 if microservice 𝑖 = 1, … , 𝐼𝑎 of application 𝑎 = 1, … , 𝐴  is placed 
at machine 𝑚 = 1, … , 𝑀𝑣 and is served at security level 𝜎 = 0, … ,4 

𝜃𝑎 Integer variable that denotes the latency of application 𝑎 = 1, … , 𝐴 

𝑇𝑎 Integer variable that denotes the total monetary cost of serving the cloud native 
application 𝑎 = 1, … , 𝐴 

𝑤𝑖 Weighting coefficients for 𝑖 = 1,2,3 to control the contribution of operational cost and 

latency in the objective function with ∑ 𝑤𝑖
3
𝑖=1 = 1 

  

- Objective function. Minimize a weighted combination of the operational cost, 

communication delay and security tier. 

min 𝑤1 ∙ ∑ 𝑇𝑎

𝐴

𝑎=1

+ 𝑤2 ∑ 𝜃𝛼

𝛢

𝛼=1

+ 𝑤3 ∑ ∑(|𝑆| − 𝜎𝑎,𝑖 − 1)

𝐼𝑎

𝑖=1

𝛢

𝛼=1

 

 

Subject to the following constraints: 

-C.1. Each microservice 𝑖 = 1, … , 𝐼𝑎 of each application 𝑎 = 1, … 𝐴 must be assigned to a low-

level orchestrator. 

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼𝑎, ∑ 𝑥𝑎,𝑖,𝑜 = 1

𝑂

𝑜=1

 

-C.2.The microservices 𝑖 = 1, … . , 𝐼𝑎 of each application 𝑎 = 1, … 𝐴 that are executed with 

security Tier 𝜎 = 0, . . ,4 must be assigned to a machine of the selected orchestrator o. 

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼𝑎, ∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭𝑜 , ∑ ∑ 𝑦𝑖,𝑎,𝑚,𝜎 ≥

|𝑆|

𝜎=1

𝑀𝑜

𝑚=1

𝑥𝑎,𝑖,𝑜 

 

-C.3. The microservices that are executed with security Tier 3 and 4 need to be placed at nodes 

with extra peripheral hardware. 

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼𝑎, ∀𝜊 ∈ 𝛰, ∀𝑚 ∈ 𝛭𝑜,, ∀𝑠 ∈ 𝑆′, 𝑦𝑖,𝑎,𝑚,𝜎 ≤ 𝑠𝑚 
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-C.4. The total CPU required from all the microservices 𝑖 = 1, … . , 𝐼𝑎 of application 𝑎 =

1, … . , 𝐴 deployed at a machine m must not exceed its capacity. 

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭𝑜, ∑ ∑(𝜀𝜄,𝑎 ∙ 𝜀𝜎̂)

 𝐼𝑎

𝑖=1

∙

𝐴

𝑎=1

𝑦𝑖,𝑎,𝑚,𝜎 ≤ 𝑐𝑚 

-C.5. The total RAM required from all the microservices 𝑖 = 1, … . , 𝐼𝑎 of application 𝑎 =

1, … . , 𝐴 deployed at a machine m must not exceed its capacity. 

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭𝑜 , ∑ ∑(𝜌𝜄,𝑎 ∙ 𝜌̂𝜎)

 𝐼𝑎

𝑖=1

∙

𝐴

𝑎=1

𝑦𝑖,𝑎,𝑚,𝜎 ≤ 𝑟𝑚 

-C.6. The total Storage required from all the microservices 𝑖 = 1, … . , 𝐼𝑎 of application 𝑎 =

1, … . , 𝐴 deployed at a machine m must not exceed its capacity. 

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭𝑜 , ∑ ∑(𝜔𝜄,𝑎 ∙ 𝜔̂𝜎)

 𝐼𝑎

𝑖=1

∙

𝐴

𝑎=1

𝑦𝑖,𝑎,𝑚,𝜎 ≤ ℎ𝑚 

-C.7. The trusted execution tier of a machine that is assigned a microservice must be equal or 

greater than the tier demanded by the microservice.  

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼𝑎, ∀𝑚 ∈ 𝛭𝑜,∀𝑜 ∈ 𝑂, ∀𝜎 ∈ 𝑆 

 𝑦𝑖,𝑎,𝑚,𝜎 ∙ 𝜎 ≥ 𝜎𝑎,𝑖 

-C.8,9. The microservices  𝑖 = 1, … . , 𝐼𝑎 of application 𝑎 = 1, … . , 𝐴 must be assigned to a 

machine that is situated in a node 𝑣 that respects the application’s delay limit.  

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼𝑎, ∀𝑚 ∈ 𝛭𝑜 , ∀𝑜 ∈ 𝑂, 

𝑙𝑚,𝑔𝑎
∙ 𝑦𝑖,𝑎,𝑚,𝑜 ≤ 𝜃𝑎, 𝜃𝑎 ≤ 𝐷𝑎 

-C.10. For each pair of connected microservices 𝑖, 𝑖′ of an application 𝑎 = 1, … , 𝐴, the selected 

machines must respect the dependent microservices delay limit. 

𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′ ∙ 𝑦𝑖,𝑎,𝑚,𝑜 + 𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′ ∙ 𝑦𝑖′,𝑎,𝑚′,𝑜 ≤ 𝛿𝑎,𝑖,𝑎,𝑖′ + 𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′  

-C.11 Monetary cost calculation for application 𝑎 = 1, … , 𝐴  

∀𝑎 ∈ 𝐴, 𝑇𝑎 = ∑ ∑ ∑ 𝑦𝑖,𝑎,𝑚,𝑜

𝑀𝑜

𝑚=1

𝑂

𝑜=1

𝐼𝑎

𝑖=1

∙ 𝑝𝑚 ∙ 𝜆𝑎,𝑖 

5.2.3.2 Best-fit heuristic 

The presented MILP approach is computationally intensive and exhibits a prohibitively large 

execution time, even for medium-sized problems. To address this, we developed sub-optimal 

mechanisms. The first mechanism is a greedy best-fit heuristic. It takes as input the 

infrastructure graph G and application demands A and allocates resources sequentially for the 

cloud-native applications concerning computing and storage capacity, security, and latency 

constraints while simultaneously optimizing the set objective function. To do so, it examines 

each microservice independently and allocates resources in a best-fit manner according to the 
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specified objective function. When it fails to serve a microservice due to either communication 

latency or computing or storage capacity constraints, it backtracks and re-allocates resources 

for the problematic microservices.  

The algorithm begins by ordering the cloud-native application demands based on their 

application delay limit 𝐷𝑎 . As applications consist of dependent microservices, the pairs of 

microservices are also ordered based on their latency requirements (in latency units l.u.) from 

the strictest to the loosest. This way, the algorithm prioritizes applications and microservices 

with stricter latency requirements to maximize the chances of meeting the requirements 

while decreasing any reallocations due to backtracking.  

The allocation of resources for cloud-native applications is performed sequentially. Given a 

microservice of an application 𝑎, the algorithm identifies the candidate orchestrators to serve 

it. These orchestrators are selected based on their ability to meet the application’s latency 

requirement  𝐷𝑎 and their machines’ ability to fulfil communication constraints with already 

assigned microservices. Afterward, the selected orchestrators are sorted in ascending order 

based on their objective value, which is the weighted average of their machines’ cost, security, 

and latency towards the data generation node. The orchestrators are examined sequentially, 

beginning with the one offering the best objective value.  

If an application contains only one microservice, the algorithm selects the top-ranked 

orchestrator and subsequently identifies candidate machines. These machines possess the 

required computing and storage resources and an equal or higher trusted execution tier than 

the one demanded by the microservice. Additionally, these machines must be situated in 

nodes that satisfy the application’s delay requirement. The algorithm then assigns the 

microservice to the candidate machine that yields the best objective value. If the application 

contains multiple microservices, the above process applies for the first microservice. However, 

for every subsequent microservice, the identification of the candidate machines also considers 

the latency requirements among interconnected microservices.   

 

Figure 23: Flowchart of the greedy best fit heuristic 
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If no feasible placement is found for a microservice due to communication, resource, or 

security constraints, the affected inter-connected microservices that have already been 

served are de-allocated, freeing up the occupied resources. The algorithm will then attempt 

to re-embed the impacted microservices (possibly in a new orchestrator) as well as the one 

examined in this step until a feasible solution is found. This process is repeated until all 

microservices within an application are served, at which point the algorithm proceeds by 

selecting the next application in line. The algorithm terminates once all applications have been 

served. Figure 23 illustrates a typical iteration of the algorithm.  

5.2.3.3 Multi-agent Rollout Heuristic 

We also developed a multi-agent rollout [14][15] mechanism to enhance the performance of 

the greedy best-fit heuristic and trade-off execution time with performance. Rollout is a well-

known reinforcement learning technique that provides a near-optimal solution by leveraging 

a base policy, which in this case is the greedy best-fit heuristic of the previous sub-section. It 

follows an iterative process that takes, at each step, an instance of the problem along with a 

partial solution and constructs the final solution incrementally.  

After selecting an application, the multi-agent rollout algorithm assigns an agent to each 

application’s microservice. These agents co-operate/compete with time in order to fulfil the 

assigned applications requirements based on the set objective function. Each agent acts 

sequentially by examining all possible placements across the different orchestrators and their 

nodes. As the search space can be large, nodes that do not include machines that fulfil the 

following requirements are pruned: (i) the minimum latency requirements of the already-

served communicating microservices of the applications, (ii) the CPU, RAM, and storage 

capacity, (iii) the minimum trusted execution requirements and (iv) the application latency 

constraint 𝐷𝑎. Furthermore, for each node, if more than one machines meet the problem’s 

constraints, only the placement in the one that yields the best objective is evaluated. This way, 

each agent, in the worst case, evaluates at most ∑ 𝑣𝑜𝑜  possible placements for a microservice 

(instead of ∑ 𝑀𝑜𝑜 ).  

The best-fit heuristic discussed in the previous sub-section is utilized to approximate the cost 

of the remaining microservices of the examined application and the microservices of the other 

applications. The process is repeated for all potential placements of the given microservice, 

and the one that exhibits the lowest cost, including the cost of the allocation of the remaining 

microservices that is provided by the greedy heuristic algorithm, is selected. The allocation for 

the current microservice is marked as completed and resources are updated for the machines 

of the selected nodes. This marks the transition to the next state, the next microservice of the 

current application a. When all the application microservices are served, the application is 

marked as served and the aforementioned process is repeated for the next application. 

The purpose of using the multi-agent version of Rollout is to reduce the state space of the 

problem. The state space is reduced by breaking down the allocation of resources for an 

application 𝑎 and a microservice 𝑖 ∈ 𝐼𝑎 taking sequential decisions and applying one-agent-at-

a-time instead of all-agents-at-once. By pruning the example nodes and evaluating only one 

machine per node, as explained earlier, the state space is further reduced. In this way, the 
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control space complexity stemming from the various options for serving the applications is 

traded off with state space complexity, and the computational requirements are proportional 

to the number of microservices 𝐼𝑎 of the different applications 𝑎 and the number of nodes 

within the different orchestrators.  

5.2.4 Performance evaluation 

5.2.4.1 Experimental setup 

We performed several simulation experiments to examine the performance of the proposed 

mechanisms. The mechanisms were developed in MATLAB, and the experiments were 

conducted on a 6 core 2.6 GHz Intel Core i7 PC with 12 GB of RAM. We assumed a hierarchical 

infrastructure that spans the edge-cloud continuum and is split into three layers that 

correspond to near edge, far edge, and cloud nodes. We introduced two different topologies, 

namely “basic” and “extended”, each consisting of nodes with computing machines of distinct 

characteristics and capacities, as summarized in Table 8. Note that values exhibited in the 

close interval [𝑎, 𝑏] are sampled from the uniform distribution over that range. 

Table 8: Characteristics of the computing nodes of the different topologies 

 Near-edge Far-edge Cloud 

Nodes (basic) 25 4 1 

Nodes (extended) 40 7 2 

Machines per node (basic) 1 [7,10] 50 

Machines per node (extended) 2 [10,15] 100 

CPU (CPU units) [4,8] [5,10] [8,12] 

RAM (RAM units) [1,4] [2,8] [4,16] 

STORAGE (GB units) [4,16] [8,32] [16,64] 

Monetary COST (Cost Units) [6,7] [3,4] [1.5,2] 

 

In both topologies, the near edge layer comprises many nodes with few low-capacity 

computing systems placed close to the data sources. Conversely, the cloud layer comprises a 

limited number of nodes that host an abundance of high-powered machines. The cost of the 

near-edge nodes was taken to be around 4 times higher than the central cloud. 

Table 9: Cloud-native applications’ workload characteristics 

Number of microservices [1,7] 

Delay constraint [2,10] 

Microservices’ CPU demand [1,2] 

Microservices’ RAM demand [0.5,1] 

Microservices’ storage demand [1,5] 

Dependency chance for a pair of microservices 25% 

Dependency delay constraint [0.5,3.5] 

 

Regarding the communication delay between infrastructure nodes, we assumed that near-

edge resources require between [0.5, 1.5] l.u., far-edge resources [3, 4] l.u., and cloud 

resources [7, 8] l.u. from the data generation points. Although the exact values are not 

standardized, we used [8] as a guideline.  
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For the workload, we focused on two scenarios: (i) a small and (ii) a medium-sized consisting 

of cloud-native applications of a maximum of 7 microservices (Table 9). Note that an 

application with a single microservice can represent a generic end-user demand, while 

microservice replicas are considered as microservices with identical resource profiles. We set 

the dependency probability between any pair of microservices to 25% and the respective 

delay constraint to range between 0.5 and 3.5 l. u.  

5.2.4.2 Experimental results 

Initially, we compared the performance of the proposed sub-optimal mechanisms, the greedy 

heuristic, and the multi-agent rollout with respect to the optimal solution provided by the 

MILP mechanism. For the evaluation we considered the following optimization criteria: (i) 

minimization of the operational cost (𝑤1 = 1), (ii) minimization of the applications latency 

(𝑤2 = 1), (iii) maximization of trusted execution (𝑤3 = 1), and (iv) all optimization criteria 

(𝑤1 = 𝑤2 = 0.4, 𝑤3 = 0.2). We used the “small” topology described in Table 9 and a small 

workload of 50 applications. The execution time for the optimal solver was limited to 60 

minutes, and the presented results are averaged over 20 simulations. The results of the 

simulation experiments are illustrated in Figure 24. 

 

Figure 24: Optimality gap for the different 
optimization criteria 

 

Figure 25: Allocation of microservices at the 
different layers of the edge-cloud continuum 

 

The heuristic has an optimality gap of 14.5% when the main optimization criterion is latency 

minimization. This happens due to the high competition for the limited near-edge resources, 

which requires a more sophisticated resource allocation approach to allocate these resources 

effectively. For the same reason, the “all-optimization criteria” and “trusted execution” lag by 

11% and 10% from optimal, respectively. However, when the optimization criterion minimizes 

the operational cost, the search space is much smaller; thus, the heuristic's performance is 

close to optimal, underperforming only by about 3%.  

On the other hand, the Multi-agent Rollout exhibited significantly better performance, with 

the worst case being the latency optimization. However, it substantially improved the greedy 

heuristic solution due to the consideration of future placements, providing a 4.5% optimality 
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gap. Additionally, in the case of monetary cost minimization, the optimality gap provided was 

smaller than 1%, indicating that Rollout found an almost optimal assignment.  

As for the execution time, the best-fit heuristic provided an almost instantaneous assignment, 

with an average time of 0.01 seconds per application placement. On the other hand, the 

Rollout algorithm performed much slower, at an average of 0.9 seconds per application, with 

a standard deviation of 0.3 seconds. Finally, the optimal solver exceeded the 3600 time limit 

in all cases, resulting in an average of 72 seconds per application.  

Next, the multi-agent rollout mechanism was evaluated for the extended topology with 300 

microservices and was compared to the best-fit heuristic, which is the baseline scenario for 

this set of experiments. We began by analysing the allocation of microservices for the different 

mechanisms and optimization criteria across the edge-cloud continuum (Figure 25). The 

experiments showed that resource allocation patterns varied based on the optimization 

objective. When cost or the trusted execution was prioritized, cloud resources were favoured 

due to their high capacity and the higher availability of trusted execution tiers. Conversely, 

when latency minimization was the main objective, near and far edge resources were heavily 

utilized. Additionally, when all the optimization criteria were simultaneously optimized, the 

solution proved beneficial in allocating resources tailored to the application's specific needs. 

This highlights the advantages of considering all the optimization criteria in a multi-objective 

optimization approach during the resource allocation process and the ability of the rollout 

mechanism to achieve an improved allocation of resources by leveraging the decisions of the 

heuristic in a reinforcement learning manner.  

 

Figure 26: Operational cost overhead for the 
different optimization criteria 

 

Figure 27: Experienced latency for the different 
optimization criteria 

 

In Figure 26, we present the results of experiments regarding the average cost overhead 

associated with security as an additional constraint, compared to generic workload demands, 

which acts as the baseline scenario for this case for the different optimization objectives. The 

cost overhead for a microservice's placement is determined as the percentile increase in cost 

between its deployment in a default container, (Tier-0), and the deployment method chosen 

in the assignment. 

As anticipated, the highest cost overhead is incurred in the maximization of trusted execution, 

where machines with higher tiers, which are more expensive, are favoured. Trusted execution 

is also considered in the “all optimization criteria” scenario, therefore producing increased 
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cost overhead. Conversely, the effect of additional security on cost overhead is lower for the 

other two optimization objectives, where trusted execution is not considered. 

Finally, in Figure 27, we present the effect of the different optimization criteria on the average 

propagation latency. As expected, the lowest average latency is achieved when the 

optimization criterion minimizes latency. Conversely, when the operational cost is optimized, 

as many microservices as possible are placed on the “cheaper” far-edge and cloud layers, 

increasing latency. In the trusted execution optimization case, microservices are placed on 

machines with high-security tiers generally located in the upper layers (extra hardware), 

leading to higher average propagation latency. The weighted optimization approach trades 

off the requirements of different criteria and achieves a relatively smaller latency.  

By comparing the Multi-agent Rollout with the greedy heuristic mechanism performance, we 

observe that the Rollout approach generally results in a marginally lower cost overhead and 

communication latency for all objectives except for trusted execution. As the Rollout 

mechanism produces an enhanced solution, when the cost contributes to the objective, 

Rollout discovers the most cost-efficient machines that usually possess lower security levels 

and subsequently lower security cost overhead. Similarly, with latency as an objective, Rollout 

manages to place more microservices on edge nodes and machines with adequate security 

tiers, thus lowering overhead costs. Similarly, for the trusted execution objective, the rollout 

mechanism improves the solution by placing more microservices on machines with a higher 

security tier, leading to a higher security cost overhead. These findings highlight the 

importance of considering multiple optimization criteria when allocating resources for cloud-

native applications across the continuum. While prioritizing a single objective may lead to 

optimal results for that specific objective, it may negatively impact other criteria, such as 

latency or operational cost. Therefore, a comprehensive approach that balances multiple 

objectives can lead to a more efficient allocation of resources, resulting in improved 

application performance, reduced costs, and better resource utilization. 

5.2.5 Conclusions 

In this study, we aimed to address the challenge of allocating resources to cloud-native 

applications within a hierarchical edge-cloud infrastructure. Our approach considered critical 

factors such as the inter-dependencies among microservices and the trusted execution 

requirements of cloud-native applications. To meet microservices’ varied security and 

isolation demands, we considered SERRANO’s innovative technologies, such as sandboxing 

and unikernels. To model the resource allocation problem, we formulated a multi-objective 

optimization problem that balances various conflicting objectives, such as minimizing 

operational costs and propagation latency from data generation points, while considering the 

workloads’ security tier requirements. We developed optimal and sub-optimal mechanisms 

that efficiently trade-off performance for execution time, as demonstrated in our 

experiments. 

Our results showed that the greedy best-fit heuristic fell short of optimal performance by an 

average of almost 11% for all optimization criteria. However, the multi-agent rollout 
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mechanism significantly improved the greedy heuristic's performance, achieving close to 

optimal levels at 3.7%. Furthermore, our experiments highlighted the trade-offs between 

delay, cost, and security. In conclusion, our study provides a novel approach to resource 

allocation in a hierarchical edge-cloud infrastructure, addressing crucial factors such as 

security, isolation, and inter-dependencies among microservices.  

5.3 Intent-based Allocation of Cloud Computing Resources 

Using Q-Learning 

Resource allocation is a critical operation regarding the efficient use of the infrastructures. 

The majority of the formulated resource allocation problems and respective mechanisms 

assume a model where workload requirements are provided with certainty (e.g., from a user), 

while orchestration mechanisms have a clear view of the resources' characteristics and status.  

In practice, however, these assumptions are not always valid. Users often have a subjective 

notion of their needs (e.g., what one considers low or high cost) and an abstract view of the 

available infrastructures. As a result, they are not able to specify in a certain, numeric manner, 

their requirements or match them to an infrastructure’s actual characteristics. Also, 

orchestration mechanisms cannot always monitor efficiently the resources due to their high 

number and the dynamicity of their status. In addition, since not all resources belong to the 

same providers, it is reasonable that some providers are not willing to share the same level of 

details regarding their resources. 

 
Figure 28: Intent-driven resource allocation 

 

Recently, intent-based operations have been presented by various actors (providers, 

standardization organizations, academia) [28][29] as a way for applications and users to 

express their requirements regarding the use of Information and Communication Technology 

infrastructures, e.g., computing, networking, etc. 

Overall, the goal is to focus on what one needs from an infrastructure instead of how to 

achieve it. In this context, our work considers intent-based resource allocation for cloud 

computing infrastructures (Figure 28). The idea is that application requirements are provided 

in an infrastructure-agnostic manner, assuming that application owners cannot provide the 

numeric requirements of their workload. The main contribution of our work is a Q-learning 

based Reinforcement Learning (RL) methodology that translates the users'/applications' 

intentions to efficient resource allocations. 
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5.3.1 Related work 

Reinforcement Learning (RL) is a machine learning method that has recently gained a lot of 

attention from the research community. It is based on one or more agents that learn the 

environment of interest by interacting with it [31]. The RL agent gives recommendations and 

receives rewards from the environment. The ultimate goal of the agent is to maximize the 

total reward. If the reward is positive, the agent will continue to try its effort. If the reward is 

negative, the agent should change its policy to have a good value in the next step of the 

iteration.  

In RL, there are problems that use models and are characterized as model-based and others 

that do not use a model of the environment and are called model-free. In the latter, agents 

learn to make decisions without having a model of the environment through trial and error. 

The most commonly used model-free RL methods include Q-learning, SARSA (State-Action-

Reward-State-Action), Monte Carlo methods, TD-learning (Temporal Difference learning), 

Actor-Critic methods and Deep RL. These model-free RL methods are well-suited for problems 

where the environment is difficult to model; however, they may require more data for training 

and computational resources to learn an optimal state-to-action policy compared to model-

based RL methods. 

RL methods have been employed in various problems, including resource allocation: For 

optimal wireless resource allocation in order to avoid interference by hidden nodes in 

CSMA/CA method [32], in 5G services using deep Q-learning [33][34][35], in hybrid networks 

that contain access points, radio frequency and multiple visible light communications [36], in 

satellite-terrestrial networks [37] and in optical networks [38]. RL methods have also been 

used for resource allocation in edge and cloud computing. [34] proposes a joint task 

assignment and resource allocation approach in a multi-user WiFi-based mobile edge 

computing architecture. [39] proposed a Q-learning scheme to efficiently allocate edge-cloud 

resources for IoT applications. In [40] a computation offloading methodology for deep neural 

networks in edge-cloud environments is formulated. [41] use a Deep Reinforcement Learning-

based approach to balance, in an edge computing environment, workload from mobile 

devices, so as to decrease service time and reduce failed task rate. In [42] a model-free Deep 

Reinforcement Learning approach is also introduced, in order to orchestrate the resources at 

the network edge and minimize the operational cost at runtime. 

Intent-driven operations have the goal to overcome the complexity of utilizing complex 

infrastructures, decoupling the users’ intentions regarding “what” should be done, from the 

actual resource orchestration, which specifies “how” it is done. Intent-driven operations have 

initially focused on networks [43][44][45], but recently, their application in cloud and edge 

computing is also investigated [46][47][48][49]. Authors in [46] define rules that enable users 

to express service-layer requirements. The Label Management Service in [47] helps cloud 

administrators model their policy requirements.  

In [48], a learning-based intent-aware task offloading framework for air-ground integrated 

vehicular edge computing is developed. [49] proposes a framework to translate cloud 

performance-related intents into specific cloud computation resource requirements. [50] 
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proposes a strategy that matches multi-attribute tasks to cloud resources. In [51], it is used an 

intent-based network system to automate the deployment of virtual network functions in a 

cloud-based infrastructure.  

The work we present next differentiates from the state of the art by utilizing a Q-learning RL 

methodology to translate users' intentions to resource allocations in a cloud infrastructure. In 

this process, the provided rewards are based both on the users' feedback and the 

infrastructure's status. 

5.3.2 System Model and Infrastructure-Agnostic Operations 

5.3.2.1 Infrastructure 

In our work, we assume a computing infrastructure composed of N interconnected resources 

(edge and cloud) with different characteristics in terms of: 

• Capacity C={c1,c2,...,cN}. This can be expressed as the number of (virtual) CPUs in case 

of a computing resource or the number of GB in case of 

a storage resource. 

• Cost of use U={u1,u2,...,uN}. This can be formulated in different ways 

either as a fixed price or as cost per quantity per time unit (e.g. GB per hour 

used). 

• Security E={e1,e2,...,eN}. This may depend on particular security features 

that the respective resource employs 

Other parameters of interest can also be considered. 

We also assume these characteristics are discrete and selected from a set of possible values. 

This is reasonable to assume based on the cloud computing paradigm of virtualized instances. 

In particular, all public cloud providers offer various types of instances, comprising varying 

combinations of (virtual) CPU, memory, storage, and networking capacity and are optimized 

for different workloads, e.g., compute or memory intensive. 

In this context, the considered infrastructure's virtualized resources have capacity, cost, and 

security capabilities with discrete values from the following sets: 

• Nc levels of capacity: 𝑆𝐶 = {𝑇𝐶1, 𝑇𝐶2, … , 𝑇𝐶𝑁𝐶
}, and ci ∈ SC where  1 ≤ i ≤ N 

• Nu   levels of cost:    𝑆𝑈 = {𝑇𝑈1, 𝑇𝑈2, … , 𝑇𝑈𝑁𝑢
},  and ui ∈ SU where 1 ≤ i ≤ N  

• Ne levels of security:   𝑆𝐸 = {𝑇𝐸1, 𝑇𝐸2, … , 𝑇𝐸𝑁𝑒
}  and  ei ∈ SE   where 1 ≤ i ≤ N 

5.3.2.2 Workload 

The application requests for computing workload or storage space are submitted to an 

orchestration entity that manages the infrastructure. The request is described by the static 

characteristics of the workload to be submitted, such as the requested computing capacity 

(e.g., in terms of virtual CPUs) or the size of the data to be stored (e.g., 2 GB). It also includes 
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infrastructure-agnostic parameters, such as regarding the preferable cost, security, and 

performance, in the form of intents. This intent can take various forms and shapes, e.g., by 

characterizing the need to execute a workload "fast" or to store data with "high" security or 

with "low" cost. In our work, we formulate this with a small number of what we call "intent 

levels" for the different types of parameters of interest: 

• 𝑁̂c  levels of capacity: 𝑆̂𝐶 =  {𝑇̂𝐶1, 𝑇̂𝐶2, … , 𝑇̂𝐶𝑁𝑐
} where  𝑁̂c<<Nc 

• 𝑁̂u  levels of cost: 𝑆̂𝑈 = {𝑇̂𝑈1, 𝑇̂𝑈2, … , 𝑇̂𝑈𝑁𝑢
} where 𝑁̂u<<Nu 

• 𝑁̂e levels of security: 𝑆̂𝐸 =  {𝑇̂𝐸1, 𝑇̂𝐸2, … , 𝑇̂𝐸𝑁𝑒
}  where 𝑁̂e<<Ne 

S𝑜, 𝑡he j submitted workload of user k, wjk, can be described with the tuple {T̂𝐶jk, T̂Ujk, T̂Eik}, 

where T̂Cjk ∈ Ŝc,  T̂Ujk ∈ ŜU,  and T̂Ejk ∈ ŜE. The way these infrastructure-agnostic intent 

levels match to the different infrastructure-related resource levels (Section 5.3.2.1) is the key 

for the intent-based operations that we research on the present work. 

5.3.2.3 Example of Infrastructure-Agnostic Operation 

Based on the above, we describe the following example of an infrastructure-agnostic storage 

workload request R to be served by the infrastructure. The request's static parameters include 

the size of the data to be stored, e.g., measured in GB. Also, the request is accompanied with 

intents specifying that this should be served with "low" cost, "high" security: R = {𝑢̂, 𝑒̂} = 

{”low”, ”high”}. Assuming that we have 𝑆̂U = 1, 2, 3 and 𝑆̂E = 1, 2, 3 "intent levels" for cost and 

security and the intention "low" matches to the value 1, while the "high" to value 3, then these 

intents can also be expressed numerically with the tuple R = {𝑢̂, 𝑒̂} = 1, 3 

The goal of the methodology we present next is to efficiently translate the provided intents to 

specific decisions regarding how the tasks will be served to match as closely as possible to the 

users’ or applications’ intentions. For example, we assume that our infrastructure has Nu = 10 

different cost levels for a storage resource, in terms of euros per GB per month stored, e.g., 

Su = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. So, when a user has an intent for cost 𝑒̂ = 1 this means 

that the methodology has to match this ("intent level") to an actual cost value ("resource 

level") from the set Su. In general, we may expect that 𝑒̂ = 1 ("intent level") of cost, matches 

to 10, 20, 30 or even 40 euros per GB per month ("resource level"). In practice, however, this 

"intent level" is user-specific and can match any available "resource levels" or even none. 

5.3.3 Q-learning based Intent Translation 

In our work, we are using Q-learning, model-free Reinforcement Learning (RL), approach to 

translate the infrastructure-agnostic intent of a user regarding submitted workload to 

infrastructure-aware parameters. 

5.3.3.1 State, Action spaces and reward 

The basic design principles used in our RL-based method and need to be defined, include the 

state space S, the action space A and the reward r. The RL process is executed in time steps t. 
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The state of the system environment 𝑠 ∈ 𝑆 at time t, describes the current status of the cloud 

infrastructure in terms of the availability of the resources. For simplicity, we assume that a 

single task/workload fully utilizes a resource from the N available ones. 

As a result, the environment can be represented through a tuple that shows the availability of 

the resources: s = {o1, … , oN}, where oi  ∈ {−1, 1}  indicates whether the respective resource 

i is utilized or not. 

The action space A contains all possible actions that can be taken, defining the transfer rules 

between states. As the agent explores the environment, it experiments with different actions 

to learn which are most effective in achieving the goals set. In our work, we assume that at 

each step t we can either assign a new task of a user to an available resource or migrate an 

existing task to another available resource. As a result, 𝐴𝑡 = {𝑟1, … , 𝑟𝑁}, where N are all the 

available resources. In practice, though, only some transitions/actions from one state to 

another are possible since we assume that at a single step only one new task can be served or 

one existing task can migrate to a different resource. For example, in an infrastructure with 

N=4 resources, from the state 𝑠1 =  {−1, −1, 1, 1}, indicating that the third and the fourth  

resources are utilized, an action is possible to the state s2 =  {1, −1, −1, 1}, indicating that a 

task migrates from the third resource to the first one, while no action is possible to the state 

s3 =  {1, 1, −1, −1}, since this requires multiple task migrations. 

After the agent takes an action at state s at time t, it will receive a reward r, which can be used 

to evaluate the action performed. In order to design the reward function, it is necessary to 

determine the objectives based on which a positive or a negative reward will be provided. 

One important novelty of our work is that rewards depend not only on the infrastructure (the 

typical environment in most related works) but also on the user that submits the task. On the 

user side, the reward relates to the level of satisfaction for serving the submitted task 

according to (or close to) the user's intention. On the infrastructure side, we focus on the 

efficiency with which the infrastructure is actually utilized. These objectives are interrelated 

since failing to serve a task due to poor utilization of the available resources results in 

unsatisfied users of the provided services. 

In practice, user satisfaction can be provided by the user through an immediate feedback 

mechanism (e.g., using a User Interface [28]), after the infrastructure serves a task request, 

while the infrastructure's utilization can be monitored through a respective system, such as 

the SERRANO telemetry framework 

In our work, we consider the following reward function: 𝑅𝑡 =  𝑎 ∙ 𝑠𝑓 + 𝑏 ∙ 𝑢𝑙, where sf is the 

satisfaction level based on the action performed at time slot t and ul the utilization of the 

resources at time slot t. 

The a and b weights balance user feedback and resource utilization objectives. Also, we 

quantitatively calculate the satisfaction level as the difference between the user's intents and 

the parameter (cost, security, etc.) levels of the resources to which these tasks have been 

assigned to. For example, let’s assume that a user has submitted two tasks with cost intent 

levels equal to 𝑇̂𝑈1 = 1 and 𝑇̂𝑈3 = 3 that correspond to cost u=15 and u’=45 respectively 
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(based on the user's actual intention). If these tasks are assigned to resources with cost levels 

𝑇𝑈4 = 10 and  𝑇𝑈7 = 30  then we calculate the satisfaction level as equal to: 

sf =
1

1 + |TU4 − u| + |TU7 − u′|
=

1

1 + |(10 − 15) +  (30 − 45)|
=

1

21
. 

In practice of course, a user submitted satisfaction level will be somewhat subjective and will 

deviate from this "optimal" calculated value. 

5.3.3.2 Q-learning methodology 

As with any machine learning mechanism, Q-learning has two phases: training and inference. 

During the training phase, the agent iteratively interacts with the infrastructure and (in our 

work) with the user and learns the optimal action-value function that maps states and actions 

to maximize the expected cumulative reward. Through this process, the agent explores the 

infrastructure characteristics and the user's intentions. The Q-learning algorithm updates the 

estimate of the action-value function for each state-action pair visited by the agent using the 

well-known Bellman equation: 

Q(s, a) = Q(s, a) + α · [r + γ · max(Q(s’, a’)) − Q(s, a)], 

where Q(s, a) is the estimated value of taking action a in state s, α is the learning rate that 

determines how much weight to give to new information, r is the immediate reward received 

for taking action a in state s, γ is the discount factor between 0 and 1, which determines the 

importance of future rewards relative to immediate rewards, max(Q(s’, a’)) is the estimated 

value of the best action a' in the next state s'. These so-called Q-values for all possible state-

action pairs are stored in a table, namely the Q-Table. Different selection strategies are 

possible for the agent in every state; for example, select an action randomly, select the action 

that it has executed the least number of times, or select the action with the largest Q-value.  

In many formulations of the Q-learning process, an ε probability parameter sets a trade-off 

between exploitation that is choosing the optimal action for the next step, based on the Q-

Table and exploration that is choosing a random action. In all cases, the reward after an action 

is taken, leads to the update of the respective state-action Q-value Q(s,a) and the update of 

the Q-Table. 

The cumulative reward at each time step t is defined as: 

Gt = Rt+1 + γ · Rt+2 + γ2 · Rt+3 + ... 

where Rt+1 is the immediate reward received by the agent at time step t+1 for taking action at 

in state st and γ is again the discount factor. The agent aims to find the optimal policy that 

maximizes the expected value of Gt over all possible sequences of actions and states: the 

expected cumulative reward. In the inference phase, the trained agent exploits the learned 

action-value function and serves new demands based on the current state and user 

satisfaction level, using the action with the highest expected reward. 
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5.3.4 Evaluation 

We performed a number of simulation experiments to evaluate how the Q-learning 

methodology succeeds in identifying a user's intentions in the submitted infrastructure-

agnostic requests. Our experiments focus on the training phase of the Q-learning mechanism. 

We consider a cloud environment consisting of storage resources, with Nc = 

10 resource levels of capacity: Sc = {10, 20, · · · , 100} GB and with various combinations of the 

available characteristics in terms of cost and security levels. We also assume that storage 

capacity is a deterministic parameter of the submitted tasks, while capacity and security are 

expressed through respective intents. In the experiment performed, we employ various 

scenarios for translating intents to resource levels that correspond to different user 

intentions. It is clear that there is not necessarily a linear match between the intent and the 

resource levels. This means for example that an intent level 𝑇̂U1 is not necessarily equal to 

TU1, but depends on the user preferences. In what follows, for simplicity we assume a single 

user that submits storage task requests in an infrastructure-agnostic manner through intents. 

Initially, in the experiments performed we assumed resources that have different cost 

resource levels: 3, 5, 7, while the generated task requests had 2 intent levels. We run the 

training process for over 10000 timesteps. The Bellman's Equations parameters had the 

following values α = 0.5, γ = 0.9, while ε = 0.5.  

Figure 29 illustrates the average reward over time for the first 1k timesteps. We observe that 

in all scenarios, the average reward increases over the first 100 timesteps and then stabilizes, 

increasing just slightly till 10k timesteps (not illustrated in this figure). This is reasonable 

considering the learning processes and the fact that we selected ε = 0.5, meaning that, on 

average half of the selected actions are random, that is not based on the calculated Q-values. 

What is essential to notice is the effect of the number of cost resource levels in the learning 

process. A higher number of cost resource levels results in a smaller average reward and vice 

versa lower number of resource levels results in larger average reward. This is due to the fact 

that a small number of resource levels means that there is a close relation between resource 

and intent levels, making their matching easier. 

 
Figure 29: The average reward over time for different cost resource levels 
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Figure 30 illustrates the average reward over time for different ε values {0.1, 0.2, …, 0.9} over 

10k timesteps. In this way, ε controls the agent’s rate of exploring the environment and 

identifying an optimal policy. The figure shows that the reward is the highest for ε=0.2, making 

it the optimal value for the specific problem and the goals set. Another approach is to use a 

variable epsilon strategy, where the value of epsilon changes over time, being high at first to 

enable more exploration and decreasing at some point to exploit the calculated Q-values. 

Next, we considered the effect of multiple intent parameters (cost, security, and others) in the 

training process (Figure 31). Increasing the number of different intents a user provides for a 

single task request leads to a smaller average reward and a slower increase of its value over 

time. This due to the fact that it is more difficult to match an increasing number of intents to 

the actual parameters' resource levels. 

 
Figure 30: The average reward over time for different ε values 

 

 
Figure 31: The average reward over time for different number of intent parameters 
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Finally, we also created a heatmap of the Q-Table (Figure 32) for ε=0.5, 50000 timesteps, and 

a single intent parameter. This was created out of curiosity, mainly in order to identify any 

properties of the Q-Table. One thing that we can observe is a kind of symmetry of the Q-Table. 

This is mainly due to the way the Q-Table is created in terms of step-pairs and the fact that we 

consider as valid actions those in which only a single task is migrated to a new resource. 

 
Figure 32: The Q-Table’s heatmap for ε=0.5 and 50000 timesteps 

 

5.4 Resource Optimization Toolkit 

The SERRANO platform has to automatically determine the most appropriate resources across 

the distributed edge/cloud/HPC infrastructure to deploy the applications, execute accelerated 

kernels, and create secure storage policies. The Resource Optimization Toolkit (ROT) 

integrates the designed resource allocation algorithms in the SERRANO platform, 

implementing the deciding part at the envisioned closed-loop control based on observe, 

decide, and act principles. It provides to the SERRANO Resource Orchestrator (Section 9.1) the 

required logic to allocate the edge, cloud, and HPC resources to satisfy the applications’ 

requirements, coordinate the efficient movement of required data across the selected 

resources, and support proactively and reactively re-optimization adjustments. 

5.4.1 Final implementation and interfaces 

Figure 33 presents the architecture of the ROT, its main components, and the interactions 

with other components within the SERRANO architecture. The deliverable D5.2 (M15), 

detailed the overall design, the main components, their roles, and the initial implementation. 

Next, we present their extensions along with the new developments. The architecture 

includes one ROT controller and multiple Execution Engines, the actual workers. The controller 

includes the Access Interface and Dispatcher components, while each worker comprises the 

Execution Engine and the library of the decision algorithms. This approach ensures that the 
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ROT will always be able to handle quickly any number of execution requests by the Resource 

Orchestrator, even in very complex infrastructures. 

The ROT controller handles the interaction with the other services (i.e., Resource 

Orchestrator, Central Telemetry Handler) within the SERRANO platform. It exposes the 

appropriate interfaces that allow bidirectional communication for exchanging commands, 

information, and notifications. The Execution Engine receives instructions for starting or 

terminating algorithm executions from the ROT controller and performs all the required 

actions. It also monitors the node's resources where it is executed and returns related 

information. The ROT is implemented in Python, using additional frameworks such as Flask 2.0 

[3], Pika [93], and PyQt [94]. 

 

 
Figure 33: Resource Optimization Toolkit (ROT) architecture and main components 

 

It offers two North Bound Interfaces (NBIs), the first is based on REST APIs, and the second is 

an asynchronous messaging interface based on the Advanced Message Queuing Protocol 

(AMQP). The former exposes control operations to manipulate and inspect the execution of 

deployment algorithms, get information for the available Execution Engines, and manage end 

users. The latter offers asynchronous communication between the ROT Controller and end 

users for exchanging notification messages and results. The Data Broker component of the 

SERRANO architecture implements the required asynchronous messaging interface. To this 

end, it provides several queues for the asynchronous exchange of messages that are described 

using a predefined syntax in JavaScript Object Notation (JSON) format. The detailed 

description and syntax of the messages are available in D5.2 (M15). Figure 34 summarizes the 

final version of the exposed REST API.  
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Figure 34: Resource Optimization Toolkit REST API 

 

In the second iteration of the implementation plan, we significantly extend the functionality 

of the ROT Controller, adding new methods in the REST interface and improving the operation 

of the Dispatcher component. The new functionality includes (i) support for multiple users, (ii) 

the use of different topics for results and notifications, (iii) improved handling of failures, and 

(iv) the implementation of a Python API to abstract the two exposed NBIs. 

Moreover, we updated the initial implementation of the mechanisms that provide 

asynchronous communication between the ROT components (i.e., ROT Controller & Engines) 

and end users. The final implementation uses four different exchanges (Figure 35), supports 

multiple users better, and facilitates the scaling features of the ROT. 
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Figure 35: ROT asynchronous communication over SERRANO Message Broker – Final 

implementation  

 

In addition, the updated syntax for the internal messages that provide the ROT responses has 

the following syntax: 

• uuid (string): execution request unique identifier 

• status (string): final status of the execution request: 

    FAILED: execution request failed 

    DONE: execution request finished successfully 

    TERMINATED: execution request terminated  

• results (string): algorithm execution output 

• timestamp (integer):  Unix time stamp 

5.4.2 Algorithms integration and Python API 

Figure 36 presents the overall workflow for executing resource allocation algorithms within 

the SERRANO platform, highlighting the roles of the ROT components and their interaction 

with other SERRANO services. The purple arrows indicate operations performed through the 

exposed northbound interfaces, the green arrows indicate interactions among the primary 

ROT services, the black arrows correspond to actions related to the preparation of an 

execution request, and the blue to the actual execution. 

The resource orchestration algorithms selected for integration in the Resource Optimization 

Toolkit are implemented in Python. According to the ROT architecture, an algorithm is 

accessible from the Execution Engine's internal components through a custom plug-in 

mechanism. This mechanism exposes a standard interface for all integrated algorithms that 

determines the explicit syntax of the input parameters and the results for all algorithms. The 

interface uses JSON as the data-interchange format to provide input parameters and results. 
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Figure 36: ROT - Workflow for executing an orchestration algorithm in SERRANO  

 

The plug-in mechanism is implemented as a Python wrapper that facilitates access to 

algorithms and enables their execution through the Execution Helper component in the 

Execution Engines. The algorithms are organized within a predefined module called 

"algorithms" in the Execution Engine, with each algorithm implemented in a separate sub-

package (Figure 37). The wrapper receives three parameters from the Execution Helper: (i) 

the name of the algorithm module, (ii) telemetry information from the SERRANO Central 

Telemetry Handler (CTH), and (iii) algorithm-specific input parameters. Before assigning the 

execution request to an Execution Engine, the ROT Controller automatically provides the 

necessary telemetry information. The ROT Controller queries the CTH service based on the 

requested orchestration algorithm since a different type of information is required to 

orchestrate a cloud-native application compared to creating a secure storage policy. 

Table 10: ROT plug-in mechanism – AlgorithmInterface abstract class  

import abc 
import json 
 

class AlgorithmInterface(metaclass=abc.ABCMeta): 
 

    def __init__(self, parameters, infrastructure): 
        self.__infrastructure = json.loads(infrastructure) 
        self.__parameters = json.loads(parameters) 
 

    def get_input_parameters(self): 
        return self.__parameters 
 

    def get_infrastructure_parameters(self): 
        return self.__infrastructure 
 

    @abc.abstractmethod 
    def launch(self): 
        pass 
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The plug-in mechanism requires that every algorithm’s implementation should include a main 

file with the same name as the algorithm’s module, where the execution starts. The file should 

include a class with a similar name that should extend 

the AlgorithmInterface class (Table 10). It is an 

abstract class defined by the plug-in interface, handles 

the telemetry information and input parameters, and 

provides the appropriate public methods to facilitate 

their usage. It also defines the abstract method 

launch(), where an algorithm should implement its 

specific logic. The final version of the ROT 

implementation includes the following orchestration 

algorithms (Figure 37): (i) a simple first-fit allocation 

algorithm, (ii) the best-fit heuristic for the security-

aware deployment, (iii) the greedy resource allocation 

algorithm (GRAA), and (iv) the heuristic for the 

distributed storage allocation (i.e., storage policies), 

which was presented in deliverable D5.2 (M15). 

To facilitate the ROT services integration within the SERRANO platform, we implemented a 

Python API that abstracts the integration with the ROT controller and the exposed northbound 

interfaces. The API is also part of the SERRANO SDK, while it can facilitate a more general 

adoption of the designed framework even outside of the SERRANO platform as a standalone 

service. Moreover, the Orchestration Manager, one of the primary services of the SERRANO 

Orchestrator (Section 9.1), uses the provided Python API to implement the required 

interactions with the ROT service. The API includes a set of methods to abstract the interaction 

with the REST interface and various events to handle the low-level operations for interacting 

with the asynchronous communication over the SERRANO Data Broker.  

Table 11 summarizes the provided methods and events, and Figure 38 shows a related code 

snippet. The example presents the execution of various managing requests, such as getting 

the list of available Execution Engines (line 52) and execution requests (line 57) and the 

request of an algorithm execution (line 67), along with the results handling (lines 18, 33-38).  

Table 11: ROT Python API – Provided methods and events  

Name Type Description 

get_engines() Method Get the available execution engines. 

get_engine(engine_uuid) Method Get details about a specific execution engine. 

get_executions () Method Get the list of all active executions. 

get_execution(execution_uuid) Method Get details about a specific algorithm execution. 

get_logs(execution_uuid) Method Get detailed information for a specific execution. 

get_statistics() Method Get statistics for the completed executions. 

request_execution(algo, parameters) Method 
Start the execution for a specific algorithm with the 

provided input parameters. 

terminate_execution(execution_uuid) Method Terminate a specific algorithm execution. 

EventEnginesChanged Event Current state of a specific Execution Engine changed. 

EventExecutionCompleted Event An execution request is completed successfully. 

EventExecutionError Event Error during the execution of some request. 

 
Figure 37: Integrated orchestration 

algorithms  
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 Figure 38: Code snippet for interacting with the ROT through the provided Python API 

 

5.4.3 Deployment and configuration 

The ROT framework components are implemented in Python language and packaged in 

container images using the SERRANO CI/CD services, ensuring a smooth and efficient 

development workflow. The source code will be available in the official repository of the 

SERRANO project [95] under an open-source licence (Apache 2.0). There are separate 

container images for the ROT Controller and ROT Execution Engine. The resulting container 

images are accessible through the official SERRANO Harbor image repository [96]. Moreover, 

corresponding Kubernetes YAML description files are also available to facilitate effortless 

deployment on Kubernetes platforms. These files enable the automatic deployment and 

scaling of the ROT Controller and ROT Execution Engines within Kubernetes. 
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6 Service Assurance and Remediation 

In this section, we provide a comprehensive overview of the Service Assurance and 

Remediation (SAR) components. Specifically, we detail the Event Detection Engine (EDE) and 

how it is used for the detection analysis of the monitoring data received from the SERRANO 

telemetry framework. Once unwanted behaviour has been detected and analysed, the root 

cause is determined by computing Shapely values.  

The following subsections detail the work performed during the second iteration of the 

implementation plan (M16-M31) on SAR. We should note that some information is also 

available in D5.2 (M15) however, for the sake of completeness we will include details 

regarding the overall architecture of SAR here as well. 

6.1 Architecture 

The Event Detection Engine (EDE) is a crucial component of the overall Service Assurance and 

Remediation mechanisms (SAR) as it enables the timely detection of any performance, 

behaviour and time/sequence related anomalies. The technology stack used for its 

implementation was chosen in order to create a robust, scalable solution that is also easy to 

extend with new state of the art detection methods. 

When dealing with distributed systems deployed on heterogeneous hardware platforms, it is 

not a question of if but rather when anomalous events will occur. In order to initiate 

autonomous remediation of any such events we must first have a reliable anomaly detection 

mechanism. While simple point anomalies are quite easy to detect with relatively simple rule-

based mechanisms, contextual and/or sequential anomalies of multivariate data are 

challenging. EDE provides a comprehensive set of ML methods that are specifically chosen to 

enable the detection of just such anomalous events. 

In the context of SERRANO, we improved EDE with a few key features and capabilities. The 

main objectives for SERRANO are: 

• Identify ML detection methods that are suitable for the detection of anomalous events 

in the SERRANO context. These include both supervised and unsupervised methods. 

• Implement ML predictive model optimization mechanisms that can be used for both 

predictive performance optimization as well as user-defined constraints (i.e. inference 

times, computational resource utilization, model size etc.). Moreover, several 

visualizations that give insight into model performance have also been implemented, 

giving feedback to the end user at every stage of the optimization process. 

• Implementation of Explainable AI mechanisms which can give meaningful insight into 

what caused a particular anomalous event to occur (root cause analysis). These 

methods stand as one of the main outputs of SAR. 
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• Integration into the SERRANO toolchain, especially for the EDE, which should report 

detected anomalies. The target integrations include the SERRANO orchestration and 

telemetry services. 

Figure 39 shows the overall architecture of EDE. This robust framework consists of five primary 

components, each tasked with a specific functionality necessary for creating and exploiting 

ML-based detection methods. The SERRANO platform enables seamless deployment of cloud-

native applications across distributed infrastructures with highly heterogenous hardware 

platforms. This leads to high volumes of data that need to be analysed. To efficiently handle 

such demanding workloads (EDE being implemented in Python) we have selected Dask [77] as 

the execution backend.  

Dask allows for parallel/concurrent execution of training, optimization and prediction tasks, 

providing scalability to process the vast amount of data effectively. Furthermore, it can 

leverage an existing Dask cluster, simplifying configuration for EDE users that only have to 

configure the EDE scheduler.  When Dask is deployed on top of Kubernetes autoscaling is also 

possible. We have developed a simple Dask scheduler that is capable of on-demand scaling of 

a cluster using Kubernetes. In the absence of a user-defined Dask scheduler, EDE will create a 

local 3-worker deployment during normal operation. Next, we will discuss some particularities 

of the architecture. 

 

 

 

Figure 39: Event Detection Engine – General architecture 
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The first component is the Data Ingestion, which ensures data is available to the ML methods. 

We currently support fetching data directly from several data sources, such as Prometheus 

[78], ElasticSearch [79], and InfluxDB [101]. Of course, this mechanism is integrated with the 

SERRANO Telemetry Service. Local labelled data is also supported for supervised method 

training in CSV and JSON formats. This feature is designed to be used for analysis, training, and 

optimization phases. We also support MinIO data sources; however, the data will be fetched 

locally and not streamed in this scenario. 

Legacy support for Attribute Relation File Format (ARFF) files is also enabled in the form of a 

custom conversion script. Initially, we had direct support for this Weka-based format however, 

as it is of little practical significance during production scenarios it was removed. 

Preprocessing is implemented as a separate component and is capable of formatting as well 

as augmenting both local training and historical monitoring data to be used for predictive 

model creation. Data normalization and scaling is also handled by this component. We should 

note that the resulting scaler is also serialized and can/should be used on streamed live 

monitoring data. 

In addition, statistical analysis is also executed by the pre-processing component. It is 

important to note that although there are some predefined data augmentation and analysis 

methods, EDE can execute user-defined methods as long as compatibility with the internal 

EDE processing pipeline is maintained. In essence, the processing pipeline uses data frames; 

thus, augmentation and analysis methods need to accept and return Pandas [80] DataFrames. 

 

 

Figure 40: Pearson Correlation Raw Data 

 

There are several example analysis and augmentation methods defined in EDE. Figure 40 

shows the Pearson correlation between the features (system metrics) collected in case of one 
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monitored node. This visualization and analysis step can be used for feature engineering use 

cases as it measures the strength of the linear relationship between pairs of features. 

Next, in Figure 41, we see a reprojection of the data with only three principal components 

using t-SNE (t-distributed stochastic neighbour embedding). Here we also highlight the five 

classes of labels present in the dataset. As we mentioned, these are only some of the methods 

already included in EDE, while users can easily add additional methods. 

 
Figure 41: Feature reduction (t-SNE) 

 

The Training component is used to select, configure, and optimize ML-based predictive 

models. In the case of supervised methods, models need to be trained using a labeled dataset. 

As with other components within EDE, users can define their own detection methods as long 

as they are in accordance with the processing pipeline and respect Scikit-learn [81] API naming 

conventions.  

Optimization takes several forms. First, we have several Hyper-parameter optimization (HPO) 

methods ranging from unguided methods such as Grid and Random Search to guided 

approaches based on genetic algorithms, Bayesian methods, Tree of Parzen Estimators etc. 

Furthermore, model performance analysis methods and visualizations such as recursive 

feature elimination (based on feature importance), training instance selection based on 

learning curves etc. are also available. The main goal is to enable users to create predictive 

models with good predictive performance. 

The optimization methods enumerated in the previous sections can be configured via the 

YAML configuration file. A typical use case would entail first running HPO on a selected ML 

method. If a Dask cluster is available, each worker will be assigned to evaluate one candidate 

solution, thus optimization is significantly faster. Once the best performing hyper-parameters 

have been identified users can define additional optimization analysis methods. All steps from 

this process are logged and visualization is created where applicable. Finally, the predictive 

models are exported. The following subsection details some of the experiments we have 

conducted using this methodology. Further research and analysis results can also be found in 

D4.4 (M30). 
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Prediction is handled by a separate component. It is capable of instantiating previously 

serialized methods. Usually, joblib [82] is used for model serialization and de-serialization, 

although ONNX [83] is also supported for DNN models. All detected anomalies are then 

forwarded to the EDE data bus using Kafka [84] topics. This means that other SERRANO tools 

and components can check this dedicated topic for any anomalous events being detected.  

It is evident that simply detecting anomalies is not enough to enable assurance and 

remediation. An analysis of why a particular event is labelled anomalous is required. To this 

end, we currently support some explainable AI-based methods, such as the calculation of 

Shapley values.  

Shapely values [85] can be used to select features with a high degree of impact on a prediction. 

This is especially useful in the case of unsupervised methods where this explanation can be 

used on a per prediction basis (i.e., why an event is deemed anomalous). 

This measurement was first introduced for the study of coalition games. It is defined on a value 

function denoted as  of players S. The Shapely value denotes the contribution to the pay out 

of a particular feature value, weighted and summed over all possible combinations: 

 

𝜙𝑖() = ∑
|𝑆|! (𝑛 − |𝑆| − 1)!

𝑛!

∞

𝑆⊆
{1,…𝑛}

{𝑖}

((S ∪ {i}) − (S)) 

 

Where n denotes the set of all players (in our case features), thus the Shapely value of game 

(,n) is used to distribute the total gain (n) to each player in accordance with each 

contribution [86]. Player i in our case corresponds to a feature from the dataset, thus n 

denotes the total number of input features. Conversely, the Shapely feature value  𝑖 ∈

𝑛, 𝜙𝑖() is the weighted average of the marginal contribution. Resulting from the above 

equation, we can compute the nprediction for feature values in a set S, a subset of the features 

used to train the model, which are marginalized over features that are not in set S as follows: 

𝑥(S) = ∫ 𝑓(𝑥1, … , 𝑥𝑛)𝑑𝑃(𝑥 ∉ 𝑆) − 𝐸𝑋[𝑓(𝑋)] 

 

For our purposes, X is the vector of values from the features of the instance (event) to be 

explained, and n is the number of features. Shapely values are symmetrical in the sense the 

sense that equal contribution results in equal Shapely values and non-contributing features 

have a Shapely value of 0.  

The computed shapely values are used for remediations. For each event being analysed we 

provide the Shapely values for each feature as well as its base value. An example response can 

be seen in Figure 42. Notice that we provide data about the method, model, and query 

interval. This is in order to have a complete overview by SERRANO orchestration and the end 

user. Next, for each anomalous instance we provide the timestamp (in two formats) and the 

shapely and base values respectively. 
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Figure 42: SAR Response Example 

 

6.1.1 Configuration and REST API 

For the sake of brevity, we will not detail the entire configuration of EDE and SAR however, 

there is available a complete user manual in the official GitHub repository: 

• https://github.com/ict-serrano/service-assurance-ede 

We have implemented a REST API for controlling EDE inference settings for ease of integration 

and use. It is implemented using OpenAPI. Users are not able to train and validate predictive 

models using this API since it is only meant for inference. We did this as training is an 

inherently user-driven, iterative workflow. 

Figure 43 shows the resources available for configuration. The functionality exposed here 

includes Connector setup for data sources, augmentation and analytics, data filtering, and 

predictive model selection. 

 
Figure 43: SAR REST Configuration 

 

https://github.com/ict-serrano/service-assurance-ede
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Figure 44: SAR REST Control 

 

Figure 44 shows control resources used for detection job definition. Once a valid configuration 

has been set (see Figure 43), inference instances can be started using the engine and inference 

resources. If users or tools require the analysis of certain datapoints, the data resources can 

be used to push data instances directly to EDE. 

6.2 Methods for Detection and Analysis 

In D5.2 (M15) we detailed some of the experiments utilizing supervised methods specifically 

the HPO methods. For this deliverable, we will focus on some additional experimental results 

as well as results for unsupervised methods. In order to make this deliverable as self-contained 

as possible, we will briefly describe, the dataset used for these experiments. 

The dataset used for these experiments was created using an anomaly induction tool created 

by UVT. It can induce anomalous events that mimic hardware anomalies. In the current 

dataset, we induced four anomalous event types: 

• CPU Overload – Detects the number of physical CPU cores and saturates a user 

specified number of cores for a number of seconds. This simulates CPU overloading 

• Memory Eater/Leak – Writes data into RAM, the amount is specified by the user in KB, 

MB, GB along with a multiplier and iteration step. This simulates memory interference 

fault and saturation. It is possible to define also how long this memory allocation is to 

be maintained. 

• DDOT – Reputedly calculates the dot product between two matrices. The size of each 

matrix is calculated based on the CPU L2 cache size reported in the OS. This simulates 

CPU cache faults. Care should be taken when configuring this type of anomaly as large 

matrix sizes can cause unpredictable OS behaviour causing zombie and/or orphan 
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POSIX processes. Additionally, faulty logging of such events will yield contaminated 

labelled data. 

• COPY – Generates and moves a large file from one location to another. Users can set 

allocation units (KB, MB, GB) and a multiplier. This simulates I/O interference, 

saturation and failing hard drives. A side effect of this type of anomaly is that it 

resembles the Memory Eater/Leak anomaly. This will help us quantify the ability of ML 

predictive models’ capacity in differentiation of the two. 

 

 
Figure 45: Class distribution 

 

Figure 45 shows the distribution of event types in the dataset used. There is a total of 5400 

events comprised of 90 features. Each feature represents a system level metric collected by 

Prometheus. We can clearly see that this dataset is extremely unbalanced: 4792 events are 

normal, 91 are DDOT, 132 are Memory Eater/Leak, 64 are CPU Overload, and 321 are COPY. 

6.2.1 Supervised ML methods 

In previous examples, we detailed method performance when dealing with single anomaly 

instances in a single node. This type of scenario is completely plausible. However, we also ran 

several experiments by inducting several anomalous events simultaneously since overlapping 

anomalies can also occur in practice. There are several ways of dealing with this scenario.  

The best way in our opinion is to use a method called One-vs-Rest or One-vs-All, where a new 

predictive model will be trained for each class present in the training dataset. In our case, this 

means that for each training instance, four predictive models will be created. 

This method has several advantages. First, we can use all the algorithms already tested for 

D5.2. We should point out that some of the methods previously tested support by default this 

type of scenario (i.e., XGBoost). However, we choose to implement our own method seeing 

that there are several ML methods used which are not fully compatible when it comes to how 

they report predictive performance. 
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Second, we can use a One-vs-Rest methodology on datasets that do not have overlapping 

anomalous instances. This results in a much-simplified training and validation cycle, where we 

can prepare for overlapping anomalous instances without having concrete examples in the 

training or validation set. For the sake of brevity, we will refrain from listing a complete list of 

all our experimental results. Instead, we will focus on those methods, which are also described 

for D5.2.  

 

 
Figure 46: Learning curve XGBoost overlapping anomalies 

 

Figure 46 shows how each trained XGBoost model handles a different number of training 

instances in the case of all 4 main anomaly classes. If we go from left to right, we have figures 

for COPY, MEM, CPU, and DDOT anomalies depicted. As before, the experiments were 

designed to gauge the performance of XGBoost with differing amounts of training data. All 

iterations used Stratified Shuffle split with 5-fold cross-validation. 

The overall predictive performance for XGBoost, in particular, and all other ML methods in 

general can be seen as similar to the results shared in the past deliverable. Figure 47 shows 

the ROC (receiver operating characteristic) curves in the same order as in Figure 46. We can 

see that predictive performance is similar for overlapping anomalies and non-overlapping 

anomalies. 

Regarding inference times, these are not overly affected as they are at most 10% slower than 

single model inference. This can be easily explained by the fact that the newly trained models 

are much simpler, being in essence binary classifiers. The final inference is obtained by 

stacking all model predictions. For ease of validation, we compute the predictive performance 

of each model separately. 
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Figure 47: ROC curve for XGBoost 

 

6.2.2 Unsupervised ML methods 

Unsupervised ML methods are arguably more useful than supervised ML methods in the 

context of anomaly detection. These types of methods do not require labeled datasets for 

training. One major downside in our case is that most unsupervised anomaly detection 

methods are basically binary classifiers. This method detects whether an event is anomalous 

or not. There are some ways to give insight into which features caused a particular instance 

to be marked as anomalous. In our experiments, we used Shapely values to accomplish this. 

In the initial experimental phase, we selected 17 ML methods for testing. As before, we will 

detail the three best models for brevity. These models were selected partially because of their 

performance and partially for the different underlying principles they are operating under. We 

should also mention that some methods, such as One class SVM, performed extremely poorly. 

A complete analysis of ML methods and their suitability for use in the SERRANO will be 

performed in the form of a journal paper. 

Isolation Forest is an outlier ensemble-based algorithm that is constructed from multiple 

isolation trees [87]. It explores random subspaces from the data. In essence, it explores 

random local subspaces as each tree uses different splits. Scoring is done by qualifying how 

easy it is to find a local subspace of low dimensionality in which a particular event is isolated 

[88]. In other words, distance from the leaf to the root is used as the outlier score. Similar to 

Random Forest, a supervised method, the final score is obtained by averaging the path length 

of any particular data point in different isolation trees. In most scenarios, Isolation Forest 

works under the assumption that it is more likely to detect or isolate an outlier in a subspace 

of lower dimensionality created by the random splits.  
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Clustering-Based Local Outlier Factor (CBLOF) [89] is a proximity-based algorithm, which is a 

combination of Local Outlier Factor (LOF) and a clustering technique. LOF adjusts the anomaly 

(or outlier) score based on local density. The density is defined as an inverse of average 

distances. This approach results in events in local regions of high density being given higher 

anomaly scores even if they are isolated from the other events in their locality. This is mainly 

due to the definition of density that does not contain the number of anomalies in a cluster. In 

fact, CBLOF is a score in which anomalies are defined as a combination of local distance to 

nearby clusters and the size of the clusters to which each event belongs. Thus, events in small 

clusters that are at large distances from nearby clusters are flagged as anomalies. 

Variational AutoEncoders (VAE) are deep neural network models designed for unsupervised 

training, which can be used for AD tasks [90]. They are often mentioned together with 

Autoencoders (AE), which are also deep learning models with seemingly similar topological 

components: encoder and decoder. The encoder tries to learn a lower-dimensional 

representation of the input data (similar to PCA), and a decoder attempts to reproduce the 

input data in the original dimension (AEs are usually symmetrical). AEs try to encode the data 

in such a way that they reduce the reconstruction error. When used for AD AEs reconstruction 

error can be used as a form of anomaly score. Provided the AE has sufficient training data to 

provide a minimal reconstruction error for normal data. 

Table 12: Unsupervised method scores  

Method Class pre rec spe F1 geo iba 

Isolation Forest 0 0.90 0.90 0.61 0.90 0.74 0.57 

1 0.61 0.61 0.90 0.61 0.74 0.53 

Avg/total all 0.84 0.84 0.67 0.84 0.74 0.56 

CBLOF 0 0.92 0.92 0.71 0.92 0.81 0.67 

1 0.71 0.71 0.92 0.71 0.81 0.64 

Avg/total all 0.88 0.88 0.75 0.88 0.81 0.64 

VAE 0 0.98 0.98 0.93 0.98 0.95 0.92 

1 0.93 0.93 0.98 0.93 0.95 0.91 

Avg/total all 0.97 0.97 0.94 0.97 0.95 0.91 

 

Table 12 shows the overall scores obtained by the 3 ML methods. It is split on a per class basis 

where 0 is a normal data instance and 1 is an anomalous instance. We should also mention 

that for the sake of validation we created a special label for the dataset used during the 

previous supervised experiments. Basically, we transformed the problem into a binary 

classification problem.  

Overall, the VAE is the best performing method, although there are some considerations to 

mention. IF consumes the least amount of resources for training and inference while VAE 

requires substantially more computational resources and specialized hardware in the form of 

GPGPUs. CBLOF is all-around the best performing model. 

Figure 48 highlights the differences between the three ML methods. It shows the decision 

boundaries as projected in a 2-dimensional space. In order to accomplish this visualization, we 

re-projected the original data to a 2D space, using PCA, while at the same time keeping the 

anomalous instance markers as returned from the original data. 
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Figure 48: Decision Boundary Comparison 

 

The decision boundaries also show some of the downsides of each method. IF tends to overfit 

quite easily, leading to poor out of sample performance. This is clearly seen in the decision 

boundary. The data is tightly circumscribed, while in the case of CBLOF, we see that the 

decision boundary shows several hotspots or cluster.  

 
Figure 49: Shapley value-based feature importance 

 

In order to derive the maximum amount of information for use in SAR when using 

unsupervised methods, we use Shapely values. Figure 49 shows how Shapely values can be 

used for calculating which feature from the dataset impacted the detection of anomalous 

instances. Based on this ranking, memory-related features are ranked among the highest. This 

is a direct result of how the anomaly induction methods work. MEMORY, COPY, and DDOT 

anomalies have a significant memory component to them. 

Figure 50 shows how Shapely values can be used on a per instance basis, not just globally. We 

can see an anomalous instance that has CPU, memory and disk related features. In fact this is 

a DDOT anomalous instance. Although inferences are not as clear as in the case of supervised 

methods, we can still give insight into what caused each anomaly to occur. 
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Figure 50: Shapley value-based feature importance 

 

6.3 Discussion 

In this section, we presented the overall architecture of the SAR, specifically the event 

detection component, EDE. We showed how the SAR component can analyse telemetry data 

and signal which event is anomalous. We also detailed how SAR can be configured and used 

both via configuration file and REST API.  

In the case of supervised methods, we extended our initial work by adding support for 

detecting overlapping anomalous instances. While the results presented in this deliverable are 

relatively few, we aim to finalize a journal paper detailing our results before the end of the 

project. Furthermore, we aim to incorporate part of the transprecision work done in WP4 and 

was reported in D4.4 (M30). For unsupervised methods, our experimental results show that 

we can get meaningful insight into what caused an anomalous instance to occur. While these 

are basically binary classification methods, we can still train high-quality models with good 

predictive performance. The root cause analysis of detected anomalous events can be 

successfully done using Shapely values. Some of the results and experiments have already 

been published in a journal article [91], and we aim to have at least one more journal article 

by the end of the SERRANO project. 

Regarding integration, SAR requires access to only two SERRANO components. The first is the 

telemetry services (i.e., Central Telemetry Handler and Persistent Monitoring Data Storage). 

Once these integrations are set up SAR can analyse the incoming data. Second, SAR requires 

access to a Message broker to send all analytics reports from where other components and 

end-users can fetch the data. 
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7 Network and Cloud Telemetry Framework  

7.1 SERRANO Telemetry Framework 

A heterogeneous and distributed infrastructure, like any system, must be observable before 

it can become subject to optimization. Towards this direction, Task 5.3 developed the 

SERRANO telemetry framework that includes autonomous and scalable mechanisms to 

provide the sense (detect what is happening) and discern (interpret senses) operations in the 

envisioned closed-loop control. SERRANO’s hierarchical monitoring infrastructure (Figure 51) 

aims to facilitate orchestration decisions, detect problems, and trigger proactive or reactive 

adjustments to SERRANO-enhanced resources and deployed applications. The SERRANO 

telemetry stack consists of three key building blocks: (a) the Central Telemetry Handler, (b) 

Enhanced Telemetry Agents, and (c) Monitoring Probes.  

  
Figure 51: SERRANO hierarchical telemetry architecture 

 

The Central Telemetry Handler is the root element of the SERRANO hierarchical telemetry 

infrastructure. The various Enhanced Telemetry Agents are responsible for a specific set of 

Monitoring Probes. The collection and exchange of monitored information is performed 

periodically, while the granularity can be adapted, and other telemetry operations can be 

activated based on detected events or explicitly by entities at upper layers. The telemetry 

functionalities are spread into several layers to meet the scalability requirement while 

enabling immediate reaction to events that affect the performance of the deployed 

applications at individual parts within the SERRANO platform. Deliverable D5.3 (M15) provides 

the overall design of the telemetry framework along with the technical details for the initial 

implementation of its main components. Next, we present the developments during the 

second iteration of the implementation period (M16-M31), the final developments in the 

Persistent Monitoring Data Storage (PMDS) service, and the successful integration of the 

telemetry framework mechanisms with other services in the SERRANO platform. 
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7.1.1 Central Telemetry Handler and Enhanced Telemetry Agent 

The Central Telemetry Handler and Enhanced Telemetry Agents provide the same core 

functions at different scales and views of the infrastructure resources and deployed 

applications. Hence, they share the same design (Figure 52) and a joint implementation for 

their core components. A more detailed description of the individual components is available 

in D5.3 (M15).  Next, we present the extensions and new developments during the second 

iteration of the SERRANO implementation plan (M16-M31). 

 

 

Figure 52: Central Telemetry Handler and Enhanced Telemetry Agent architecture 

 

The Central Telemetry Handler and Enhanced Telemetry Agent are implemented in Python 

using popular frameworks such as Flask 2.0 [77], Pika [93], and PyQt [94]. These components 

have been fully containerized and are packaged in separate container images using the 

SERRANO CI/CD services. To facilitate easy deployment on Kubernetes platforms, there are 

also available corresponding Kubernetes YAML description files, including Deployment, 

Service, and ConfigMap. These descriptions enable the automatic deployment and scaling of 

the Central Telemetry Handler and Enhanced Telemetry Agent services within Kubernetes 

environments. 

In the final release, the Central Telemetry Handler and Enhanced Telemetry Agent offer 

comprehensive configuration options through their respective REST APIs (PUT methods 

/api/v1/telemetry/central & /api/v1/telemetry/agent). The methods enable the on-demand 

change of the current operational configuration of the services. More specifically, by passing 

a JSON description as a parameter, various operational parameters can be adjusted, as listed 

in the following table. 
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Table 13: Central Telemetry Handler and Enhanced Telemetry Agent configuration options 

Parameter Name Parameter Type Description 

active_monitoring Boolean Defines if the service will or will not query the registered entities.  

active_notifications Boolean 
Defines if the service will or will not emit notifications related to 

the operation of the telemetry framework.  

query_interval Integer 
Period, in seconds, for retrieving the monitoring information by 

each registered entity. 

query_timeout Integer 
Timeout period, in seconds, for getting the requested monitoring 

information from a telemetry service. 

data_retain_period Integer 

Maximum period, in seconds, for retaining the collected 

monitoring data in the operational database prior to their 

automatic deletion from the telemetry services. 

excluded_entities List 
A list of unique identifiers for telemetry framework entities that 

will be excluded from automatic collection of monitoring data. 
 

As part of our efforts to enhance system efficiency, we have significantly improved the internal 

workflow of the Central Telemetry Handler and Enhanced Telemetry Agent. The updated 

workflow facilitates seamless data collection from the SERRANO Enhanced Telemetry Agents 

while offering external services access to the collected information. The information includes 

comprehensive inventory data about available resources within the SERRANO platform and 

real-time monitoring data reflecting their current operational state. We implemented the 

required modifications within the Access Interface, Telemetry Controller, and Data Engine 

components. These improvements have resulted in a more robust and efficient data flow, 

empowering the system to better cater to the needs of our users and external services. 

 
Figure 53: SERRANO telemetry framework – Inventory workflow 

 

Figure 53 illustrates the information workflow among the telemetry components involved in 

retrieving inventory information for a specific edge, cloud, or HPC infrastructure within the 

SERRANO platform. Each SERRANO Monitoring Probe is automatically registered in a specific 

Enhanced Telemetry Agent. During the registration phase, a probe sends the inventory data 

for its type of resources, among other parameters. Next, the Enhanced Telemetry Agent 
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updates its internal services for the new Monitoring Probe and stores the received inventory 

data in the corresponding Operational Database.  

The Central Telemetry Handler (CTH) offers two distinct methods to provide the requested 

inventory information. These methods facilitate data retrieval either by explicitly retrieving 

the inventory data from the appropriate Enhanced Telemetry Agent (ETA) or by directly 

querying the Operational Database. To this end, the CTH exposes two different methods. The 

first method (GET - /api/v1/telemetry/central/clusters/cluster_uuid) directly fetches the 

inventory data from the Operational Database. This workflow is represented in the diagram 

in blue colour. The second method (GET - /api/v1/telemetry/central/inventory/cluster_uuid) 

triggers an internal procedure that notifies the corresponding Enhanced Telemetry Agent to 

execute the inventory operation for the specific platform. This workflow is depicted using red 

colour. More specifically, the CTH, using the information from the Operational Database, finds 

the ETA that manages the specified platform and forwards to it the inventory request (Step 

2). Then, the ETA queries the respective Monitoring Probe to get the information data (Steps 

3 & 4) and updates the Operational Database with the retrieved information (Step 5). Next, 

the ETA returns the requested inventory information to the CTH (Step 6). 

 

 
Figure 54: SERRANO telemetry framework – Monitoring workflow 

 

Figure 54 shows the information workflow for retrieving monitoring data for a specific edge, 

cloud, or HPC infrastructure. The corresponding ETA automatically queries each SERRANO 

Monitoring Probe to provide the respective monitoring data. The ETA stores the received 

information in the Operational Database and the Persistent Monitoring Data Storage (PMDS). 

This workflow is executed over an infinite horizon and is depicted in blue colour in the above 

figure. Again, two distinct methods are available that provide the monitoring data either by 

explicitly retrieving them from the appropriate ETA or by directly querying the Operational 

Database. The first method (GET - /api/v1/telemetry/central/cluster/metrics/cluster_uuid) 
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directly fetches the monitoring data from the Operational Database and is represented in the 

diagram by an orange colour.  

The second method (GET - /api/v1/telemetry/central/cluster/monitor/cluster_uuid) provides 

the most up-to-date monitoring data by querying the appropriate Monitoring Probe through 

the corresponding ETA. In parallel, the framework automatically updates the operational 

database with the collected information and also stores it in the PMDS service. This workflow 

is illustrated with green colour. In the final release, an ETA stores only a certain number of 

monitoring samples in the Operational Database whose actual count is determined by the 

selected values in two of the supported configuration variables: the query interval and the 

maximum retain period. To this end, an ETA automatically removes the outdated entries, an 

operation represented with the red dotted line in the diagram. Furthermore, methods are 

available to retrieve detailed monitoring information for deployed applications within the 

SERRANO platform. The operation of the involved components is similar. 

7.1.2 Monitoring Probes 

Monitoring probes are the components of the SERRANO telemetry framework that collect 

valuable information about the infrastructure resources, services, and deployed applications 

within the SERRANO platform. Given the diverse nature of information sources targeted by 

the platform, the SERRANO telemetry framework relies on a collection of specialized probes, 

each dedicated to monitoring a specific resource type. As presented in D5.3 (M15), we 

adopted a single design for all SERRANO monitoring probes (Figure 55). This design not only 

ensures autonomous operation of the telemetry components but also facilitates seamless 

integration of these monitoring probes with the Data Collector component of the Enhanced 

Telemetry Agents and Central Telemetry Handler. This integration allows the telemetry 

framework to dynamically adjust the level of monitoring granularity, supporting both periodic 

and on-demand monitoring.  

  

 

Figure 55: General architecture of SERRANO monitoring probes 

 

During the second iteration of the implementation plan, we finished the implementation of 

the three different monitoring probes: Kubernetes Monitoring Probe, HPC Monitoring Probe, 

and SERRANO Edge Devices Monitoring Probe.  
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Before describing each developed monitoring probe, we present the operational workflow 

that implements every probe within the SERRANO telemetry framework to ensure the 

seamless operation of the framework. Each monitoring probe during its start-up procedure 

registers to some specific Enhanced Telemetry Agent using the appropriated exposed REST 

method (PUT - /api/v1/telemetry/agent/register/{probe_uuid}). The target Enhanced 

Telemetry Agent (ETA) is specified in the probe’s configuration file, among several other 

operational parameters. Upon successful registration, the ETA can transparently manage and 

interact with the monitoring probe through the exposed REST methods (Figure 61) to collect 

inventory information and monitoring data. In the registration phase, the probe sends the ETA 

all the necessary operational information along with inventory information for the resources 

it monitors. Below is an example of the registration message from a SERRANO Edge Devices 

Monitoring Probe, along with the exchanged inventory information. 
 

{"cluster_uuid": "7628b895-3a91-4f0c-b0b7-033eab309891", "probe_uuid": "5c781e1
9-344f-436e-b259-8cdf5b5eab97", "url": "https://serrano-edge-storage-probe.serv
ices.cloud.ict-serrano.eu", "type": "Probe.EdgeStorage", "inventory":[{"lat": 4
5.7472357, "lng": 21.2316107, "minio_node_disk_total_bytes": 8333520896, "name"
: "edge-storage-devices-0", "node": "serrano-k8s-worker-02", "timestamp": 16860
52883},{"lat": 45.7472357, "lng": 21.2316107, "minio_node_disk_total_bytes": 83
33520896, "name": "edge-storage-devices-1", "node": "serrano-k8s-worker-02", "t
imestamp":1686052883}]} 

7.1.2.1 Kubernetes monitoring probe 

In the SERRANO, we consider that the edge and cloud platforms that are unified under the 

control of the SERRANO platform are individual clusters managed by Kubernetes instances. 

Monitoring a Kubernetes cluster is crucial for maintaining its health and performance along 

with the overall stability of the SERRANO platform. To this end, the Kubernetes monitoring 

probes are implemented to monitor the clusters effectively.   

One instance of the monitoring probe efficiently handles monitoring the resources and 

applications within a K8s cluster. However, our implementation also supports the on-demand 

deployment of additional monitoring probes, based on the instructions of the Enhanced 

Telemetry Agents, to ensure unhindered operation in large Kubernetes clusters. This probe is 

a Python-based containerized application that follows the overall architecture and operation 

workflow for the monitoring probes within the SERRANO telemetry framework. It also utilizes 

and integrates into a single solution several well-established tools to facilitate its operation, 

such as kube-state-metrics [97] that generates Kubernetes-specific metrics derived from the 

cluster's state, and Prometheus Node Exporter [99] that exposes a wide variety of hardware- 

and kernel-related metrics. 

The probe is designed to automatically discover and monitor all available worker nodes within 

each Kubernetes cluster. This operation uses the Kubernetes APIs to fetch information about 

the available resources and Node Exporter to get the hardware metrics. It can monitor and 

provide both periodic and on-demand telemetry data for the following key cluster-level 

components: 
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• Nodes: Monitor the health and resource usage of worker nodes (CPU, memory, disk 

space, network). 

• Deployments and Pods: Keep an eye on the status of pods and their resource 

consumption. 

• Persistent Volume (PV) and Persistent Volume Claims (PVC): Monitor storage capacity, 

utilization, and any error conditions related to storage provisioning. 

Beyond cluster-level monitoring, the monitoring probe autonomously monitors the cloud-

native applications deployed across the SERRANO heterogeneous and distributed resources 

(Section 9.4.2). The probe also collects application-specific metrics exposed through custom 

endpoints. It can also dynamically collect relevant performance metrics on a per-function 

invocation basis for the SERRANO-accelerated kernels that are executed as short-lived 

applications (Sections  9.4.3 and 10.5). Figure 56 illustrates the interactions among the 

SERRANO orchestration mechanisms and the telemetry framework components so as to 

autonomously collect the most up-to-date telemetry data for the deployed cloud-native and 

short-lived applications, regardless of the individual platforms that host them. This operation 

is critical in order to ensure that the envisioned SERRANO continuous control loop 

mechanisms will always be able to adjust resources and migrate workload based on feedback 

regarding the application’s state.   

 
Figure 56: Autonomous monitoring of deployed cloud-native and short-lived applications  

7.1.2.2 HPC monitoring probe 

The HPC monitoring probe is a Python-based implementation that adheres to the overall 

architecture and design principles established for all SERRANO monitoring probes. This 

approach ensures consistency and ease of integration within the telemetry framework. The 

HPC monitoring probe implements all the necessary interfaces (Figure 61) to enable seamless 

communication with other components of the telemetry framework. Moreover, the HPC 

monitoring probe is containerized to ensure portability and scalability, facilitating its 

straightforward deployment and management in various environments. 
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The HPC monitoring probe interacts with the SERRANO HPC Gateway, utilizing its exposed 

REST methods for data exchange. By leveraging the HPC Gateway REST API, the monitoring 

probe efficiently collects inventory information and continuously monitors the status of HPC 

resources and the execution progress of deployed jobs.  The integration with the HPC Gateway 

involves utilizing specific REST methods (Figure 85) that facilitate the retrieval of essential 

metrics, performance data, and status updates from the HPC infrastructure and currently 

running jobs. This integration empowers the telemetry framework to capture real-time 

insights into the HPC system's health, resource utilization, and job execution efficiency. 

Figure 57 showcases an example of the collected resource descriptions and performance 

monitoring parameters for the SERRANO HPC platform. 

 
Figure 57: Monitoring data collected by SERRANO HPC monitoring probe 

7.1.2.3 SERRANO edge storage devices monitoring probe 

The SERRANO edge storage devices offer decentralized storage locations at the network edge 

while providing an S3 interface for seamless data access. These devices are containerized 

applications built upon the MinIO [103],  a high-performance, highly customizable object 

storage solution. Deployment of these SERRANO edge devices is efficiently managed by 

SERRANO's orchestration mechanisms, which integrate smoothly with various Kubernetes 

platforms. For detailed information about these SERRANO-enhanced devices, refer to 

deliverables D3.2 (M15) and D3.4 (M30). 

To this end, the monitoring probe utilizes the MinIO server's capabilities in exposing inventory 

and monitoring data over Prometheus-compatible endpoints. The monitoring probe uses 

these endpoints to collect information about the current state of the SERRANO edge storage 

devices. The probe is designed to automatically discover and monitor all available edge 

storage devices within each Kubernetes cluster. One instance of the monitoring probe 

efficiently handles monitoring for all SERRANO edge storage instances in a K8s cluster. This is 

achieved by querying the available pods within the Kubernetes cluster and scanning for 

specific labels associated with SERRANO edge storage device instances. Following this 

approach, the monitoring probe dynamically determines the number of SERRANO edge 

storage devices in each Kubernetes cluster, allowing it to seamlessly collect inventory and 

monitoring information. The probe is a containerized application implemented in Python. 
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7.1.3 Operational Database 

The SERRANO telemetry framework also includes a number of operational databases that 

store information related to the deployed components of the framework along with their 

configuration and relationships. Moreover, it includes the most up-to-date information for the 

available infrastructure resources, their current state, and details about the deployed 

applications and executed SERRANO-accelerated kernels. These databases are based on 

MongoDB [102], an open-source document-oriented database that stores data in flexible 

format JSON-like documents. The primary role of the operational databases is to facilitate the 

autonomous operation of the SERRANO telemetry framework components and provide the 

most up-to-date monitoring data. To this end, to retain historical analytical data to feed the 

various AI/ML-based decision mechanisms within the SERRANO platform, the Persistent 

Monitoring Data Storage (PMDS) service is also available, described in Section 7.4. 

The Central Telemetry Handler stores details for the Enhanced Telemetry Agents it manages 

in its operational database, along with high-level details about the available resources in the 

overall SERRANO platform and the deployed applications. The information is organized into 

four primary documents: entities, infrastructure, serrano_state_metrics, and 

serrano_deployments.  The first document facilitates the operation of the telemetry 

framework and provides details for the deployed Enhanced Telemetry Agents within the 

SERRANO platform as well as the Monitoring Probes registered to each Enhanced Telemetry 

Agent. Below is an example of the available information for one Monitoring Probe for a 

Kubernetes cluster and one Enhanced Telemetry Agent. 

 

The infrastructure document provides a high-level description of the capabilities of the 

available computational and storage resources in each edge, cloud, and HPC infrastructure 

within the SERRANO platform. The serrano_state_metrics includes high-level monitoring data 

for the usage of the available resources, with less granularity and details compared to the 

corresponding information available in the operational database for each Enhanced Telemetry 

Agent. Finally, the objects in serrano_deployments keep track of the applications’ 

deployments and their allocation within the SERRANO platform. The Central Telemetry 

Handler manages the contents of its operational database exclusively by interacting with the 

available Enhanced Telemetry Agents. 

Similarly, the information in the operational database of an Enhanced Telemetry Agent is 
organized into seven documents: entities, clusters, cluster_deployment_metrics, 
cluster_state_metrics, edge_storage, edge_storage_metrics, serrano_kernels_metrics. The 
entities document provides details for the available Monitoring Probes, Objects in clusters and 
cluster_state_metrics provide details for the inventory and monitoring information of the 
edge, cloud, and HPC platforms controlled by the Enhanced Telemetry Agent. 
The edge_storage and edge_storage_metrics documents collect information for SERRANO 
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edge storage devices. The cluster_deployment_metrics and serrano_kernels_metrics 
documents store the most up-to-date monitoring information for the applications and 
SERRANO-accelerated kernels that are deployed in the part of the SERRANO platform that the 
Enhanced Telemetry Agent monitors. 

7.1.4 Deployment of telemetry services and data visualization 

Figure 58 presents the SERRANO telemetry framework services deployment in the project 

integration testbed. During the preparation of the deliverable, the deployment included the 

Central Telemetry Handler, two Enhanced Telemetry Agents, one probe for each of the two 

available Kubernetes clusters, one probe for the HPC platform, one probe for the SERRANO 

edge storage devices, and the Persistent Monitoring Data Storage service. All the SERRANO 

telemetry framework services have been deployed using the defined Kubernetes YAML 

description files and the corresponding container images.  

 

Figure 58: SERRANO telemetry framework deployment in project integration testbed 

 

Moreover, the telemetry framework has been extended to visualize the collected inventory 

and monitoring information from the SERRANO platform through a web-based user interface. 

To this end, the final release includes a visualization module based on Grafana [97], an open-

source analytics and interactive visualization web application with charts and graphs. We 

created several custom dashboards to visualize inventory and monitoring data retrieved from 

the Central Telemetry Handler and the Persistent Monitoring Data Storage service. The 

visualization module enables data aggregation and filtering by time range, workload, and 

infrastructure. Figure 59 presents an example of the provided information. 
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Figure 59: Memory usage for a selected worker node in the NBFC K8s cluster 

 

7.2 Inventory and telemetry parameters 

The SERRANO telemetry framework automatically discovers and monitors heterogeneous 

resources and deployed applications in edge/cloud and HPC platforms. Through the 

Operational Database, the framework maintains a detailed catalogue (i.e., inventory data) 

with the available computational and storage resources along with their capabilities and 

characteristics within the individual edge, cloud, and HPC platforms that constitute the 

SERRANO platform. Moreover, it constantly monitors the available resources and 

automatically gathers performance monitoring data (i.e., telemetry data) for all the deployed 

applications and executed SERRANO-accelerated kernels.  

The orchestration and service assurance mechanisms leverage the collected inventory and 

telemetry data to improve the orchestration, deployment, and re-optimization decisions over 

time, depending on the status of the system as well as previous executions of the applications 

and kernels. To this end, the appropriate monitoring and telemetry data is collected by five 

main categories of resources: (i) computational and storage resources in edge/cloud 

platforms, (ii) HPC hardware resources, (iii) SERRANO-enhanced hardware resources (e.g., 

multi-level approximate hardware accelerators), (iv) SERRANO-enhanced software resources 

(e.g., SERRANO edge devices, on-premise storage gateway, lightweight virtualization, 

hardware acceleration abstractions) and (v) deployed cloud-native and short-lived (serverless) 

applications.   

Compared to the initial version of the telemetry framework, we extend the monitoring 

parameters for the cloud and edge storage locations. Moreover, we updated and restructured 

the inventory and monitoring parameters for the edge and cloud computational resources to 

facilitate their more efficient handling by the PMDS service. In addition, we expanded the 

telemetry parameters that are automatically collected for the deployed applications and 

SERRANO-accelerated kernels. Finally, the telemetry framework is now able to collect 

application-specific parameters. Figure 60 summarizes the resource description and 

monitoring parameters that collect the final version of the SERRANO telemetry framework.  
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Figure 60: Collected inventory and monitoring parameters in the SERRANO platform 

 

7.3 Telemetry interfaces 

Regarding the telemetry interfaces, we have made significant enhancements to the 

functionality of the Access Interface, as well as the exposed REST API in Central Telemetry 

Handler, Enhanced Telemetry Agent, and available Monitoring probes. These new 

developments greatly facilitate the control and management of telemetry entities across the 

hierarchical infrastructure while enabling automatic monitoring of deployed cloud-native 

applications and SERRANO-accelerated kernels throughout the unified SERRANO platform. 

The final version of the REST API exposed by the SERRANO telemetry framework includes 

several methods organized into two main categories. The first set of methods allows other 

SERRANO services (such as the AI-Enhanced Service Orchestrator, Event Detection Engine, 

Resource Optimization Toolkit, and Resource Orchestrator), end users, and even third-party 

applications to easily interact with the SERRANO telemetry framework via the Central 

Telemetry Hander. The second set includes methods exposed by the main components of the 

telemetry framework, supporting their operation, configuration, and exchange of inventory 

and telemetry data within the hierarchical telemetry architecture. Figure 61 and Figure 62 
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provide a summary of the final version of the RESTful API for the SERRANO telemetry 

framework.  

Furthermore, the telemetry framework facilitates the exchange of events about the 

framework itself and the status of resources among the various components of the 

hierarchical telemetry infrastructure. The SERRANO Data Broker component enables this 

functionality by providing a dedicated topic exchange. An exchange serves as a messaging 

routing mechanism capable of supporting various routing logics. In this case, messages 

published by the Notification Engine component in the Enhanced Telemetry Agents or Central 

Telemetry Handler are associated with a routing key adhering to a predefined syntax. These 

messages are presented in JavaScript Object Notation (JSON) format. A detailed description 

of the specific topic exchange and the structure of all available notification messages is 

available in deliverable D5.3 (M15). 

 

 
Figure 61: Telemetry framework REST interfaces – Control and management methods 

 



D5.4 - Intelligent Service and Resource Orchestration Mechanisms 
 

  

ict-serrano.eu  98/158 

 
Figure 62: Telemetry framework REST interfaces – High-level CTH methods 

 

7.4 Persistent Monitoring Data Storage 

A fundamental piece of supporting an effective monitoring and orchestration pipeline is the 

availability of a central repository to retain historical telemetry data for the current state of 

the heterogeneous resources and deployed applications to feed the various AI/ML-based 

decision mechanisms within the SERRANO platform.  

To this end, the SERRANO platform includes the Persistent Monitoring Data Storage (PMDS) 

service. The PMDS acts as long-term storage for the collected timestamped telemetry data 

that provides historical data to the SERRANO orchestration and service assurance 

mechanisms. It is based on InfluxDB [101], an open-source time-series database. InfluxDB 

provides fast, highly available storage for time-series data and can also be used as a data 

source for many other solutions, such as the Grafana, an open-source analytics and interactive 

visualization web application. 

Figure 63 presents the PMDS architecture. The service is implemented in Python using the 

Flask 2.0 and PyQt frameworks. The Access Interface component is a REST controller that 

exposes methods that allow end users and external services to retrieve historical telemetry 

data. The available REST methods are depicted in Figure 64. The Data Engine implements the 

interaction with the InfluxDB by abstracting the required data manipulation for retrieving the 

telemetry data according to the requested parameters. It is also responsible for properly 

updating the stored information. 
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 Figure 63: Persistent Monitoring Data Storage (PMDS) architecture 

 

 
Figure 64: Persistent Monitoring Data Storage (PMDS) RESTful interface 

 

We have developed a Python API to enhance the interaction with the PMDS service, 

simplifying the utilization of its RESTful interface. This API encapsulates the necessary 

functionality to query the PMDS service endpoints, offering a range of filtering parameters. To 

clarify the available options, we have compiled a comprehensive summary of the supported 

parameters for each Python method in the following table. Additionally, Figure 65 displays 

part of the provided telemetry for a specific worker node ("serrano-k8s-worker-02") within 



D5.4 - Intelligent Service and Resource Orchestration Mechanisms 
 

  

ict-serrano.eu  100/158 

the SERRANO UVT K8s cluster. The figure demonstrates the telemetry data presented in both 

formatting options, enabling users to choose the format that suits their needs. 

Furthermore, as part of our ongoing development efforts, we plan to seamlessly integrate the 

PMDS Python API into the final version of the SERRANO SDK. This integration will further 

enhance the capabilities of the SDK, providing users with a comprehensive solution for 

interacting with the PMDS service. 

 

Table 14: PMDS Python API – Available input parameters 

Category Name Description 

Timeframe options 

Accepted formats:  relative         

duration (e.g., -30m, -1h, -1d) or 

Unix timestamp in seconds (e.g., 

1644838147). 

start 
Earliest time to include in results, by default is the 

last 24 hours. 

stop Latest time to include in results. Default is now(). 

Required parameters 
cluster_uuid Determines the K8s cluster. 

namespace Determines the target namespace. 

Filtering parameters 

node_name 
Limits the results only for data related to the 

specified node name. 

field_measurement Limits results only for the selected parameter. 

name Limits results only for the selected service.  

group 

Valid for querying telemetry data for available 

worker nodes within a K8s cluster. Limits results to 

parameters from the selected group. Supported 

values: “general", "cpu", "memory", "storage", 

"network". 

If not specified the "general" metrics will be 

returned. 

Filtering parameters format 

Determines the format of the response. Supported 

values "raw" and "compact".   

­ raw:  provides data in a time series way  

­ compact:  organizes data at a per target 

parameter basis.  
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(Raw format) 

 

 

(Compact format) 

Figure 65: PMDS Python API – Historical telemetry data for a specific worker node within a K8s 
cluster  

 

The PMDS service and its configuration file are packaged as Python applications using the 

SERRANO CI/CD services. We also defined all the required Kubernetes YAML description files 

(i.e., ConfigMap, Deployment, Services, Ingress) to facilitate its deployment in Kubernetes. 

Figure 66 shows the PMDS deployment in the primary SERRANO Kubernetes cluster, which 

the UVT provides in the project.  
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Figure 66: PMDS deployed in main SERRANO Kubernetes cluster 

 

7.5 Identifying Network Congestion Using Knowledge Graphs 

and Link Prediction 

Data and computation distribution approaches through the use of content distribution 

networks and edge computing have alleviated part of the network load in core networks. 

However, the growth of Internet of Things (IoT) devices and the diversification of data sources, 

significantly affects the efficiency and reliability of communication networks that interconnect 

these distributed storage and computing units. As a result, there is an increasing need for 

smart, adaptive network management solutions that observe, decide, and act in real-time. 

Such solutions would allow for proactive and reactive adjustments in network traffic 

management, based on current and predicted link status.  

In what follows, we propose a methodology driven by machine learning that enables the 

prediction of potential network congestion events (i.e., over-usage of network links). We 

implement a graph-based network representation method to encapsulate both topological 

and traffic-related information for each node into vector embeddings. Subsequently, we use 

link prediction methods on these generated embeddings to identify patterns that may identify 

potential network congestion and require preventative measures. The application of 

knowledge graphs in the modelling of communication networks has been limited. However, 

leveraging a Knowledge Graph (KG) to model network infrastructures is crucial for capturing 
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the full state of each link in the network. This holistic approach differs significantly from other 

Machine Learning (ML) applications, which tend to focus solely on individual node properties 

without accounting for their interconnections. Our approach provides a more comprehensive 

representation of the network, capturing not just the state of each node, but also the 

relationships between nodes. The use of graph embeddings allows us to transform these 

network entities (nodes, links) into fixed-length vectors that represent the network in a low-

dimensional space, preserving its topology. This approach facilitates the application of 

traditional data-driven ML algorithms for predicting congestion events without neglecting the 

topological information of each sample, a common limitation of many ML-based approaches.  

7.5.1 Previous Work 

Communication networks are highly dynamic, complex systems with intricate dependencies 

between their elements, which often make traditional ML models inadequate [53]. Moreover, 

these models typically require extensive, annotated data for training, which is not always 

available or feasible to obtain in real-world scenarios. Recently, graph-based models, 

particularly Graph Neural Networks (GNNs), have emerged as a powerful approach for dealing 

with complex, interconnected data like that found in communication networks. GNNs have 

been successful in a variety of applications, including recommendation systems, social 

network analysis, and bioinformatics [54]. However, their application in the domain of 

network management and specifically in the context of routing and traffic optimization, is 

relatively new and largely unexplored [55][56]. 

In particular, the use of GNNs for predicting potential network congestion points, a critical 

aspect of traffic management, has shown promising results. Graph-based link prediction 

algorithms, can be used to predict potential network congestion points by learning the 

underlying patterns of network traffic and predicting when and where link utilization might 

exceed a certain threshold [57]. The integration of GNNs with anomaly detection methods to 

identify anomalous network events, such as processing and memory failures, is a promising 

research direction [58][59][60]. The convergence of graph-based models and ML techniques 

provides a robust framework for automated network management. Knowledge Graphs (KG) 

can be a natural platform for integrating multi-modal data from heterogeneous sources, 

enabling representation and reasoning about their in-between dependencies and 

relationships [61]. Despite the adoption of KG approaches, it is worth mentioning that while 

most optimal resource allocation problems are typically modelled as graph problems [62][63], 

they are usually solved using queuing theory [64], Q-learning [65][66] or via traditional ML 

methods [66].  

Τo the best of our knowledge, no previous work leverages an end-to-end GNN implementation 

by combining graph-based embeddings of network topologies with KG-based event detection 

via link prediction. Combining KGs with GNNs can provide a comprehensive and scalable 

solution to the complex problem of network management, with the ability to model the 

network’s topology and predict potential network congestion points or anomalies. 
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7.5.2 Proposed Methodology 

Our approach materializes an ML-driven pipeline that utilizes knowledge graphs and link 

prediction, both graph oriented and data-driven, in order to address the traffic management 

needs. Recurring inference is a feature provided by the implemented pipeline, hence 

continuous control is feasible. Knowledge graphs comprise a powerful combination of 

intuitive representation of a network and prompt exploitable information. The former is a 

necessity for human operators, while the latter is prerequisite for producing quantifiable 

insights that can be leveraged by state-of-the-art data-driven approaches. 

 

Figure 67: Overview of proposed KG-based modelling and event detection methodology 

 

Our methodology comprises four primary steps, as illustrated in Figure 67. Initially, to address 

the challenge of limited real-world data availability, we use a simulated network topology and 

communication network infrastructure assumptions as inputs. Secondly, we convert this 

simulated infrastructure into a knowledge graph representation. This graph encompasses all 

the key infrastructure entities (datacentre nodes, routers, network nodes) and their 

relationships, encapsulating the network’s overall structure and behaviour in a graph-based 

model. In the third step, we extract topological embeddings from this knowledge graph. 

Finally, instead of employing traditional unsupervised learning algorithms, we use the link 

prediction approach on the extracted embeddings to connect problematic network parts with 

relevant event nodes. The final output of our methodology is the predicted links that 

represent potential network congestion, effectively enabling proactive traffic management 

and optimization.  

The network topology consists of four types of vertices: Datacentres, Routers, Subnetwork 

Nodes, and Exchange Points. The vertices are connected pairwise with different types of 

edges. Specifically, a Datacentre node is connected with a Router node via an edge of type 

“data packet”, which also carries two properties: total processing and memory usage. A 

Router node is connected to a Subnetwork node via an edge of type “regional connection” 

and a Subnetwork node is connected to an Exchange Point node via an edge of type “backbone 

connection”.  

The assumptions made during the generation of the above infrastructure are listed below:  
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o A Datacentre node sends many data packets, but each data packet originates from one 

Datacentres node. 

o Each Router node processes many data packets, but a data packet is processed by a 

single Router node. A Subnetwork node connects multiple Router nodes, and similarly 

a Router node is associated with a multiple Subnetwork node. 

o The Exchange Point nodes are operating in a distributed manner, making it possible 

for them to handle traffic from multiple Subnetwork nodes. 

o The data packets can traverse multiple paths based on the network’s topology and 

current traffic conditions.  

To support our experiments, we simulated two types of events within the infrastructure, each 

having 40 occurrences. The “Processing Failure” event encompasses cases where the 

cumulative processing power demanded by data packets processed at a Router node exceeds 

its capacity. Similarly, the “Memory Failure” event incorporates cases where the cumulative 

memory demanded by the data packets overflows the Router node’s memory capacity. To this 

end, we assumed that the requested processing power and memory could exceed the 

provided capacity by up to thirty percent. This reflects a scenario where the network traffic 

surges unexpectedly, causing stress on the system and possibly leading to service degradation 

or failure. 

7.5.2.1 Knowledge Graph Representation 

We leveraged the simulated infrastructure of the previous step to populate a Knowledge 

Graph (KG) that can be queried using the Cypher query language [29] [30]. Each corresponding 

entity of the modelling step is assigned to a different node type, while their in-between 

relationships are represented as different edge types in the graph.  

Overall, we represented the connection of 3200 Datacentre nodes with 2400 Routers via 9660 

“data packet” relationships. These Routers are connected to 120 different Subnetwork Nodes 

through 3600 “regional connection” relationships. Finally, the Subnetwork Nodes are 

allocated to 80 Exchange Points via 240 “backbone connection” relationships. It is also noted 

that each Router includes a total processing usage and a total memory usage property, while 

each “data packet” relationship contains a computing demand and data size property, 

denoting the upcoming infrastructure needs.  

Apart from the infrastructure-type nodes, the KG was enriched with two event-type nodes: 

Processing Failure Event node and Memory Failure Event node, corresponding to cases of 

processing and memory over usage of Router nodes, respectively. Given that link prediction 

relies on training data derived from a subset of edges that have ground-truth labels to predict 

similar connections on unseen data, the simulated instance encompassed 80 Router nodes 

with over usage properties: 40 of them with processing over usage and 40 of them with 

memory over usage. However, only 30 Router nodes of each type were connected to their 

corresponding event node, serving as a training set for the link prediction algorithm. The 

remaining edges were intentionally excluded in order to be predicted by the link prediction 
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model. The virtual graph that represents all node labels and relationship-types available in the 

above described knowledge graph is shown in Figure 68.  

 
Figure 68: Knowledge graph meta-graph 

7.5.2.2 Creation of Graph Embeddings  

The graph created in the previous phase offers an insightful way to model our simulated 

communication infrastructure without relying on fixed-size representations. We employed a 

graph embedding method to transform graph entities (nodes, edges) into vectors in a low-

dimensional space while preserving the graph’s topology. 

We used GraphSAGE [69], a neural-based graph embedding method, to generate predictive 

representations through unsupervised learning by sampling and aggregating features from a 

node’s local neighbourhood using random walks. Instead of training standalone embedding 

vectors for each node, it trains a set of aggregator functions that combine feature information 

from its closest neighbours. This enables the simultaneous learning of the topological 

structure of the node’s neighbourhood and the distribution of the node’s features within it. 

For each node v ∈ V of the sub-graph, GraphSAGE creates a tree that has as root the 

corresponding node. The depth of the tree equals the defined search depth K inside the graph, 

whereas the children of each tree node are its adjacent nodes in the graph. In order to keep 

the computational footprint of each batch fixed, instead of using the full immediate 

neighbourhood sets, a fixed-size uniform sampling is performed and a sample of the 

immediate neighbours is leveraged. Step 1 in Figure 69 depicts the random tree of depth 3 

created for a node of the graph. The aforementioned tree is then utilized by the aggregation 

functions in order to create the embeddings of the root node. The procedure is described 

below. 
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Figure 69: The three-step process of the GraphSAGE inductive representation method.  

 

The algorithm follows an iterative approach, where the initial node representations (i.e., 

original node features) are updated based on the network topology and their neighbours’ 

features. Specifically, given a target node and a defined range of search depths K, for each k ∈ 

1, ..., K, the algorithm updates the representations of the nodes based on their immediate 

neighbours (i.e., the nodes in the (k − 1)th layer are updated based on the features of the nodes 

in the k th layer). As shown in Step 2 of Figure 69, for k = 1, the representation of the red node 

will be updated with the aggregated information derived from its green neighbour nodes, for 

k = 2 the representation of the green nodes will be updated by that of their turquoise 

neighbour nodes, and so on. Finally, the target node (red) representation is derived from the 

aggregated updated representations of its immediate neighbours into a single vector (Step 3 

of Figure 69). This vector representation forms the final embeddings for the target node; this 

operation is repeated for every node in our graph. 

It should be noted that the update process comprises the following operations: First, the 

neighbourhood representation for each node is calculated by aggregating the previous 

representations of its immediate neighbours, using one of the aggregator architectures 

described in the following paragraph. Second, this neighbourhood representation is 

concatenated with the node’s previous representation, and finally, this concatenated vector 

is fed through a fully connected layer with a nonlinear activation function, which transforms 

the representation to a fixed size (Figure 69). Hence, as the process iterates through search 

depths, nodes incrementally gain more and more information from further reaches of the 

graph. For k = 0 the algorithm initializes by setting as representations of each node its input 

node features. 

During training, a graph-based loss function is used in a fully unsupervised learning setting to 

tune the learnable weight matrices Wk via stochastic gradient descent. The loss function 

incorporates a negative sampling term, promoting similar vector representations for nearby 

nodes while enforcing distinct representations for disparate nodes. 
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At inference time, the trained system generates embeddings for entirely unseen nodes by 

applying the learned aggregation functions. GraphSAGE follows an inductive approach, only 

exploiting local node attribute information. Thus, it can generalize to unseen data, unlike 

transductive embedding frameworks that can only generate embeddings from static graphs.  

7.5.2.3 Event Prediction  

The embeddings created as described in the previous section were utilized for link prediction, 

aiming to anticipate two types of events: processing failure and memory failure events. Each 

element of the vector was regarded as a feature for link prediction, with the size of the dataset 

derived from the number of nodes in the graph and the length of the vectors.  

Link prediction algorithms aim to predict future or missing associations among nodes in a 

network. The idea behind link prediction is that the likelihood of an association between two 

nodes depends on their individual properties and the network structure. More specifically, 

similar pairs of nodes (with similar node properties and neighbourhoods) tend to connect with 

the same link type. Figure 70 depicts an example where a Router node (with properties: total 

processing usage = 110, total memory usage = 60, 1st embedding element = 8.23, 2nd 

embedding element = 0.75) is connected to the Processing Failure node while another Router 

node (with similar properties) is considered as candidate for linking. In our study, we 

specifically used a Graph Neural Network (GNN) based method to perform the link prediction 

task using the PyTorch Geometric (PyG) library [70]. 

 
Figure 70: The link prediction process. 

 

A GNN learns to generate node representations incorporating both local graph structures and 

node features [71]. By iteratively updating the node embeddings based on its neighbouring 

node representations, a GNN can model the dependencies among the nodes in the graph. 

Once the node embeddings are obtained, each node pair's similarity measure is calculated to 

predict whether a link exists or will form in the future. 
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In our setup, we trained a GNN on the initial graph where each node is associated with the 

GraphSAGE embeddings. After the GNN training phase, we obtained a new set of nodes 

embeddings, which were used for computing the similarity scores. We used Cosine Similarity 

as the similarity measure, where the similarity score for a node pair is computed as the cosine 

of the angle between their embedding vectors [72]. The similarity scores were then used to 

rank all possible node pairs in descending order, with the highest scores suggesting the most 

likely future links. 

This approach allowed us to assign potential processing failure or memory failure events to 

our Router nodes. A potential processing failure event can be predicted if a high similarity 

score is obtained for a pair of a Datacentre node and a Router node, suggesting a likely future 

association between the two and potential over usage of processing resources leading to a 

network bottleneck. Similarly, a potential memory over usage event can be predicted if a high 

similarity score is obtained for a Datacentre node and a Router node, suggesting a potential 

demand for memory that exceeds the Router’s capacity. In essence, our link prediction 

approach allowed us to anticipate and respond to potential failure events in our 

infrastructure, facilitating proactive resource management and performance optimization.  

7.5.3 Experiments 

We used the NetworkX Python package [73][74] to construct the infrastructure graph and 

generate the events. We utilized the Neo4j Python Driver [73] to import the graph into the 

Neo4j graph database management system [75], thereby representing it as a knowledge 

graph.  

To create node embeddings, we relied on Neo4j’s built-in GraphSAGE algorithm. We set up a 

3-layer GraphSAGE architecture with a pool aggregation strategy, a random walk search depth 

of w = 5, and a sigmoid activation function [76]. The model was trained in batches of size b = 

10 for 30 epochs, using a learning rate l = 0.1, to produce node embeddings of dimension d = 

16. The training process took approximately 2.5 seconds, and the trained model was used to 

derive embeddings for all nodes of the sub-graph. These were then added as additional 

properties of type embeddingGraphSage to each node. 

Following the embedding process, we utilized the PyTorch Geometric (PyG) library’s link 

prediction method to forecast the processing failure and memory failure events. We trained 

the link prediction model on the generated node embeddings and used cosine similarity as 

the measure to compute similarity scores between node pairs. These scores were used to rank 

potential future links, with high scores indicating likely future connections. We trained our 

model for 300 epochs using the mean square error loss function on 1800 Router nodes: 1740 

with normal usage properties and 60 with processing and memory over usage properties. The 

test set comprised of 580 Router nodes with normal usage properties plus the excluded 10 

nodes with processing over usage and the 10 nodes with memory over usage properties for 

our evaluation. The training process was run on a computer with an Intel Core i7 processor 

and 16GB RAM. The computation time for the link prediction model was approximately 3 

seconds, and the results obtained are presented next. 
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By using this approach, we successfully applied machine learning methodologies to a graph-

based representation of our infrastructure. This not only allowed us to predict potential traffic 

congestion events, but also provided a clear and intuitive understanding of the underlying 

infrastructure and its usage patterns.  

Next, we present the simulation results for a particular instance of the setting. The evaluation 

metrics used to represent the results of the implemented link prediction algorithm are 

Confusion Matrix, Accuracy, Precision, Recall, and F1 Score. We composed a summary metrics 

table (Table 15) that includes performance metrics for each class of events.  

Table 15: Link prediction evaluation metrics 

 Precision Recall F1 Score Support 

Memory Failure 0.32 0.70 0.44 10 

Normal 0.99 0.96 0.98 580 

Processing Failure 0.44 0.80 0.57 10 

Accuracy   0.95 600 

Weighted AVG 0.97 0.95 0.96 600 

 

From Table 15, it can be seen that the accuracy of the link prediction model is quite impressive, 

exceeding 95%. Additionally, it is noteworthy that the model performs well in predicting both 

the ’Normal’ and the ’Failure’ classes, suggesting that the learned embeddings are robust 

enough to capture the complex interdependencies within the infrastructure. The model 

exhibits a higher recall score for both ’Memory Failure’ and ’Processing Failure’ cases, 

signifying that it can correctly identify a substantial proportion of over usage events. The lower 

precision in these classes results from the model predicting more false positives, which might 

be an acceptable trade-off in this context as a preventive measure. It is crucial to flag potential 

over usage events to prevent them from escalating into more significant issues. The ’Normal’ 

class shows high precision, recall, and F1 score, indicating the model’s effectiveness in 

correctly identifying normal system usage scenarios and reducing false alarms. It is important 

to remember that the performance metrics of the model are tied directly to the quality of the 

node embeddings created by the GraphSAGE algorithm.  

 
Figure 71: Link prediction confusion matrix 
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Since the embeddings encode both topological and node feature information, the success of 

the link prediction model in identifying possible over usage events speaks to the expressive 

power of the embeddings. Despite the imbalanced distribution of classes in the dataset, the 

weighted average of precision, recall, and F1 score surpasses the 96% mark, further 

reinforcing the efficacy of the link prediction model in this task. These high scores suggest that 

the model is able to generalize well across the different classes, exhibiting its ability to handle 

both normal and over usage events effectively. For an alternative visualization of model 

performance, we provide a confusion matrix for the link prediction model (Figure 71). 

7.5.4 Discussion 

In this section, we discuss our proposed methodology's potential benefits and implications 

from two main perspectives: network service providers and end users. 

For network service providers, our approach offers a tangible means of capturing and 

understanding the complex, dynamic aspects of network management and orchestration 

needs of their clients. By modelling these interactions using a graph-based approach and 

learning embeddings, we provide a measurable way to address real-time communication 

event detection challenges. This proactive methodology facilitates the discovery of usage 

patterns and the prediction of unusual or outlier events, allowing service providers to better 

anticipate and manage network incidents. This proactive management leads to a range of 

benefits including, but not limited to, reduction of service level agreement (SLA) violations 

(such as availability, response time, reliability, and cost limit), and enhanced ability to manage 

heterogeneous resources across different domains efficiently, automatically, and in scalable 

manner. This translates into maximizing overall network efficiency, facilitating the 

implementation of complex billing models, and proactively preparing for future demands and 

capacity needs.  

From the perspective of the end user, our event detection approach offers enhanced reliability 

and trust in the communication network services. Ensuring high quality of service (QoS) 

requirements, and proactively informing users about potential outlier events related to 

abnormal communication patterns, not only optimizes user experience, but also increases 

transparency. These outlier events can be a result of compromised services, malfunctioning 

components, configuration anomalies or even adversarial attacks, providing users with 

valuable insights into their network status. It is important to note that while individual 

resource usage values (e.g., network traffic bandwidth, latency) might not surpass a certain 

threshold, adverse or malicious behaviour can be inferred from the combination of these 

values, as depicted by the graph-based embeddings of the network structure.  

This means our approach adds an additional layer of protection against adversarial attacks or 

similar malicious intents that target the integrity of network services, thereby further 

fortifying network security. Thus, our approach addresses a dual need: equipping service 

providers with the tools to efficiently manage their networks and helping end users 

experience a reliable, secure, and well-maintained communication service. 
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8 Energy and Resource Aware Flow Mapping 

This section reports on the progress of Task 5.4 "Energy and Resource Aware Flow Mapping", 

which focuses on creating a framework to help developers integrate performance and energy 

modelling functionality into their digital services, specifically within the SERRANO platform. It 

involves considering hardware, operating systems, compilers, and drivers from an HPC 

application developer's perspective in relation to SERRANO's digital services. The task includes 

selecting energy-aware benchmarks running on HPC systems. The results were used to extend 

existing energy and performance models tailored to the specific hardware features, allowing 

developers to visualise application execution regarding power consumption. 

In the previous deliverable D5.2 (M15), the main focus was on getting the test cluster (EXCESS 

cluster) ready. This cluster has a dual purpose: firstly, to evaluate the energy efficiency of HPC 

services, and secondly, to function as a testing platform for the SERRANO orchestrator. The 

testbed offers numerous opportunities to discover the optimal configuration of HPC services 

in terms of performance and energy efficiency. Additionally, it aids in preparation for utilising 

the Hawk supercomputer. This preparation encompasses activities such as installing 

hardware, developing, and executing tools, and analysing benchmarks. These actions aim to 

study the behaviour of the hardware and software employed in the SERRANO project, 

particularly concerning HPC Services. 

During the second iteration of the implementation plan (M16-M31), the task focused on 

developing power measurement utilities and deriving an energy model of the EXCESS cluster 

using power measurement hardware and extensive benchmarking. This energy model was 

also used to extrapolate the energy consumption of the Hawk supercomputer using linear 

regression. This section presents the status of these activities as well. 

8.1 Excess Cluster, Hardware, and Tools 

One reason for installing the EXCESS cluster is the absence of an interface to measure the 

power consumption in Hawk. It is, therefore, impossible to investigate possible configurations 

of HPC services concerning energy efficiency. The EXCESS cluster contains the external 

hardware on one compute node to measure voltage and current. Therefore, the power 

consumption can be accurately derived. 

Figure 72 illustrates the primary elements comprising the EXCESS cluster: 

• Login node, which serves as a gateway for accessing the compute nodes within the 

cluster. 

• Node01 node, which functions as a compute node and shares the exact CPU model as 

the Hawk supercomputer. It is equipped with six sensors that measure electric power 

and voltage from three 12-volt power sources: CPU1, CPU2, and the motherboard 

(ATX). This enables recording power consumption details for the main memory (64 

GB), CPU, voltage regulators, and InfiniBand Adapter. 
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• Addi server, which is equipped with AC/DC converters and is connected to the sensors 

of node01. The measurement process is initiated for each batch job, and the data is 

stored in the home directory once the job is completed. The recorded data can be 

utilised for subsequent energy profiling and analysis purposes. 

 

 
Figure 72: Hardware components of the EXCESS cluster 

 

The compute nodes of EXCESS and Hawk are similar but not identical (Table 16). However, the 

energy efficiency of these two systems can be compared, given that the configuration of the 

operating mode of the processors and main memory is as close to each other as possible. To 

address this, BIOS and OS settings were tuned such that the configuration of EXCESS nodes is 

similar to the Hawk nodes. 

Table 16: Comparison between compute nodes of Excess and Hawk 

Hardware EXCESS Compute Node Hawk Compute Node 

CPUs 1 x AMD-EPYC-7742 2 x AMD-EPYC-7742 

Main memory Samsung SDRAM DDR4 double rank, 
3200 MT/s, 8x16GiB 

Micron SDRAM DDR4 double 
rank, 3200 MT/s, 16x16GiB 

 

The EXCESS cluster is equipped with utilities for interfacing with the power measurement 

hardware, obtaining measured data, transforming these data into suitable format, and 

visualising the power measurements. 

8.2 Power Measurement Utilities 

The power measurement utilities automatically start and stop external power measurement 

on compute nodes during the lifetime of a batch job. Slurm [105] batch scheduler provides a 

configuration for prolog and epilog scripts, which allow to integrate additional functionalities 

before and after a batch job execution, respectively. Therefore, power measurement utilities 

were integrated into the prolog and epilog. 

A user of the EXCESS cluster can enable power measurements in batch jobs by creating empty 

files (save_raw_data and copy_raw_data) in a specific user home directory (.pwm/node01/). 

At the prolog stage, the existence of these files will trigger the Addi server to start the power 
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measurement service. At the epilog stage, this service will be stopped, and the raw binary data 

of the power measurements will be compressed and saved into a specific location: 

/nfs_home/power/pwm/node01/node01_{JOB_ID}.tar.gz, where JOB_ID is the unique 

identifier of the batch job. These data contain precise timestamps that can be utilised to 

synchronise with the energy-aware benchmark applications, i.e., the applications that also 

expose timestamps to signify the change in application phases, such as IO operations (read or 

write), enabled optimisation or arbitrary phases defined by the developers of the benchmarks. 

8.3 Power Measurement Conversion and Visualization  

In order to convert binary data obtained from power measurement sensors (channels) into 

the CSV format, a tool (namely the power_calculate) was developed that reads the data from 

each channel and converts it into a data format that has the following structure: 

Field Description 

ID ID of the application phases  

Time Execution time of the phase 

Number of measures Number of samples to take the measurements 

CPU1 Average, Min, Max Power [Watt] Average, minimum and maximum power consumption 
of the CPU1 

CPU1 Average, Min, Max Energy [Joule] Average, minimum and maximum energy consumption 
of the CPU1 

CPU2 Average, Min, Max Power [Watt] Average, minimum and maximum power consumption 
of the CPU2 

CPU2 Average, Min, Max Energy [Joule] Average, minimum and maximum energy consumption 
of the CPU2 

ATX Average, Min, Max Power [Watt] Average, minimum and maximum power consumption 
of the ATX motherboard 

ATX Average, Min, Max Energy [Joule] Average, minimum and maximum energy consumption 
of the ATX motherboard 

Total Average, Min, Max Power [Watt] Total average, minimum and maximum power 
consumption of the system 

Total Average, Min, Max Energy [Joule] Total average, minimum and maximum energy 
consumption of the system 

 

This formatted data can then be analysed and used to determine HPC applications' power and 

energy consumption. Deliverables D4.2 (M15) and D4.4 (M30) elaborate more on how this 

data is used to determine the power and energy consumption of SERRANO-accelerated 

kernels running on HPC systems. 

In order to visualise the power metrics, another tool (flow) was developed. It reads the raw 

binary data of power measurements and provides graphs for visual analysis, as shown in 

Figure 73. 
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Figure 73: Hardware components of the EXCESS cluster 

 

8.4 CPU Frequency Utility 

Additionally, a utility for modifying the clock frequency of CPUs was provided, as the CPU’s 

frequency plays a significant role in power draw. The utility is located at /opt/power/rome-

freq/bin/set_node01_frequency.sh. This utility is based on cpupower1 and has four 

frequency configurations: 

• 1.5 GHz: Without the CPU boost, the minimum frequency is 1.5 GHz, maximum 

frequency is 1.5 GHz; 

• 2.0 GHz: Without the CPU boost, minimum frequency is 2.0 GHz, maximum frequency 

is 2.0 GHz; BOOST = 0, MIN_FREQ=2.0 GHz, MAN_FREQ=2.0, GOV = userspace; 

• 2.25 GHz: Without the CPU boost, minimum frequency is 2.25 GHz, maximum 

frequency is 2.25 GHz; 

• Turbo Mode: With the CPU boost2, minimum frequency is 2.25 GHz, maximum 

frequency is 2.25 GHz. 

8.5 Kernels Benchmarking 

Energy measurements of the developed kernels running in HPC leverage the utilities described 

earlier. In general, the implementation of kernels is energy benchmark aware. The kernel 

execution consists of three phases: reading the data required by the kernel, execution of the 

kernel, and writing the results. For each kernel, we executed energy benchmarks (described 

in Deliverables D4.2 and D4.4), which iterate over the number of processors, CPU frequencies, 

approximation, and precision parameters. 

 
1   die.net: cpupower(1) - Linux man page, https://linux.die.net/man/1/cpupower 
2   https://www.kernel.org/doc/Documentation/cpu-freq/boost.txt 
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As an example, Table 17 presents the measured power consumption of the parallel Kalman 

filter in Turbo frequency with different numbers of cores. It has been observed that as the 

number of cores increases, power consumption also increases. 

Table 17: Power consumption of parallel implementation of Kalman filter in Turbo Mode 

Number of Cores Power (Watt) 

1 228.97 

2 231.97 

4 234.97 

8 237.87 

16 240.49 

32 243.65 

64 249.53 

 

Figure 74 shows the energy consumption of the Kalman filter, measured with different CPU 

frequencies and numbers of cores. The energy consumption decreases when more cores are 

employed in parallel applications. The same approach was applied to other kernels, the results 

of which can be found in Deliverable D4.4 (M30). 

 
Figure 74: Energy consumption of Kalman filter with different frequencies and different numbers of 

cores 
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9 Resource Orchestration Mechanisms 

The seamless orchestration of the available edge, cloud, and HPC resources is key for realizing 

SERRANO’s objectives. To this end, SERRANO adopts a hierarchical architecture to enable end-

to-end cognitive resource orchestration and transparent application deployment over 

heterogeneous resources. The detailed architecture and the overall design were presented in 

D5.3 (M15). For reference, we provide an overview of the selected design, while Figure 75 

summarizes the architecture of the SERRANO resource orchestration mechanisms and their 

interactions with other SERRANO components.  

The SERRANO Resource Orchestrator, developed in the context of the project, acts as the high-

level orchestrator that interacts with multiple Local Orchestrators, where each handles 

individual parts of the overall unified infrastructure. During this process, it exploits the 

advanced scheduling capabilities of the Resource Orchestration Toolkit (ROT) that provide 

cognitive decisions. Then, it delegates the decision for the actual deployment operations to 

the corresponding Local Orchestrators at the selected platforms. To this end, the Resource 

Orchestrator adopts a declarative approach to describe the workload requirements to the 

selected Local Orchestrators instead of an imperative one. The adopted design enables the 

SERRANO Resource Orchestrator to manage the underlying heterogeneous infrastructure 

more abstractly and disaggregated than the Local Orchestrators. 

 

 
Figure 75: SERRANO distributed and cognitive resource orchestration mechanisms, unifying 

different edge, cloud, and HPC platforms 
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9.1 SERRANO Resource Orchestrator 

The Resource Orchestrator is a cloud-native application implemented in Python that consists 

of two primary services: Orchestration API Server and Orchestration Manager. The Datastore, 

a critical component for the overall operation and coordination among the Resource 

Orchestrator services and SERRANO Orchestration Drivers, completes the architecture. These 

services and configuration files are packaged as Python applications using the SERRANO CI/CD 

services. The SERRANO image registry [96] includes a separate container image for each 

service. We also defined all the required Kubernetes YAML description files (i.e., ConfigMap, 

Deployment, Services) to facilitate deploying the developed services in Kubernetes. Figure 76 

illustrates the SERRANO Resource Orchestrator architecture and its main components.   

The Datastore is based on etcd [102], an open-source distributed key-value store, and stores 

the SERRANO API objects that include configuration and state data for the available platforms, 

deployed applications, and SERRANO hardware and software accelerated kernels. One of the 

essential features of etcd is the “watch” function that, through the Watch API, provides an 

event-based interface for asynchronously monitoring changes to keys in the etcd. An etcd 

watch waits for changes to keys by continuously watching from a revision and streams the key 

updates back to the registered client. We leverage this feature to facilitate communication 

among the Orchestration API Server, Orchestration Manager, and Orchestration Drivers. 

Hence, the Resource Orchestrator services can keep track of the actual and desired state of 

the deployed workloads across the unified infrastructure. The Orchestration API Server, 

Orchestration Manager, Orchestration Drivers, Resource Optimization Toolkit, and Datastore 

constitute the control plane of the SERRANO orchestration and deployment framework. 

 

Figure 76: SERRANO Resource Orchestrator architecture and services 
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Regarding the Orchestration API Service, we significantly extend the functionality of the 

Access Interface and Dispatcher components to facilitate (i) the transparent application 

deployment, (ii) execution of SERRANO hardware and software accelerated kernels, and (iii) 

the intent-based creation of secure storage policies. The Access Interface provides loose 

coupling with the other components within the SERRANO platform, mainly with AI-enhanced 

Service Orchestrator and Service Assurance mechanisms. It exposes the appropriate interfaces 

to enable bidirectional communication for exchanging commands, information, and 

notifications. The Access Interface also validates all the requests before forwarding them to 

the Dispatcher that exclusively handles the interaction with the Datastore. The exposed 

RESTful API final version includes several methods organized into two main categories. The 

first set of methods (Figure 77) enables the deployment and management of cloud-native 

applications, execution of SERRANO accelerated kernels, and the cognitive creation of secure 

storage policies. The second set (Figure 78) abstracts the interaction of the Orchestration 

Manager and Orchestration Driver services with the Datastore by enabling them to create, 

update, and query relevant information along with their subscription for watching specific 

topics in the Datastore. 

 

 
Figure 77: Resource Orchestrator RESTful interface  
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Figure 78: Resource Orchestrator RESTful interface – Methods related to inter-component 

communication 

 

The Orchestration Manager implements the main part of the application logic and coordinates 

the resource allocation and application deployment, kernel execution, and secure storage 

policy management operations. In the original design, some of these tasks were handled by 

the Dispatcher component of the Orchestration API Server. However, in the revised design 

and final implementation, the Orchestration Manager, through its controllers, is exclusively 

responsible for all the coordination and management actions. The Orchestration Manager 

performs operations based on the SERRANO Orchestration API objects that are created 

through the API Server. To achieve its objectives, the Orchestration Manager incorporates 

various controllers, which watch SERRANO Orchestration objects in the Datastore. These 
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controllers execute the necessary operations to serve the requests and then communicate 

with the Orchestration Drivers on the underlying platforms. 

More specifically, the Scheduler Controller interacts with the ROT to retrieve the instructions 

for the cognitive application deployment and definition of secure storage policies. The Cluster 

Controller attaches Kubernetes clusters and HPC platforms to Resource Orchestrator and 

oversees their operational state. The Execution Controller prepares the required application 

deployment instructions (declarative approach) with the assistance of the Scheduler 

controller, coordinates the required data movement by interacting with the SERRANO Secure 

Storage service, and finally triggers the actual deployment by interacting with the 

Orchestration Drivers at the selected edge/cloud and HPC platforms.  

 

Figure 79: SERRANO Orchestration API objects 
 

As previously stated, the Datastore, through the etcd service, offers reactive capabilities to 

the Resource Orchestrator services, enabling them to effectively orchestrate and manage the 

complete lifecycle of operations associated with service requests. By leveraging the Datastore, 

the Resource Orchestrator services can efficiently handle and respond to various requests. 

Service requests within the orchestration and deployment mechanisms are expressed as 

SERRANO Orchestration API objects (Figure 79). These objects serve as the primary means of 

communication between the different components of the system. They encapsulate the 

necessary information to serve, manage, and monitor the progress of service requests. To 

facilitate the interaction between the Resource Orchestrator services, specific pairs of services 

are responsible for creating, updating, deleting, and watching these SERRANO Orchestration 

API objects. This distributed responsibility ensures efficient handling of requests and enables 

the system to operate seamlessly.  
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The main SERRANO Orchestration API objects are the following:  

• Cluster: It provides an overview of the available individual platforms (edge, cloud, 

HPC). These objects are created and updated based on the information from the 

Orchestration Drivers while watched and used by the Orchestration Manager.  

• Deployment: It corresponds to the high-level description for deploying a cloud-native 

application in the SERRANO platform. It includes the application description along with 

the user intent for the deployment objectives. It is created and deleted by the 

Orchestration API server, while it is watched and used by Orchestration Manager. 

These entities are not changed during the orchestration and deployment phase since 

the high-level orchestration decisions and the infrastructure-specific instructions for 

the low-level orchestration mechanisms are expressed through the Assignment and 

Bundle objects. 

• Kernel: It corresponds to the description for the deployment of a SERRANO accelerated 

kernel in the SERRANO platform. It is created and deleted by the Orchestration API 

Server and watched and used by the Orchestration Manager. More details are 

provided in Section 9.4.3. 

• Storage Policy: It is the high-level description from the intent-based creation of a 

secure storage policy. It is created and deleted by the Orchestration API Service and 

watched and used by the Orchestration Manager that will execute all the required 

operations. More details are provided in Section 9.4.1. 

• Assignment: It is an internal object that captures the assignment of application 

microservices to a specific SERRANO cluster (i.e., edge/cloud or HPC platform). These 

entities are created, updated, and deleted by the Orchestration Manager according to 

the decisions from the ROT component while they are watched and used by the 

Orchestration Drivers. The unique identifier of the selected platform (i.e., 

CLUSTER_UUID) is part of the respective topic’s description in the Datastore (Table 18). 

More details are available in Section 9.2. 

• Bundle: It includes the application description along with parameters and platform-

specific deployment objectives based on the ROT decisions that will guide the low-level 

orchestration mechanisms at the selected platforms (declarative approach). These 

entities are created, updated, and deleted by the Orchestration Manager and they are 

watched and used by the Orchestration Drivers.  
 

 
Figure 80: Relationship among main SERRANO Orchestration API objects 
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To provide a visual representation of the relationships and interactions between the SERRANO 

Orchestration API objects, Figure 80 illustrates their associations. Furthermore, Table 18  

complements the previous description by listing the relevant topics for each SERRANO 

Orchestration API object stored and managed within the Datastore. It highlights the specific 

information and data points associated with the SERRANO Orchestration API objects that are 

crucial for the system's overall functioning. 

 

Table 18: Datastore topics (keys) for the main SERRANO Orchestration API objects 

API Object Topic 

Cluster /serrano/orchestrator/clusters/cluster/CLUSTER_UUID 

Deployment /serrano/orchestrator/deployments/deployment/DEPLOYMENT_UUID 

Kernel /serrano/orchestrator/kernels/kernel/REQUEST_UUID 

Storage Policy /serrano/orchestrator/storage_policies/policy/POLICY_UUID 

Assignment /serrano/orchestrator/assignments/CLUSTER_UUID/assignment/ASSIGNMENT_UUID 

Bundle /serrano/orchestrator/bundles/bundle/BUNDLE_UUID 

 

To elaborate more on the usage of the SERRANO Orchestration API objects from the SERRANO 

orchestration mechanisms, we present an example of how one of the SERRANO use cases is 

handled by the SERRANO Resource Orchestration services. Specifically, we considered the 

Position Service from the Anomaly Detection in Manufacturing Settings use case, which 

includes three microservices. Deliverable D6.5 (M27) provides a more comprehensive 

technical description of this application, and Section 9.4.2 describes the detailed deployment 

workflow. Next, we focus on the internal SERRANO API objects that the Orchestration 

Manager creates to serve the requested deployment within the SERRANO platform.  

 

Figure 81: SERRANO Orchestration API objects and federated application deployment  
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We consider that the overall application is assigned to two different platforms. Two 

microservices are assigned in an edge cluster (UUID: "db56f00b") and the third in a cloud 

cluster (UUID: "f393522a"). In this case, the Orchestration Manager will create two 

Assignment objects (UUIDs “2727894e” and “b2658495”), one for each selected platform. 

These Assignments will be linked with the initial Deployment object (UUID “e12c1884”). 

Moreover, the Orchestration Manager will create three Bundle objects (UUIDs “c33a6b34”, 

“0d8cb8fc”, and “40a3295d”), one for each microservice, and will map them with the 

appropriate Assignment objects. Each Bundle object includes the required deployment 

descriptions. In our example, the Bundle objects include K8s API objects, such as Deployment, 

ConfigMap, PersistentVolume, and PersistentVolumeClaim. The Bundles also include 

additional parameters added by the Orchestration Manager that will guide the platform-level 

scheduling of the microservices. Figure 81 summarizes this process. 

9.2 Orchestration Drivers 

The Orchestration Drivers complete the implementation of the hierarchical resource 

orchestration. An Orchestration Driver provides an abstraction layer for interacting with the 

specific edge, cloud, and HPC orchestration mechanisms, dealing with the low-level details of 

the heterogeneous Local Orchestrators at the individual platforms. SERRANO considers that 

Local Orchestrators are based on existing and well-established solutions. According to the final 

implementation, Kubernetes (K8s) is the orchestration platform for the edge and cloud 

resources, whereas HPC resource managers and batch jobs schedulers are considered for the 

HPC platforms.  

 
Figure 82: SERRANO Orchestration Drivers 

 

Since SERRANO unifies platforms with different local orchestration mechanisms, two types of 

Orchestration Drivers are available. Figure 82 shows the final design of the Orchestration 

Drivers. The Orchestration Drivers are implemented in Python as plug-ins that share the same 

implementation for the Orchestration Interface. This component leverages the exposed REST 

API from the Orchestration API Server to provide an infrastructure-agnostic interface between 

the Resource Orchestrator (i.e., Orchestration Manager) and the Local Orchestrators. It 
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facilitates the generic description of the deployment preferences and constraints. On the 

other hand, the Orchestration Plug-in component differs for each Orchestration Driver type 

since it interfaces with a specific Local Orchestrator based on its specific exposed APIs. More 

specifically, the Orchestration Plug-in for the Kubernetes platforms uses the exposed API by 

the Kubernetes API Server (i.e., kube-apiserver), while the Orchestration Plug-in for the HPC 

platforms uses the exposed interface by the SERRANO HPC Gateway (Figure 85).  

The implementation of the Orchestration Driver includes a configuration file that utilizes JSON 

format. This file consists of multiple configuration parameters that allow for precise 

customization of Orchestration Driver operation and seamless integration with other 

SERRANO orchestration and deployment services. It is possible to designate the specific type 

of Orchestration Plug-in to be loaded for a particular instance of the Orchestration Driver using 

one of the available configuration parameters. In addition, each Orchestration Driver is 

associated with a unique identifier that determines the specific edge/cloud or HPC platform 

that manages. This identifier corresponds to the CLUSTER_UUID parameter in the Datastore 

topics presented in the previous section.  

The Orchestration Driver and its configuration file are packaged as a Python application using 

the SERRANO CI/CD services, ensuring a smooth and efficient development workflow. The 

resulting container image is made accessible through the SERRANO image registry. There is a 

common image for both Orchestration Drivers. To facilitate effortless deployment on 

Kubernetes platforms, corresponding Kubernetes YAML description files are also available. 

These files enable the automatic deployment of the Orchestration Drivers within Kubernetes. 

The following workflow (Figure 83) summarizes the operation of SERRANO Orchestration 

Drivers. During its initialization phase, a driver is registered through the Orchestration API 

Server to watch for any changes related to assignments in its dedicated topic 

(/serrano/orchestrator/assignments/CLUSTER_UUID) in the Datastore. Moreover, it sends the 

Orchestration API Server a summary of the available resources in the platform it manages. The 

Orchestration API Server uses this information to update the respective contents in Datastore. 

It also sends heartbeat messages periodically to the Orchestration API Server. These steps are 

common for both Orchestration Driver types and are handled by the Orchestration Interface 

using a set of methods that all Orchestration Plug-ins must implement.  

 
Figure 83: Orchestration Driver workflow 
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Next, the Orchestration Driver is notified of any change in the topic that watches, and based 

on the event type, it triggers the appropriate actions to serve the request from the 

Orchestration Manager. To this end, it formats the appropriate instructions to the Local 

Orchestrator and forwards them using their exposed interfaces. More details for the 

interaction with the SERRANO-enhanced and infrastructure-specific low-level mechanisms in 

K8s and HPC platforms are also provided in Sections 9.3, 9.4, and 10. 

9.3 SERRANO HPC Gateway  

The SERRANO HPC Gateway is the intermediate component between SERRANO's HPC services 

(WP4), the Intelligent Service and Resource Orchestration Layer (WP5), and the HPC 

infrastructure. The HPC Gateway supports popular batch job schedulers, such as Slurm [105] 

and the PBS-based OpenPBS [106]. 

Due to security restrictions and isolation imposed on the compute nodes of HPC clusters, only 

the front-end (or login) nodes of the clusters are usually used as the access point, where a 

user or automation tool can login via SSH, prepare software environments and workspaces, 

build applications and submit HPC jobs. The job submission commands are specific to the 

resource manager. For example, Slurm uses sbatch commands for job submission, whereas 

for PBS-based resource managers, the qsub command is used. Additionally, the job status can 

be monitored via scontrol and qstat commands of Slurm and PBS, respectively. 

Similarly, the information about the partitions of the HPC system can be obtained via 

scheduler specific commands. For Slurm, sinfo and squeue commands are common to 

determine the state of the partitions, whereas pbsnodes and qstat -Q commands are used in 

PBS. 

 

Figure 84: Interaction between HPC Gateway and HPC infrastructure 
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Therefore, SERRANO HPC Gateway communicates with the front-end (login) nodes via SSH 

and uses commands specific to the resource managers under use in order to prepare a batch 

job script for submission (i.e., to select the appropriate header), submit the job, and monitor 

the status of the job and the partitions, as shown in Figure 84. Moreover, SERRANO HPC 

Gateway provides endpoints for remote (HTTP, S3) file transfers into HPC infrastructure, as 

well as transferring results from HPC into S3. 

The HPC System Hardware Interface (HPC Gateway) is integrated with the SERRANO platform. 

It exposes REST API endpoints (Figure 85) needed for the Resource Orchestrator and 

Telemetry Framework for the execution of HPC services/kernels (/job) and monitoring the 

state of the HPC infrastructure (/infrastructure/infrastructure_name/telemetry). Moreover, 

users can utilise data endpoints (/data, /s3_data, and /s3_result) of the HPC Gateway to 

transfer data from HTTP and S3 endpoints, such as the SERRANO Secure Storage service 

(WP3), into HPC and move resulting data to S3. The HPC Gateway is implemented as a service3 

and interacts with the target HPC infrastructure using SSH protocol (as shown in Figure 84). 

The administrator maintains SSH keys that will be used for authentication with the 

infrastructure. 

 

Figure 85: REST API endpoints exposed by HPC Gateway 

 

A user can perform the complete workflow using HPC Gateway, i.e. injection of the initial data, 

processing the data in HPC, and retrieving the results. For example, one can use /s3_data 

endpoint to send the initial data from S3 into the target HPC infrastructure, then run signal 

processing kernels (e.g., Kalman and FFT filters) via /job endpoint and move the results back 

to the S3 storage via /s3_result endpoint. The requests chain is outlined below (the responses 

are omitted). 

 

 
3 https://hpc-interface.services.cloud.ict-serrano.eu 
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POST /s3_data 
Body: 
{ 
  "infrastructure": "cluster_name", 
  "endpoint": "https://on-premise-storage-gateway.services.cloud.ict-serrano.eu
/s3", 
  "bucket": "initial-data-bucket", 
  "object": "initial-data", 
  "region": "local", 
  "access_key": "access_key", 
  "secret_key": "secret_key", 
  "dst": "/path/to/initial/data", 
} 
 
POST /job 
Body: 
{ 
  "infrastructure": "cluster_name", 
  "services": [ "kalman", "fft" ], 
  "params": { 
    "read_input_data": "/path/to/initial/data", 
    "input_data_double": "/path/to/double-precision/data", 
    "input_data_float": "/path/to/single-precision/data", 
    "num_mpi_procs": 64 
  } 
} 
 
POST /s3_result 
Body: 
{ 
  "endpoint": "https://on-premise-storage-gateway.services.cloud.ict-serrano.eu
/s3", 
  "bucket": "results-bucket", 
  "object": "results.csv", 
  "region": "local", 
  "access_key": "access_key", 
  "secret_key": "secret_key", 
  "src": "/path/to/results", 
  "infrastructure": "cluster_name" 
}      
 

 

9.4 Integration with SERRANO Services 

9.4.1 Secure storage policies cognitive creation 

The SERRANO platform supports creating automated secure storage policies based on 

significantly varying storage task requirements. In addition, SERRANO provides the intent-

based definition of secure storage policies and their cognitive orchestration to abstract the 

infrastructure-specific requirements and operations from the end users regarding the choice 

of storage locations and redundancy, encryption, and compression parameters. This 

functionality is closely related to the developments in WP3 regarding the Secure Storage 

service and the respective use case. It also integrates the functionality of many platform 
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components, such as the Secure Storage service, the AI-Enhanced Service Orchestrator, the 

SERRANO Telemetry Framework, the Resource Optimization Toolkit, and the SERRANO 

Resource Orchestrator services. 

From the SERRANO orchestration mechanisms perspective, the overall procedure is divided 

into three phases: (1) description of user intent and translation to infrastructure-specific 

objectives, (2) storage request orchestration, and (3) secure storage policy creation.  

The initial phase is presented in Section 4.4. Next, the AI-Enhanced Service Orchestrator (AISO) 

triggers the execution of the second phase by passing to the SERRANO orchestration 

mechanisms the mapping of the user intent to infrastructure-specific parameters and high-

level orchestration objections. To this end, the AISO uses the respective methods 

(/api/v1/orchestrator/storage_policies) (Figure 77) from the updated REST API of the 

SERRANO Orchestration API Server. The POST request supports the following parameters: 

• name: Optional[str] = None 

• description: Optional[str] = "" 

• policy_parameters: dict 

 

The Orchestration API Server validates the request parameters and creates the corresponding 

Storage Policy object in the Datastore. The Orchestration Manager that watches the related 

topic (i.e., /serrano/orchestrator/storage_policies/policy) for updates is triggered and, 

through its controllers, will initially handle the orchestration of the secure storage policy 

request (Steps 1-3 in the following workflow).  

Next, the Orchestration Manager, through its Scheduler Controller, will request from the ROT 

the orchestration decision in order to create the secure storage policy based on the provided 

parameters (Step 4). The ROT Controller (Step 5) queries the Central Telemetry Handler (CTH) 

to get the available cloud and edge storage locations and creates the appropriate execution 

request (Step 6) that is assigned to one of the available Execution Engines. Next, the 

Orchestration Manager receives from the ROT the decision that includes parameters that will 

guide the storage policy creation (Step 7). Through the Orchestration API Server methods, the 

Orchestration Manager updates the decision field in the corresponding Storage Policy object 

(Step 8).   

In the subsequent phase, the Orchestration Manager initiates the policy creation process by 

requesting it from the Secure Storage Service. In order to accomplish this, the Orchestration 

Manager formats the appropriate request based on the provided orchestration decision and 

triggers the creation process by executing the exposed REST method (POST /storage_policy) 

provided by the Secure Storage Service (Step 9). Regarding the request parameters, the users 

directly specify the name and description parameters. The remaining parameters, which 

determine the storage policy configuration, are compiled by the Orchestration Manager 

according to the ROT decision, considering the user intent, the deployment objectives, and 

the availability and characteristics of cloud and edge storage locations. Figure 86 summarizes 

the orchestration workflow for creating secure storage policies. 
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Figure 86: Secure storage policy cognitive creation – Orchestration workflow 

 

Moreover, the SERRANO SDK provides the appropriate methods that abstract the overall 

workflow for defining, orchestrating, and creating secure storage policies. Figure 87 shows the 

corresponding code snippet. Users can use the provided Python methods to describe their 

intent (line 8) and request the creation of a storage policy (line 10). Then, they can check (line 

12) and use the defined policy (line 36). The SERRANO-enhanced storage service exposes the 

Secure Storage API that allows SERRANO users to manage buckets and store and retrieve files. 

It is based on what can be considered the industry standard for object storage: Amazon Web 

Services S3. Deliverable D3.4 (M34) provides more technical details. Users can use the 

provided functionality using any S3 client library. In the example, we use the boto3 Python 

library to create a bucket based on the created storage policy (line 26).   

 

 
Figure 87: Code snippet for creating and using a SERRANO secure storage policy  
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9.4.2 Cloud-native applications deployment 

The SERRANO Resource Orchestrator implements essential functionalities to ensure efficient 

application deployment and resource orchestration in the disaggregated and heterogeneous 

SERRANO infrastructure. From a SERRANO orchestration perspective, the overall procedure is 

divided into three phases: (1) preparatory handling of deployment requests, (2) high-level 

cognitive resource orchestration, and (3) transparent application deployment. These phases 

are fully aligned with the workflows “Cognitive resource orchestration operation within the 

SERRANO platform” and “Transparent application deployment operation within the SERRANO 

platform” as outlined in the final SERRANO architecture specification in D2.5 (M18). 

The initial phase is presented in Section 4.4. Next, the AI-Enhanced Service Orchestrator (AISO) 

triggers the execution of the second phase by passing to the SERRANO orchestration 

mechanisms the mapping of the user intent to infrastructure-specific parameters and high-

level orchestration objectives. To this end, the AISO uses the appropriate REST methods 

(/api/v1/orchestrator/deployments) (Figure 77) exposed by the SERRANO Orchestration API 

Server. More specifically, the POST request supports the following parameters, while the PUT 

request requires the additional parameter “deployment_uuid: str”. 

• name: Optional[str] = None 

• user_token: Optional[str] = "" 

• deployment_description: str 

• deployment_objectives: Optional[List[dict]] = None 
 

 

The Orchestration API Server validates the request parameters and creates the corresponding 

Deployment object in the Datastore. If the name is not defined, then the Orchestrator API 

service automatically sets as name the deployment_uuid, a parameter defined automatically 

by the Orchestrator API Server. Moreover, the schema includes two additional parameters 

corresponding to the two categories of input data that the Resource Orchestrator expects for 

handling the deployment requests. The deployment_description is mandatory and provides 

the YAML description of the application’s microservices. The deployment_objective is optional 

and provides the objectives from the AISO for the orchestration algorithms. The Orchestration 

Manager that watches the related topic 

(i.e., /serrano/orchestrator/deployments/deployment) for updates is triggered and, through 

its controllers, will initially handle the orchestration of the deployment request. In the 

following workflow, the initial phase corresponds to Steps 1-3, which trigger the ROT to 

provide the necessary orchestration decision for the application deployment. 
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Figure 88: Application deployment – High-level cognitive orchestration workflow 

 

Next, through its Scheduler Controller, the Orchestration Manager will request from the ROT 

the orchestration decision to guide the deployment of the requested cloud-native application 

in the SERRANO platform based on the user intent (Step 4). The request description to the 

ROT Controller includes the deployment objectives (i.e., deployment_objectives parameter), 

as provided by the AISO, and the application graph. The latter comes from analysing the 

provided application description (i.e., deployment_description parameter). This is required 

since the application description typically also includes objects such as ConfigMaps, Services, 

and Storage Volumes that are not required during the high-level orchestration. The ROT 

Controller (Step 5) queries the Central Telemetry Handler (CTH) to get the high-level 

description of the edge/cloud and HPC platforms that are under the management of the 

SERRANO platform and creates the appropriate execution request (Step 6) that is assigned to 

one of the available Engines. Next, the Orchestration Manager receives from the ROT the 

decision that includes parameters that will guide the application deployment (Step 7). 

Then, the Orchestration Manager, through its Execution Controller, creates and stores in the 

Datastore the appropriate number of Assignment and Bundle objects (Step 8) according to the 

assignment of the application microservices into the individual edge, cloud, and HPC platforms 

as described in the ROT response. It also updates the corresponding Deployment object 

accordingly. The SERRANO orchestration mechanisms require all YAML descriptions 

corresponding to the same microservice to share common labelling (Figure 81). This is 

required when the ROT splits the application deployment in multiple SERRANO platforms 

since, in these cases, it is also required to include the respective supplementary descriptions, 

such as ConfigMaps, and Persistent Volumes, to the Bundles. To this end, we adopted a simple 

design approach in which all the related YAML descriptions share the same Label with the 

name “group_id”. The mechanisms that provide the graphical-based definition and 

submission of applications (Section 4.5) also automatically support the definition of the 

required labelling. 
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The ROT orchestration decisions assign the applications’ microservices to specific SERRANO 

platforms. These assignments are used to generate the Assignment objects in the Datastore. 

In addition to the assignments, ROT provides appropriate resource configurations to guide the 

platform-level orchestration mechanisms, such as the K8s scheduler, in making the final 

deployment decisions. The SERRANO Resource Orchestrator follows a declarative approach to 

describing the workload requirements to the Local Orchestrators. When creating Bundle 

objects corresponding to K8s Deployment descriptions, the Orchestration Manager 

automatically compiles the provided resource configurations to specific deployment 

requirements. The created description also includes a set of affinity and anti-affinity rules to 

be used by the Kubernetes scheduler to find out the most suitable nodes for the Pods 

deployment. These deployment requirements are added to the user-defined application 

description, resulting in cognitive-enhanced and platform-specific deployment requirements.  

 
Figure 89: Kubernetes application deployment description enhanced by the SERRANO Resource 

Orchestrator 

 

Figure 89 depicts a Kubernetes deployment description4 that the SERRANO Resource 

Orchestrator has automatically enhanced for the position-service-classifier-training 

microservice from the application example in Figure 81. In the example, we consider a 

deployment intent that requested an advanced security layer for the microservice, while the 

orchestration mechanisms decided the deployment in nodes that provide maximum security, 

trust, and isolation (Tier-4). SERRANO builds on the confidential computing paradigm to 

provide different end-to-end secure tiers. Additional technical details for this topic are 

available in deliverable D3.4 (M30). The selected security level requires the existence of secure 

boot and trusted execution extensions in the worker node and the microservice deployment 

as a container sandboxed in microVM (Section 10.2). The YAML deployment description of the 

microservice is consequently enhanced with the appropriate labels and annotations to guide 

the platform-level scheduling mechanisms. 

 
4 For clarity, the deployment description includes only the parameters relevant to the provided example. 
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Finally, the Orchestration Manager creates the Monitoring object that will be updated with 

information about the deployed services in each platform during the deployment phase. The 

Orchestration API Server uses this information to configure the SERRANO telemetry services 

when a deployment request is served successfully. 

The successful execution of the final step (Step 8) in the previous workflow triggers the third 

phase that handles the transparent application deployment across the SERRANO platform. In 

this phase, the Orchestration Drivers at the selected platforms receive the deployment 

instructions. Then, by interacting with the local orchestrator and the SERRANO-enhanced 

resources (Section 10), they trigger the actual deployment of the application’s workloads with 

the selected runtime configurations. Figure 90 summarizes the workflow for deploying the 

application’s workload in a selected cluster. 

 

Figure 90: Cloud-native application deployment – Transparent deployment workflow 

 

More specifically, the Orchestration Driver that manages a specific cluster detects a new 

assignment for its cluster (Step 9). The Assignment object that receives through the 

corresponding Datastore notification includes the list of all Bundles' unique identifiers related 

to the specific assignment. Next, for each Bundle's unique identifier in the list, the 

Orchestration Driver executes the following actions: 

• It retrieves the Bundle description through the exposed GET method by the 

Orchestration API Server (Step 10). 

• It uses the provided API by each local orchestration platform, such as the K8s API for 

the Kubernetes platforms, to apply the deployment actions that include the Bundle 

description (Step 11).  
 

Next, the Orchestration Driver updates, through the Orchestration API Server, the status of 

the corresponding Assignment object (Step 12). The Orchestration API Server uses this 

information to determine if a deployment request has been served successfully.  

Finally, the Orchestration Manager performs two additional actions when all the Assignments 

of a deployment request have been executed successfully. It informs, through the Central 

Telemetry Handler, the SERRANO telemetry framework to start the automatic monitoring of 

the deployed application and also registers the deployed application to the Service Assurance 

mechanisms. 
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9.4.2.1 Terminating application deployment 

The SERRANO Resource Orchestrator also supports the deletion of a deployed application. The 

procedure involves all the Resource Orchestrator services (i.e., Orchestration API, 

Orchestration Manager, Orchestration Driver), while Figure 91 summarizes the workflow. 

 

Figure 91: Terminating cloud-native application deployment 

 

The Orchestration API Server receives the termination request through its exposed REST API 

(Step 1). It gets the list of Assignments that are related to the target deployment. For each 

Assignment, the Orchestration API Server gets the unique identifier for the Assignment's 

Bundles and uses them to delete the corresponding entries from the Datastore (Step 3). After 

deleting each Assignment's Bundles, the Orchestrator API Server deletes from the Datastore 

the Assignment itself (Step 4). This will trigger the involvement of the corresponding 

Orchestration Driver for that specific Assignment that, through the provided API by the local 

orchestration mechanisms, will terminate all the running instances in the specific platform 

(Step 5). Then, the Orchestrator API Server deletes the Deployment from the Datastore (Step 

6). Finally, the Orchestration API service informs the SERRANO telemetry service (Step 7) and 

the Service Assurance mechanisms to update their operation accordingly (Step 8). 

9.4.3 SERRANO HW/SW accelerated kernels execution 

One of the innovations that SERRANO provides is the development of a library of accelerated 

kernels. These kernels harness both hardware and software acceleration techniques to 

enhance applications’ performance and energy efficiency on cloud and edge devices, such as 

GPUs, FPGAs, and HPC platforms. The development of these kernels took place in WP4, and 

the associated deliverables (i.e., D4.1 (M15), D4.2 (M15), D4.3 (M15), and D4.4 (M30)) offer 

comprehensive technical information and extensive evaluation results for the kernels 

featured in SERRANO's use case applications. This section describes how the SERRANO 

orchestration mechanisms enable the seamless execution of these accelerated kernels across 

the heterogeneous SERRANO platform. 
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The SERRANO platform supports two deployment methods for the seamless execution of 

SERRANO-accelerated kernels across the heterogeneous edge, cloud, and HPC resources. 

These deployment methods are aligned with the serverless computing execution model, 

where users focus solely on developing their application’s functions while the platform 

abstracts away the underlying servers and infrastructure, making it easier to deploy and 

manage applications.  

The first method involves deploying the kernels alongside the application services. This 

method is suitable when the application services have a specific set of kernels that need to be 

executed repeatedly. The second method is based on the Functional as a Service (FaaS) 

execution model and allows on-demand deployment of accelerated kernels. FaaS is a specific 

serverless computing implementation that allows developers to trigger functions in response 

to events. These functions are stateless, meaning they do not maintain persistent connections 

or store data between executions. In this case, an application service running in the SERRANO 

platform through the SERRANO SDK can request the orchestration mechanisms to execute a 

specific kernel. The SERRANO orchestration and deployment mechanisms handle all the 

required operations and return the results to the application service.  

The SERRANO platform ensures for both deployment methods that users receive seamless 

access to accelerated kernels without the need to manage the deployment and execution 

process. This approach also optimizes the use of resources, allowing kernels to be executed 

on the most appropriate resources. The SERRANO use cases use both deployment methods. 

 

 

Figure 92: Kernel execution and data handling from the end user’s perspective, common approach 
for all supported modes and platforms 

 

To use either deployment method, data provisioning must be automated and abstracted into 

kernels, and results must be handled back transparently to users. From an end-user 

perspective, the overall process includes the following steps (as shown in Figure 92): 

1. Move input data to SERRANO storage services (i.e., Data Broker, Secure Storage 

Service) and retrieve the corresponding description to pass to the execution request 

(Step 2). This description contains a set of identifiers for the SERRANO deployment 

mechanisms (e.g., Orchestration Drivers, HPC Gateway, Lightweight Virtualization 

Mechanisms) to download the data and prepare them for use by the kernels. 
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2. Submit the request to the SERRANO platform, specifying the kernel, input data 

description from Step 1, and any other options necessary for configuring the kernel 

execution.  

3. Retrieve the results using the SERRANO Python API method provided.  

 

The SERRANO SDK provides suitable APIs that abstract the interaction with the various 

SERRANO platform services to facilitate these operations.  Deliverable D6.5 (M27) provides a 

complete example regarding the execution of a SERRANO-accelerated kernel through the 

provided Python API. 
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10 Lightweight Virtualization Mechanisms  

Running applications in the cloud has changed the way users develop and ship their code. 

During the past decade, applications were deployed in the cloud using conventional Virtual 

Machines (VMs) following the Infrastructure-as-a-Service (IaaS) model. Users choose the 

setup of their virtual hardware, install their preferred OS, and deploy their application / service 

on top of that VM. 

However, quite recently, the community has given rise to other approaches [105][108], which 

were quickly adopted by cloud vendors, towards solutions that follow the paradigm of 

Platform-, Software-, and Function-as-a-Service (PaaS, SaaS, and FaaS respectively). These 

approaches offer performance and flexibility improvements over IaaS by decoupling the 

application from the infrastructure. Providing a common OS stack, maintained by the provider 

and optimized for the specific hardware it is running on, is much more efficient than exposing 

a generic virtual hardware interface. Additionally, users seek to maximize the number of 

requests handled while minimizing request/response latency. Apart from the cloud paradigm, 

Edge computing is slowly adopting these modes of operation, especially in the context of IoT 

and 5G [109].  

In the IaaS case, the burden of orchestrating and optimizing the systems software stack 

running on top of virtual hardware is passed to the user, while in the other cases, the vendor 

exposes a customized interface tailored to the application / service offered. The cloud-native 

[110] concept emerged from this trend as a need to reduce bloated interfaces and 

abstractions that introduced significant overhead for application deployment and execution. 

Containers played an important role towards cloud-native embracement; they have 

revolutionized deployment by facilitating application packing and dependency tracking, and 

reducing the overheads of execution; however, this comes at the cost of security and isolation 

[111]. As a result, cloud vendors fall back to generic virtualization techniques: Microservice 

offerings are essentially VMs running the vendor's custom systems stack, exposing a language 

runtime, a specific service such as a Database Management System (DBMS), a LAMP stack or 

just container host-side systems software. For instance, to provide a secure Serverless 

environment where users deploy their functions at will, cloud providers either: (a) spawn a 

VM per tenant, install their Serverless backends there, and keep it hot while the user submits 

functions to be executed; (b) spawn VMs which host containers per tenant, with the necessary 

software installed, and execute the user function there; or (c) spawn microVMs [112] per 

tenant where isolation is provided by the microVM monitor [113]. 

Figure 93 captures a snapshot of the traditional mode of execution for a generic VM on 

Linux/KVM using a standard user-space Virtual Machine Monitor (VMM). The Kernel-based 

Virtual Machine (KVM) module in the Linux kernel interfaces with the VMM, which essentially 

handles privileged operations (VMExits). So, when a privileged operation needs to be executed 

in the guest, the system traps it in the host's kernel-space (KVM), which, in turn, delivers this 

event to the monitor in user-space. Upon completion, the execution returns to the kernel, 

which, in turn, kicks the vCPU of the guest via a VMEnter. This process is a design choice: for 
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instance, QEMU supports a full operating system stack, emulates several architectures / 

features, and makes perfect sense for this code to be in user-space. 

 
Figure 93: A Virtual Machine running on a generic user-space VMM on top of KVM 

 

On the other hand, in the context of Serverless Computing [114], cloud-native applications, 

and lightweight execution, this process seems too complicated. Why should the system hand 

over the event to user-space since the only operation needed to be performed will probably 

be in the kernel (network, storage I/O, etc.)? This is the vhost approach [115] taken to 

decouple the control path from the data path when performing high-performance I/O. 

Apart from optimizing the data path, researchers have done considerable work to minimize 

the overhead of VM spawn and execution. Several minimalistic approaches have been 

proposed regarding the systems software stack to facilitate fast and secure application 

execution in the cloud. For instance, Unikernel as Processes [116] describes a specialized VMM 

with a number of backends (e.g., seccomp, KVM, muen, etc.) that minimizes the attack surface 

by limiting the interface with the underlying layers. NEMU [117] is a stripped down QEMU, 

specifically built and designed to run modern cloud workloads on x86_64 and ARM CPUs. 

Amazon's Firecracker [113] is a fork of [118], a lightweight VMM, built to deploy microVMs, 

which feature enhanced security and workload isolation over traditional VMs. 

Most of these approaches use the Linux kernel as the guest OS. This implies that although the 

user just needs to execute a function, the cloud provider must spawn a Linux kernel guest, or 

a container, from scratch and then run the function in this environment. More importantly, in 

all of the above cases, when a VMexit happens, the mode of execution still needs to be passed 

on to the monitor (first mode-switch) to service the exit and then back to KVM to resume the 

guest (second mode-switch). 

Simplicity is key when designing an application execution stack: users want to run their code 

fast and get a result back. They do not care where the code will run as long as there is 

reproducible, fast, and secure execution. To this end, lightweight virtualization appears 

mutually beneficial to cloud vendors and users: the former increase resource utilization by 
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consolidating more tasks to nodes; the latter enjoy fast service response times and 

(potentially) lower-cost services. 

We adopt a hybrid approach in the SERRANO platform to balance the trade-offs between 

lightweight application execution and workload isolation/security. To this end, we enable the 

deployment of workloads in various execution modes, such as generic containers, sandboxed 

containers, and unikernels, using the necessary virtualization mechanisms for each mode. The 

following sections detail the technologies involved in the SERRANO workload deployment 

mechanisms.  

10.1 Efficient Sandboxing of Containers on Edge Nodes   

Containers and their benefits  

Containers are lightweight, self-contained execution environments that encapsulate 

applications and their dependencies, providing a consistent and reproducible runtime 

environment. They enable the packaging of software in a manner that allows it to run reliably 

and consistently across different computing environments, including any computer hardware, 

infrastructure, or cloud environment. Achieving this versatility is made possible through a 

combination of operating system-level virtualization and resource isolation techniques. By 

leveraging kernel features, containers create isolated environments with their file systems, 

network interfaces, and process trees, ensuring application isolation from other containers 

and the host system. Moreover, containers abstract away the underlying infrastructure, 

allowing applications to be developed and deployed with minimal concern for specific 

hardware or software configurations. Unlike virtual machines, containers do not require a 

guest OS in each instance, resulting in smaller, faster, and highly portable units that can be 

executed on desktops, traditional IT systems, or in the cloud. By utilizing the features and 

resources of the host operating system, containers provide an efficient and platform-

independent execution environment, making software deployment portable, scalable, and 

manageable across various environments, from development to production, on-premises, or 

in the cloud. Figure 94 shows a high-level overview of the node-level flow for a container 

spawn. 

 

Figure 94: High-level overview of generic container spawning in a k8s environment 
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Limitations of containers  

Despite their numerous advantages, containers have certain limitations, particularly in terms 

of security and isolation. Although containers provide a level of isolation by leveraging 

operating system features, they still share the underlying operating system kernel. This shared 

kernel introduces potential security risks, as a compromise within the kernel could impact the 

security and integrity of all containers running on the same host. Additionally, containers may 

not provide sufficient isolation for certain sensitive workloads or applications with strict 

security requirements. Furthermore, containers may face challenges when handling specific 

types of workloads, such as those with strict real-time requirements or resource-intensive 

applications that demand fine-grained control over hardware resources.  

Sandboxing and its importance  

To address the limitations of containers in terms of security, isolation and resource control, 

container sandboxing comes into play. By encapsulating containers within microVMs, each 

with its dedicated kernel instance, stronger isolation and security are achieved. The use of 

microVMs ensures that any compromise within a specific microVM remains contained, 

mitigating potential security risks from the shared underlying kernel. Moreover, container 

sandboxing resolves the insufficient isolation for sensitive workloads by providing a secure 

and isolated execution environment for individual containers within each microVM. With 

container sandboxing, containers can overcome their limitations in terms of security, isolation, 

and handling diverse workloads, making them more robust and suitable for a wide range of 

applications across various domains.  

Figure 95 presents the high-level concept of container sandboxing using kata-containers. 

 
Figure 95: Container sandboxing 

 

Sandboxing in Edge Devices  

Edge devices are computing devices positioned in proximity to where data is generated or 

consumed. Edge computing offers multiple advantages. Firstly, it reduces the need for data 

transfer to centralized locations, resulting in reduced network congestion and latency. Local 

data processing on edge devices enables faster response times, crucial for real-time. Secondly, 

edge devices enhance privacy and data security. Processing data locally minimizes the risk of 

data breaches during transmission, ensuring compliance with stringent privacy regulations. 
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Lastly, edge devices improve reliability and availability. By distributing computing resources 

across multiple devices, the system becomes less reliant on centralized infrastructure, making 

it more resilient to network outages or connectivity issues.  

Edge devices pose significant challenges in terms of limited computing resources and their 

heterogeneous nature. Firstly, edge devices often have constrained processing power, 

memory, and storage capacity, which can impact the performance and scalability of 

applications deployed on them. Secondly, the heterogeneous nature of edge devices 

introduces complexities. Different devices may have varying hardware capabilities, operating 

systems, and available hardware accelerators. This requires developing specialized software 

that can seamlessly run across diverse edge devices, accommodating their unique 

characteristics. Developers must account for compatibility issues, adaptability, and the need 

for device-specific optimizations. In addition to these challenges, multitenancy adds another 

layer of complexity. When multiple deployments share the same edge devices, isolation 

becomes crucial to ensure the security and integrity of each application and its data. 

Sandboxing techniques, such as microVMs, can be employed to provide isolated execution 

environments for individual deployments, mitigating the risk of interference or unauthorized 

access.  

Deploying multiple sandboxed containers in a single edge device can be challenging due to 

resource limitations and potential application conflicts. Edge devices often have constrained 

processing power, memory, and storage capacity, making it difficult to allocate sufficient 

resources to each container without impacting performance. Concurrently running multiple 

containers on the same device can lead to resource contention and interference, jeopardizing 

isolation and security.  

Container orchestration platforms, like Kubernetes, provide advanced management 

capabilities for scaling and load balancing containers, ensuring efficient resource distribution. 

Lightweight virtualization technologies, such as specialized container runtimes and microVMs, 

enable isolation between containers and enhance security. By encapsulating each container's 

execution environment, sandboxing techniques mitigate interference and unauthorized 

access risks.  

10.2 Sandboxed Containers 

In the cloud environments and microservices age, containers have become very prominent, 

which is why we need to safeguard their execution while keeping their speed and portability 

intact. Kata Containers [125] is an open-source project that aims to provide a secure and 

lightweight runtime environment for containerized applications. It leverages hardware 

virtualization technologies to offer strong separation between containers while maintaining 

the performance advantages of lightweight containers. Launching a container in a micro VM, 

managed by a hypervisor, with its own kernel and root file system, ensures enhanced security 

and isolation, defending the application from remote execution, memory leaks, or 

unprivileged access, as well as protecting the host in case of untrusted or untested programs. 

Table 19 summarizes the properties of various environments where processes run. 
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Table 19: Process execution environment  

Type Name Virtualized Containerized rootfs Rootfs 
Device Type 

Mount 
Type 

Host Host No No Host specific Host specific 
Host 
specific 

VM root 
Guest 
(VM) 

Yes No 
rootfs inside 
the guest 
image 

Hypervisor 
specific 

ext4 

VM 
container 
root 

Container Yes Yes 
rootfs type 
requested 
by user 

kataShared 
virtioFS/ 
snapshotter 

 

Kata Containers has a list of design requirements that its runtimes always guarantee to fulfil: 

• OCI compatibility 

• runc CLI compatibility 

• CRI and Kubernetes support 

• Multiple hardware architectures support 

• Multiple hypervisor support 

• Virtualization overhead reduction 

• Networking & Storage compatibility 

• I/O acceleration & scalability 

• CI and structured logging 

 

To address these requirements, the container runtime has been designed as a modular 

system, using various components, each with a unique task to actualize an end-to-end 

container spawn. The most prominent components are: 

• Shim: containerd shimv2 implementation 

o handles the shim process 

o runs the ttRPC service in the shim side 

• Service: services for containers 

o implements the ctr shim protocol and interacts with runtimes through 

messages. 

• Runtimes: container runtimes 

o addresses messages from task services to manage containers. 

o contains the sandbox and the container manager. 

• Resource: abstractions for resources 

o sandbox resources: network, share-fs 

o container resources: rootfs, volume, cgroup 

• Hypervisor: manager for the VM 

• Agent: used to communicate with the guest OS from the shim side 
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The runtime is compatible with the containerd runtime shimv2 architecture and complies with 

the Open Container Initiative (OCI) runtime specification, making it Kubernetes-compatible 

with either CRI-O or the equivalent containerd implementation. A single runtime shim is also 

sufficient to manage all the OCI containers of an entire pod. Kata utilizes its agent, a daemon 

process, to establish robust communication between the guest and the host through a vshock 

socket operating on a ttRPC-based protocol. This approach enables the exchange of container 

management commands as well as carry the standard I/O streams between a container and 

its manager, eliminating also the need for multiple runtime calls. Such a structure ensures that 

Kata remains agnostic to the sandbox mechanisms, allowing a plethora of different 

hypervisors and different types of containers such as WebAssembly (Wasm) or Linux, not just 

virt ones, suiting different demands and preferences. 

Our job is to provide the container images and the VM resources (kernel and image) while 

Kata handles the rest. After loading the kata configuration file, a set of shimv2 API functions 

are called to commence the runtime instance, which starts the hypervisor. Inside the VM 

rootfs resides the kata agent, which is also initiated as part of the VM boot, and after the 

sandbox is ready, it gives the signal for the container spawn that uses the OCI bundle from the 

container image and has been passed from the host to the guest beforehand, to be used as its 

root file system. The container init process and all ensuing ones, as well as the I/O go through 

the VMM interface, and the desired isolation has been achieved. 

There are currently two different runtimes. The runtime is the default one, written in Golang, 

while the runtime-rs, which utilizes Rust, is under development and was created by a need for 

better container startup speed, resource consumption, stability, and security. In the context 

of the SERRANO project, we ported AWS Firecracker to the Rust runtime. While the Go 

runtime features plenty of different hypervisors (ACRN, Cloud Hypervisor, Firecracker, and 

QEMU), the Rust runtime has the built-in option of Dragonball, the default hypervisor 

explicitly implemented for it. In contrast, the rest of the hypervisor options, like QEMU and 

Cloud Hypervisor, are not yet integrated. 

Our implementation provides the ability to generate a working Firecracker hypervisor instance 

that can spawn a VM and subsequently containers with all the needed features of a VMM 

together with full networking functionality, the option to jail the sandbox and its resources 

along with the capability to hot plug block devices, by patching them to pre-inserted dummy 

drives, as Firecracker does not support filesystem sharing.  

Additionally, we have integrated the vaccel-agent as a part of kata containers, both embedded 

in the runtime and also as standalone execution, providing the option for extra computational 

power if the workload requires it, through hardware acceleration, without involving direct 

hardware/device access. 
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10.3 Unikernels as Containers 

To bridge the gap between containerized environments and unikernels, enabling seamless 

integration with cloud-native architectures, we introduce urunc. Designed to fully leverage 

the container semantics and benefit from the OCI tools and methodology, urunc aims to 

become “runc for unikernels”, while offering compatibility with the Container Runtime 

Interface (CRI). By relying on underlying hypervisors, urunc launches unikernels provided by 

OCI-compatible images, allowing developers and administrators to package, deliver, deploy, 

and manage their software using familiar cloud-native practices. 

10.3.1 bima: unikernel container images 

The first step to enable this functionality is to pack a unikernel into an OCI-compatible 

container image. To achieve this, we build bima, a software tool that embeds a unikernel 

image, metadata and its dependencies into a layered OCI container image.  

Figure 96 shows how to pack a unikernel image into an OCI-compatible container image, using 

bima. 

 

Figure 96: Packing a unikernel as an OCI-compatible container image 

  

bima builds an OCI-compatible Container Image from a special type of Containerfile that 

supports a minimal set of instructions: FROM, COPY, and LABEL. The images built by bima are 

intended to be run by urunc, so there is no compatibility with other container runtimes. 

However, they can be pushed and pulled from generic container image registries, such as 

Docker Hub and on-premise Harbor installations. 

• FROM: It is not taken into account in the current implementation, but we plan to add 

support for it. 

• COPY: It works as in Dockerfiles. The current implementation supports only one copy 

operation per "instruction" (think one copy per line). 
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• LABEL: All LABEL "instructions" are added as annotations to the Container image. They 

are also added to a special urunc.json inside the container's rootfs. 

 

Due to the tight coupling between bima and urunc, the few annotations required for urunc to 

work are also required by bima. 

The required annotations are the following: 

• com.urunc.unikernel.unikernelType: The type of the unikernel (can be rumprun, 

unikraft, etc) 

• com.urunc.unikernel.hypervisor: The desired hypervisor to run the unikernel (e.g. 

qemu, hedge, hvt) 

• com.urunc.unikernel.binary: The unikernel binary to run 

• com.urunc.unikernel.cmdline: The cmdline used to run the unikernel 

 

The produced image's platform OS is always Linux, while the platform architecture is 

automatically extracted from the ELF headers of the file defined 

in com.urunc.unikernel.binary annotation. 

A sample Containerfile should look like the following: 

# the FROM instruction will not be parsed 
FROM scratch 
 
COPY test-redis.hvt /unikernel/test-redis.hvt 
COPY redis.conf /conf/redis.conf 
  
LABEL com.urunc.unikernel.binary=/unikernel/test-redis.hvt 
LABEL "com.urunc.unikernel.cmdline"='{"cmdline":"redis-server /data/conf/redis.conf",\ 
"net":{"if":"ukvmif0","cloner":"True","type":"inet","method":"static","addr":"10.0.66.

2","mask":"24","gw":"10.0.66.1"},\ 
"blk":{"source":"etfs","path":"/dev/ld0a","fstype":"blk","mountpoint":"/data"}}' 
LABEL "com.urunc.unikernel.unikernelType"="rumprun" 
LABEL "com.urunc.unikernel.hypervisor"="qemu" 

10.3.2 urunc: a unikernel container runtime 

Figure 97 presents a high-level architecture diagram of urunc and its interaction with the rest 

of the components in a generic container environment. 

To delve into the inner workings of urunc, the process of starting a new unikernel "container" 

via containerd involves the following steps:  

1. Containerd unpacks the image onto a devmapper block device and invokes urunc.  

2. Urunc parses the image's rootfs and annotations, initiating the required setup 

procedures. These include creating essential pipes for stdio and verifying the 

availability of the specified vmm.  
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3. Subsequently, urunc spawns a new process within a distinct network namespace and 

awaits the completion of the setup phase.  

4. Once the setup is finished, urunc executes the vmm process, replacing the container's 

init process with the vmm process. The parameters for the vmm process are derived 

from the unikernel binary and options provided within the "unikernel" image.  

5. Finally, urunc returns the process ID (PID) of the vmm process to containerd, effectively 

enabling it to handle the container's lifecycle management.  

 

 
Figure 97: Running an unpacked container image as a unikernel 

 

Unikernels hold great potential for utilization in serverless deployments. With their 

lightweight nature, ultra-fast boot times, and singular purpose, unikernels align perfectly with 

the requirements of short-lived, single-purpose serverless functions. By leveraging urunc, 

developers can seamlessly deploy and manage unikernel-based serverless applications in a 

cloud-native manner. Combining unikernels and serverless computing enables efficient 

resource utilization, rapid scaling, and optimal performance, opening up possibilities for 

building highly efficient and responsive cloud-native applications.  

Incorporating unikernels into the container ecosystem through urunc unlocks the benefits of 

both technologies. Unikernels provide better performance, security, and resource efficiency, 

while urunc enables seamless integration into cloud-native environments by embracing 

container semantics and OCI compatibility. This powerful combination empowers developers 

to leverage the advantages of unikernels while utilizing the robust orchestration capabilities, 

scalability, and ecosystem of cloud-native architectures.  

10.4 microVM Optimizations 

The virtualization layer is a vital component of the software system stack in edge computing. 

Virtualization allows the abstraction of the underlying resources and enables the concurrent 

execution of workloads from various tenants in an isolated environment. Nonetheless, this 

comes at the cost of consuming more resources and adding overhead to the overall execution 

of a workload. Consequently, the virtualization layer must be as lightweight as possible while 

not compromising the isolation and fair execution among the different tenants.  

Containers have dominated the cloud. Instead of virtualizing the entire system, containers use 

Operating System mechanisms to provide the necessary isolation. Such a design requires 

fewer resources than traditional virtualization since the virtualized environment is much 
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smaller. Furthermore, containers can achieve better performance, especially in the case of I/O 

and boot times, since the applications can directly communicate with the host Operating 

System without the mediation of any other software (e.g., hypervisor). On the other hand, 

relying on pure software solutions by sharing the Operating System among different tenants 

raises concerns regarding the level of isolation that containers provide. To this end, several 

recent studies have proved that container isolation is much weaker than traditional 

virtualization techniques. As a result, container deployment usually occurs inside virtual 

machines, increasing the overall system software stack.  

Under these circumstances, traditional system-level virtualization is the only feasible solution 

in order to provide strong isolation. In system-level virtualization, a virtual machine monitor 

(VMM) creates an entire virtual machine, and a different Operating System runs inside. In 

most cases, the virtual machine monitor is a user-space application that interacts with the 

host Operating System to create and manage the virtual machines. As a result, researchers 

and engineers focus on reducing the overhead that the virtual machine monitor induces and 

optimizing the I/O performance. 

In this context, microVMs have emerged. Instead of using an entire Operating System inside a 

virtual machine, microVMs use a minimal kernel and only the necessary components to 

execute applications. The lightweight virtual machines are much more scalable since they can 

quickly boot and shut down while reducing resource consumption. Such virtual machines also 

require fewer functionalities from the underlying hypervisor. As a result, new hypervisors can 

only support the necessary functionalities, specifically for microVMs, reducing their codebase 

and the overhead of setting up the environment for the virtual machine. 

VMM constant mode switching between the host OS kernel and user-space can be expensive 

and redundant, but in some VMM designs, emulation of I/O devices makes it necessary. 

However, especially in the cloud, the VMM and the VMs mostly use virtual devices for I/O. In 

this context, the I/O request could be handled directly by the host OS without VMM 

mediation. Vhost follows such an approach and allows VMM to offload the data plane to 

another component, which could run inside the host OS. Vhost manages to improve the 

overall I/O performance significantly. Nonetheless, with vhost, the guest-host communication 

operates asynchronously, requiring a thread to poll for the latest data. Using threads for 

polling might be fine on high-end servers with multicore CPUs, but it can create issues for edge 

devices with limited cores. Thus, despite the benefits of vhost, such technology only applies 

to some edge devices.  

Virtual Machine Monitor 

A hypervisor can be simple and minimal; the example of the solo5 unikernel showcases an 

interesting aspect of I/O in hardware virtualization. When a privileged operation (like a 

network I/O request) occurs in the guest, the system traps (VMExit) in the host kernel (KVM), 

and then it is delivered back to the user space monitor. In turn, the monitor handles the 

request from the guest and asks KVM to resume the guest execution. While this path seems 

appropriate in the typical case (such as with general-purpose hypervisors, where different 

architectures or devices are emulated), in the case of lightweight virtualization, an additional 
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and unnecessary switch from kernel space to user space incurs significant overhead. For 

instance, during a network I/O request, the host kernel will return the control to the user 

space monitor in order to handle the guest’s request, and the user space monitor will 

eventually make a system call to transmit or receive the network packet, returning the control 

to the host kernel. We want to explore how significant the overhead of these mode switches 

is and find solutions that can substantially reduce the overhead. 

To entirely remove this overhead, we designed and implemented HEDGE, a minimal and 

simplistic VMM that resides inside the Linux kernel interacting directly with KVM without any 

intervention from the user space. HEDGE is a simple dispatch handler in the kernel that 

services a guest's needs. It provides an interface to the KVM API, a Virtual Machine execution 

environment for each of the VMs spawned, generic device handling (network & block), and a 

management layer to perform basic VM operations (create, destroy, dump console, etc.). 

 

Figure 98: A unikernel running as a VM on HEDGE 

 

A major challenge in this approach is that KVM targets user space processes, providing an API 

through file descriptors. Moreover, using KVM's API from inside the kernel is impossible 

because most needed functions are only used inside KVM. A way around this is to create a 

glue code, which is some wrappers of KVM functions, between HEDGE and KVM to expose all 

the needed functionality. For that reason, two small patches are required to be able to use 

HEDGE. In all other cases, HEDGE works similarly to most user space VMMs.  As in the case of 

QEMU/KVM each VM is associated with one kernel thread, which implements the vCPU. The 

thread's life cycle begins when the HEDGE receives a request to spawn a new VM and handles 

all privileged operations (VMExits). A worth noting design choice that we made is that the new 

kernel thread will have its own memory mappings (mm struct). Moreover, HEDGE allocates a 

virtual memory, which will serve as the guest's memory, and maps it to a virtual address of 

the newly created kernel thread's memory area. Thereby, the kernel thread mimics a user 

space process, tricking KVM that it gets used from user space. 

An important aspect of HEDGE's design is reducing the noise VMMs enforce to handle I/O 

requests. Performance is one of this project's primary goals; to achieve that, the guest needs 
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to run uninterrupted as much as possible. Besides removing the mode switch overhead, 

HEDGE handles I/O requests with the minimum possible overhead. The simple and minimal 

hypercall Application Binary Interface (ABI) from Solo5 helps in that direction. Network 

packages are formed from the guest, and when the I/O request occurs, the job of HEDGE is as 

simple as forwarding the frame to the appropriate network interface. Receiving packages 

follow the opposite route. Every guest is associated with a virtual interface (TAP), and we use 

raw ethernet sockets to receive and send network packets on behalf of the guest. Regarding 

block device support, HEDGE leverages the device mapper (DM) functionality to create a 

virtual block device mapped to a physical device. Using the block read/write hypercalls from 

Solo5 ABI, the guest makes I/O requests, which are translated to read/write calls in the kernel 

to the DM block device. However, the plan is to add support for VirtIO in an effort to host 

more unikernel frameworks and even basic functionality of a Linux guest. 

As with every VMM, HEDGE provides its management interface. For the time being, it is 

minimal and can handle basic VM operations such as start, stop, etc. One can easily manage 

HEDGE both locally (user space) or remotely. In that manner, HEDGE can be easily managed 

in cases where user space access is impossible, such as edge nodes. In both cases, HEDGE can 

be managed by the following commands: 

• Load: Loads a module (VM image) and prepares its deployment. 

• Start: Executes the selected module. 

• Stop: Stops the execution of a VM. 

 

Moreover, a user can select which block or net device will be used, specify the command line 

arguments for the guest, and dump the guest's console output. Furthermore, a user can access 

statistics such as boot and setup times, I/O operations (both disk and network), and generic 

stats regarding HEDGE, such as the number of VMs, memory consumption, and more. 

Someone can interact with the management interface locally via a specialized filesystem in 

the Linux kernel, procfs. When HEDGE is loaded, two new files and one directory are created 

under /proc directory: 

• /proc/monitor: I/O file that can be used to control the hypervisor and its virtual 

machines. 

• /proc/vmcons/VMID: I/O file which keeps the output of the virtual machine. 

• /proc/vmstats/VMID: A directory which keeps stats for hypervisor, and virtual 

machines 

On the other hand, one can interact with the network management interface. In that case, the 

commands are sent over UDP, while the files can be transmitted over tftp. 

In the context of the SERRANO platform, we have enhanced HEDGE to support generic Linux 

distributions as well. However, as our focus is on Unikernels, we have ported and successfully 

executed unikraft [123], rumprun [124], solo5, and OSv unikernels. Additionally, we are in the 

process of integrating HEDGE with urunc to support the secure and efficient end-to-end 

deployment of workloads through the SERRANO orchestrator to edge devices. 
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10.5 Hardware Acceleration 

In the context of edge devices, utilizing specialized hardware components or accelerators to 

offload and enhance specific computing tasks plays a vital role in boosting performance and 

efficiency. By leveraging hardware accelerators like GPUs or FPGAs, sandboxed containers can 

delegate computationally intensive tasks, leading to swifter and more efficient execution. This 

approach not only improves the overall application performance but also optimizes the 

utilization of resources on edge devices. Hardware acceleration empowers edge nodes to 

effectively handle challenging workloads, such as real-time data processing, AI inferencing, or 

video transcoding. The result is improved responsiveness, decreased latency, and increased 

energy efficiency, ultimately enhancing the capabilities of edge computing. 

In SERRANO, we build and enhance the vAccel framework to enable interoperable hardware 

acceleration to workloads deployed as container images in various modes of execution: 

containers, sandboxed containers (in microVMs), and unikernels. More details on the vAccel 

framework can be found in D4.4 (M30). 

The integration of the vAccel framework with the custom container runtimes we build in the 

context of T5.5 is twofold:  

• First, we integrate vAccel to the container runtimes we build and enhance (kata-

containers) to support hardware acceleration functionality in instances that do not 

have direct access to hardware accelerator devices. 

• Second, we enable vAccel in a multi-tenant Serverless environment using OpenFaaS, 

K8s, and our custom container runtimes. 

The integration of vAccel to kata-containers has been implemented in both runtimes (Go and 

Rust), as mentioned in Section 10.2. In the Go runtime, we only support AWS Firecracker as 

the sandboxing mechanism, whereas in the Rust runtime we enable support for all available 

hypervisors. 

Working towards the final version of the SERRANO integration platform, we will showcase the 

end-to-end serverless instantiation of hardware-accelerated kernels, as well as the 

containerized mode of deployment with and without vAccel. 
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11 Conclusions 

In this deliverable, we present the work of all tasks in WP5, with a particular focus on the 

second phase of the work package implementation (M16-31). Specifically, we elaborate on 

the final design and developments for: (i) the ARDIA (A Resource reference model for Data-

Intensive Applications) modelling framework, (ii) AI-Enhanced Service Orchestrator, (iii) multi-

objective resource allocation and service orchestration optimization algorithms, (iv) AI/ML-

driven service assurance and re-optimization mechanisms, (v) energy and resource-aware 

flow mappings, (vi) novel network and cloud telemetry framework, (vii) hierarchical resource 

orchestration, and (viii) lightweight virtualization mechanisms.  

The provided developments are integral parts of the cognitive orchestration and transparent 

deployment mechanisms of the SERRANO complete platform prototype that will be used for 

the final performance evaluations. 

Overall, this document presents the research and development activities of WP5 and builds 

upon the initial developments reported in M15 at deliverables D5.1, D5.2, and D5.3 to provide 

the remaining functionality and implement the complete interfaces for inter-component 

communication. 

The above developments will be further enhanced as we move towards the final integration 

of the related components into the final release of the SERRANO integrated platform. 
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