

TRANSPARENT APPLICATION DEPLOYMENT IN A SECURE,

ACCELERATED AND COGNITIVE CLOUD CONTINUUM

Grant Agreement no. 101017168

Deliverable D5.4

Intelligent Service and Resource Orchestration

Mechanisms

Programme: H2020-ICT-2020-2

Project number: 101017168

Project acronym: SERRANO

Start/End date: 01/01/2021 – 31/12/2023

Deliverable type: Report

Related WP: WP5

Responsible Editor: NBFC

Due date: 31/07/2023

Actual submission date: 31/07/2023

Dissemination level: Public

Revision: FINAL

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No 101017168

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 2/158

Revision History

Date Editor Status Version Changes

29.05.23 NBFC Draft 0.1 Initial ToC

04.07.23 ICCS Draft 0.2 Initial contribution in Sections 3, 5, 7, 9

14.07.23 NBFC Draft 0.3 Initial contribution in Section 10

18.07.23 ICCS Draft 0.4 Updates in Sections 5,7, 9

19.07.23 USTUTT/HLRS Draft 0.5 Contribution in Sections 8 and 9

20.07.23 INNOV, UVT Draft 0.6 Contribution in Section 4

21.07.23 UVT Draft 0.6 Contribution in Section 6

21.07.23 NBFC Draft 0.7 Contribution in Sections 1,2, and 11

24.07.23 ICCS Draft 0.8 Finalize Sections 5 and 9

25.07.23 NBFC Draft 0.9 Ready for internal review

28.07.23 ICCS, NBFC Draft 0.10 Address internal review comments

31.07.23 ICCS Final 1.0 Final version for submission

Author List

Organization Author

ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Polyzois Soumplis, Ippokratis

Sartzetakis, Fotis Kouzinos, Emmanouel Varvarigos

MLNX Yoray Zack, Juan Jose Vegas Olmos, Sandra Starck

USTUTT/HLRS Kamil Tokmakov, Javad Fadaie Ghotbi

INTRA Paraskevas Bourgos, Makis Karadimas

INNOV Efthymios Chondrogiannis, Efstathios Karanastasis, Filia Filippou, Andreas

Litke, Kassi Papasotiriou, Stelios Pantelopoulos

UVT Gabriel Iuhasz, Adrian Spătaru

NBFC Anastassios Nanos, Christos Panagiotou, George Ntoutsos, Charalampos

Mainas, Dimitris Karadimas, Alexandros Karantzoulis, Matias Vara Larsen,

Shenghao Qiu

Internal Reviewers

Gabriel Iuhasz - UVT

Polyzois Soumplis - ICCS

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 3/158

Abstract: Deliverable D5.4 summarizes the outcomes from all five tasks of Work Package 5 -

Intelligence Service and Resource Orchestration. It presents the research and development

activities during the second iteration of the SERRANO incremental implementation plan (M16-

M31). The deliverable builds upon the initial developments, which were reported in M15 at

deliverables D5.1, D5.2, and D5.3, to provide the remaining functionality and implement the

complete interfaces for inter-component communication. The deliverable presents the final

design and developments for: (i) the ARDIA (A Resource reference model for Data-Intensive

Applications) modelling framework, (ii) AI-Enhanced Service Orchestrator, (iii) multi-objective

resource allocation and service orchestration algorithms, (iv) AI/ML-driven service assurance

and re-optimization mechanisms, (v) energy and resource-aware flow mappings, (vi) novel

network and cloud telemetry framework, (vii) hierarchical resource orchestration, and (viii)

lightweight virtualization mechanisms. The provided developments are integral parts of the

cognitive orchestration and transparent deployment mechanisms of the SERRANO complete

platform prototype that will be used for the final performance evaluations.

Keywords: ARDIA framework models, AI-enhanced Service, Service Assurance, Multi-objective

Optimization, Resource Optimization Toolkit, HPC Services, Telemetry, Resource

Orchestration, Lightweight Virtualization, Containers, Unikernels, vAccel.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 4/158

Disclaimer: The information, documentation and figures available in this deliverable are written by the

SERRANO Consortium partners under EC co-financing (project H2020-ICT-101017168) and do not

necessarily reflect the view of the European Commission. The information in this document is provided

“as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The

reader uses the information at his/her sole risk and liability.

Copyright © 2023 the SERRANO Consortium. All rights reserved. This document may not be copied,

reproduced or modified in whole or in part for any purpose without written permission from the

SERRANO Consortium. In addition to such written permission to copy, reproduce or modify this

document in whole or part, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 5/158

Table of Contents

1 Executive Summary ... 15

2 Introduction ... 16

2.1 Purpose of this document ... 16

2.2 Document structure .. 17

2.3 Audience .. 17

3 SERRANO Intelligent Service and Resource Orchestration Mechanisms 18

4 Intelligent Service Orchestration ... 20

4.1 AI-enhanced Service Orchestrator .. 20

4.2 Abstraction Models and Mapping Rules ... 21

4.3 Telemetry Data Analysis and ML Model Development ... 23

4.4 Translation Mechanism ... 25

4.5 Integration with a Graphical Interface .. 26

4.5.1 SERRANO-TOSCA .. 27

4.6 Example of Usage .. 29

4.6.1 Application requirements, intent specification and deployment description ... 29

4.6.2 Mapping Rules and Translation Mechanism .. 32

5 Algorithmic Framework ... 34

5.1 Cloud-native Applications’ Workload Placement in the SERRANO Edge-Cloud

Continuum .. 34

5.1.1 Related work .. 35

5.1.2 Problem formulation .. 36

5.1.3 Resource allocation mechanisms ... 38

5.1.4 Performance evaluation ... 41

5.1.5 Conclusions ... 43

5.2 Security-aware Resource Allocation in the SERRANO Edge-Cloud Continuum 44

5.2.1 Related work .. 44

5.2.2 Infrastructure description .. 45

5.2.3 Problem formulation .. 47

5.2.4 Performance evaluation ... 53

5.2.5 Conclusions ... 56

5.3 Intent-based Allocation of Cloud Computing Resources Using Q-Learning 57

5.3.1 Related work .. 58

5.3.2 System Model and Infrastructure-Agnostic Operations 59

5.3.3 Q-learning based Intent Translation .. 60

5.3.4 Evaluation ... 63

5.4 Resource Optimization Toolkit .. 65

5.4.1 Final implementation and interfaces ... 65

5.4.2 Algorithms integration and Python API.. 68

5.4.3 Deployment and configuration .. 71

6 Service Assurance and Remediation ... 72

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 6/158

6.1 Architecture ... 72

6.1.1 Configuration and REST API.. 77

6.2 Methods for Detection and Analysis ... 78

6.2.1 Supervised ML methods ... 79

6.2.2 Unsupervised ML methods .. 81

6.3 Discussion .. 84

7 Network and Cloud Telemetry Framework ... 85

7.1 SERRANO Telemetry Framework ... 85

7.1.1 Central Telemetry Handler and Enhanced Telemetry Agent 86

7.1.2 Monitoring Probes ... 89

7.1.3 Operational Database .. 93

7.1.4 Deployment of telemetry services and data visualization 94

7.2 Inventory and telemetry parameters .. 95

7.3 Telemetry interfaces .. 96

7.4 Persistent Monitoring Data Storage .. 98

7.5 Identifying Network Congestion Using Knowledge Graphs and Link Prediction 102

7.5.1 Previous Work .. 103

7.5.2 Proposed Methodology .. 104

7.5.3 Experiments .. 109

7.5.4 Discussion ... 111

8 Energy and Resource Aware Flow Mapping .. 112

8.1 Excess Cluster, Hardware, and Tools ... 112

8.2 Power Measurement Utilities .. 113

8.3 Power Measurement Conversion and Visualization ... 114

8.4 CPU Frequency Utility .. 115

8.5 Kernels Benchmarking ... 115

9 Resource Orchestration Mechanisms ... 117

9.1 SERRANO Resource Orchestrator .. 118

9.2 Orchestration Drivers .. 124

9.3 SERRANO HPC Gateway ... 126

9.4 Integration with SERRANO Services .. 128

9.4.1 Secure storage policies cognitive creation ... 128

9.4.2 Cloud-native applications deployment .. 131

9.4.3 SERRANO HW/SW accelerated kernels execution ... 135

10 Lightweight Virtualization Mechanisms .. 138

10.1 Efficient Sandboxing of Containers on Edge Nodes .. 140

10.2 Sandboxed Containers ... 142

10.3 Unikernels as Containers ... 145

10.3.1 bima: unikernel container images .. 145

10.3.2 urunc: a unikernel container runtime .. 146

10.4 microVM Optimizations ... 147

10.5 Hardware Acceleration .. 151

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 7/158

11 Conclusions .. 152

12 References ... 153

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 8/158

List of Figures

Figure 1: SERRANO high-level architecture .. 18

Figure 2: The SERRANO platform, utilizing edge, cloud and HPC resources and empowering the

Everything as a Service (EaaS) notion towards the cloud continuum 19

Figure 3: AI-enhanced Service Orchestrator Interface .. 20

Figure 4: Security Tiers for the SERRANO platform ... 22

Figure 5: Execution speedup in (a) Kalman Filter and (b) Wavelet Transformation using

different types of resources ... 23

Figure 6: Energy gain in (a) Kalman Filter and (b) Wavelet Transformation using different types

of resources .. 24

Figure 7: ML model for predicting the Total Execution Time of a particular microservice for

different workloads in (a) an Edge Device and (b) in HPC ... 24

Figure 8: ML model for predicting the Total Energy Consumption of a particular microservice

for different workloads in (a) an Edge Device and (b) in HPC .. 25

Figure 9: Class diagram for SERRANO-TOSCA entities ... 27

Figure 10: Application definition using SERRANO-TOSCA definitions in Alien4Cloud Topology

Editor .. 30

Figure 11: Intent Dialogue for one component in Alien4Cloud ... 30

Figure 12: Intent dialogue for the application performance dimension 31

Figure 13: Deployment runtime interface ... 32

Figure 14: Overview of the given YAML and JSON files – AISO input 33

Figure 15: AISO Deployment Scenario(s) – JSON File Provided to Resource Orchestrator 33

Figure 16: Flowchart of the GRAA heuristic. .. 39

Figure 17: Multi-agent Rollout options for serving the i-th microservice of application a 40

Figure 18: The pareto efficiency chart ... 42

Figure 19: The number of microservices allocated at the various layers 42

Figure 20: Operational and networking cost for the different objective co-efficients 43

Figure 21: Heterogenous resources across the edge-cloud continuum. 45

Figure 22: Different levels of workload isolation ... 46

Figure 23: Flowchart of the greedy best fit heuristic ... 51

Figure 24: Optimality gap for the different optimization criteria .. 54

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 9/158

Figure 25: Allocation of microservices at the different layers of the edge-cloud continuum . 54

Figure 26: Operational cost overhead for the different optimization criteria 55

Figure 27: Experienced latency for the different optimization criteria 55

Figure 28: Intent-driven resource allocation ... 57

Figure 29: The average reward over time for different cost resource levels 63

Figure 30: The average reward over time for different ε values ... 64

Figure 31: The average reward over time for different number of intent parameters 64

Figure 32: The Q-Table’s heatmap for ε=0.5 and 50000 timesteps ... 65

Figure 33: Resource Optimization Toolkit (ROT) architecture and main components 66

Figure 34: Resource Optimization Toolkit REST API ... 67

Figure 35: ROT asynchronous communication over SERRANO Message Broker – Final

implementation .. 68

Figure 36: ROT - Workflow for executing an orchestration algorithm in SERRANO 69

Figure 37: Integrated orchestration algorithms ... 70

Figure 38: Code snippet for interacting with the ROT through the provided Python API 71

Figure 39: Event Detection Engine – General architecture .. 73

Figure 40: Pearson Correlation Raw Data .. 74

Figure 41: Feature reduction (t-SNE) ... 75

Figure 42: SAR Response Example ... 77

Figure 43: SAR REST Configuration ... 77

Figure 44: SAR REST Control ... 78

Figure 45: Class distribution ... 79

Figure 46: Learning curve XGBoost overlapping anomalies... 80

Figure 47: ROC curve for XGBoost .. 81

Figure 48: Decision Boundary Comparison .. 83

Figure 49: Shapley value-based feature importance ... 83

Figure 50: Shapley value-based feature importance ... 84

Figure 51: SERRANO hierarchical telemetry architecture .. 85

Figure 52: Central Telemetry Handler and Enhanced Telemetry Agent architecture 86

file:///C:/Users/akretsis/Dropbox/Serrano/WP5/D5.4/SERRANO_D5.4_v0.10.docx%23_Toc141717661

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 10/158

Figure 53: SERRANO telemetry framework – Inventory workflow .. 87

Figure 54: SERRANO telemetry framework – Monitoring workflow 88

Figure 55: General architecture of SERRANO monitoring probes ... 89

Figure 56: Autonomous monitoring of deployed cloud-native and short-lived applications .. 91

Figure 57: Monitoring data collected by SERRANO HPC monitoring probe 92

Figure 58: SERRANO telemetry framework deployment in project integration testbed 94

Figure 59: Memory usage for a selected worker node in the NBFC K8s cluster 95

Figure 60: Collected inventory and monitoring parameters in the SERRANO platform.......... 96

Figure 61: Telemetry framework REST interfaces – Control and management methods 97

Figure 62: Telemetry framework REST interfaces – High-level CTH methods 98

Figure 63: Persistent Monitoring Data Storage (PMDS) architecture 99

Figure 64: Persistent Monitoring Data Storage (PMDS) RESTful interface 99

Figure 65: PMDS Python API – Historical telemetry data for a specific worker node within a K8s

cluster ... 101

Figure 66: PMDS deployed in main SERRANO Kubernetes cluster .. 102

Figure 67: Overview of proposed KG-based modelling and event detection methodology . 104

Figure 68: Knowledge graph meta-graph ... 106

Figure 69: The three-step process of the GraphSAGE inductive representation method. 107

Figure 70: The link prediction process. .. 108

Figure 71: Link prediction confusion matrix ... 110

Figure 72: Hardware components of the EXCESS cluster .. 113

Figure 73: Hardware components of the EXCESS cluster .. 115

Figure 74: Energy consumption of Kalman filter with different frequencies and different

numbers of cores .. 116

Figure 75: SERRANO distributed and cognitive resource orchestration mechanisms, unifying

different edge, cloud, and HPC platforms .. 117

Figure 76: SERRANO Resource Orchestrator architecture and services 118

Figure 77: Resource Orchestrator RESTful interface.. 119

Figure 78: Resource Orchestrator RESTful interface – Methods related to inter-component

communication... 120

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 11/158

Figure 79: SERRANO Orchestration API objects ... 121

Figure 80: Relationship among main SERRANO Orchestration API objects 122

Figure 81: SERRANO Orchestration API objects and federated application deployment 123

Figure 82: SERRANO Orchestration Drivers ... 124

Figure 83: Orchestration Driver workflow ... 125

Figure 84: Interaction between HPC Gateway and HPC infrastructure 126

Figure 85: REST API endpoints exposed by HPC Gateway ... 127

Figure 86: Secure storage policy cognitive creation – Orchestration workflow 130

Figure 87: Code snippet for creating and using a SERRANO secure storage policy 130

Figure 88: Application deployment – High-level cognitive orchestration workflow 132

Figure 89: Kubernetes application deployment description enhanced by the SERRANO

Resource Orchestrator ... 133

Figure 90: Cloud-native application deployment – Transparent deployment workflow 134

Figure 91: Terminating cloud-native application deployment... 135

Figure 92: Kernel execution and data handling from the end user’s perspective, common

approach for all supported modes and platforms ... 136

Figure 93: A Virtual Machine running on a generic user-space VMM on top of KVM 139

Figure 94: High-level overview of generic container spawning in a k8s environment 140

Figure 95: Container sandboxing ... 141

Figure 96: Packing a unikernel as an OCI-compatible container image 145

Figure 97: Running an unpacked container image as a unikernel ... 147

Figure 98: A unikernel running as a VM on HEDGE .. 149

List of Tables

Table 1: The Parameters of a Mapping Rule .. 21

Table 2: TOSCA parameters for updating Kubernetes ConfigMap .. 29

Table 3: MILP variables... 37

Table 4: Characteristics of the computing nodes of the basic and extended topologies 41

Table 5: The total cost and the execution time for w=0.01 for the different mechanisms 42

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 12/158

Table 6: Multipliers of the computing and storage requirements for the different security and

trustworthiness tiers .. 47

Table 7: MILP variables... 49

Table 8: Characteristics of the computing nodes of the different topologies 53

Table 9: Cloud-native applications’ workload characteristics.. 53

Table 10: ROT plug-in mechanism – AlgorithmInterface abstract class 69

Table 11: ROT Python API – Provided methods and events .. 70

Table 12: Unsupervised method scores ... 82

Table 13: Central Telemetry Handler and Enhanced Telemetry Agent configuration options 87

Table 14: PMDS Python API – Available input parameters .. 100

Table 15: Link prediction evaluation metrics ... 110

Table 16: Comparison between compute nodes of Excess and Hawk 113

Table 17: Power consumption of parallel implementation of Kalman filter in Turbo Mode 116

Table 18: Datastore topics (keys) for the main SERRANO Orchestration API objects 123

Table 19: Process execution environment ... 143

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 13/158

Abbreviations

A4C Alien4Cloud

ABI Application Binary Interface

AE Autoencoders

AES Advanced Encryption Standard

AI Artificial intelligence

AIoT Artificial Intelligence of Things

AISO AI-enhanced Service Orchestrator

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ARDIA A Resource reference model for Data-Intensive Applications

AWT Average Waiting Time

ARFF Attribute Relation File Format

CBLOF Clustering-Based Local Outlier Factor

CI/CD Continuous Integration / Continuous Development

CO Central Office

CPU Central Processing Unit

CRI Container Runtime Interface

CTH Central Telemetry Handler

CU Cost Unit

D Deliverable

DBMS Database Management System

DevOps Development and Operations

DM Device Mapper

DNN Deep Neural Network

DPUs Data Processing Units

DU Data Unit

ECC Edge-Cloud Computing

EDE Event Detection Engine

ELF Executable and Linkable Format

ETA Enhanced Telemetry Agent

FaaS Function as a Service

FPGA Field-programmable Gate Array

GCM Galois/Counter Mode

GNN Graph Neural Network

GPU Graphics Processing Unit

GRAA Greedy Resource Allocation Algorithm

GUI Grapical User Interface

HPC High Performance Computing

HPO Hyper-Prameter Optimization

HW Hardware

IaaS Infrastructure-as-a-Service

ILP Integer Linear Programming

IoT Internet of Things

JSON JavaScript Object Notation

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 14/158

K8s Kubernetes

KG Knowledge Graph

KVM Kernel-based Virtual Machine

KVVM in-Kernel Virtual Machine Monitor

L.U. Latency Units

LOF Local Outlier Factor

M Month

MAS Multi-Agent System

MEC Mobile Edge Computing

MILP Mixed-Integer Linear Programming

ML Machine learning

MP Mapping Rule

MPI Message Passing Interface

MQTT MQ Telemetry Transport

NBI North Bound Interface

NN Neural Network

OCI Open Container Initiative

OS Operating System

PA Personal Agent

PMDS Persistent Monitoring Data Storage

PU Period Unit

PV Persistent Volume

PVC Persistent Volume Claim

PyG PyTorch Geometric

QoS Quality of Service

REST Representational State Transfer

RL Reinforcement Learning

ROT Resource Optimization Toolkit

SAR Service Assurance and Remediation

SARSA State-Action-Reward-State-Action

SDK Service Development Kit

SLA Service Level Agreement

SSH Secure Shell Protocol

SW Software

TD-L Temporal Difference Learning

TOSCA Topology and Orchestration Specification for Cloud Applications

t-SNE t-distributed Stochastic Neighbor Embedding

TU Task Unit

UC Use Case

VAE Variational AutoEncoders

VM Virtual Machine

VMM Virtual Machine Manager

WP Work Package

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 15/158

1 Executive Summary

SERRANO envisages the development and deployment of disaggregated federated cloud and

edge infrastructures that incorporate hardware-accelerated edge and cloud nodes as integral

parts of the overall computation and storage chain. In addition, the SERRANO ecosystem

expansion includes HPC infrastructures that can be utilized for exceptionally computationally

intensive simulations and data analysis, bridging the gap between these currently largely

separated computing paradigms.

Deliverable 5.4 presents a comprehensive report on the progress made in WP5 during the

second iteration (M16-M31) of the SERRANO implementation plan. The main focus of this

deliverable is to outline the work accomplished in all five tasks within WP5, which are

dedicated to the implementation of the SERRANO intelligent service and resource

orchestration mechanisms, along with lightweight virtualization mechanisms. These tasks

build upon the initial developments described in D5.1 (M15), D5.2 (M15), and D5.3 (M15) to

provide the final version of the envisioned mechanisms.

The deliverable offers an overview of the SERRANO platform and comprehensively details all

the critical technical developments for finalizing the end-to-end SERRANO orchestration and

deployment mechanisms. This is a major milestone that mars a significant achievement for

the SERRANO project, as it includes the following key functionalities: (a) workload deployment

modeling using the ARDIA framework to efficiently utilize available resources, (b) cognitive

workload hierarchical orchestration, incorporating resource- and service-oriented

optimization algorithms, (c) AI-enabled service assurance and re-optimization mechanisms,

considering energy and resource-aware dimensions, (d) enhanced telemetry mechanisms for

improved monitoring and data collection, and (e) support for workload deployment in diverse

execution modes, such as lightweight virtualization, containerization, and unikernels.

The information provided in this deliverable significantly contributes to the development of

the SERRANO full platform prototype (M31). Furthermore, the developed mechanisms play a

significant role in supporting the final evaluation of SERRANO use cases, which will be

documented in deliverable D6.8 “Final version of business, end user and technical evaluation”

(M36). In addition, this progress us closer to the final release of the SERRANO platform, which

will be integrated and comprehensively documented in deliverable D6.7 “Final version of

SERRANO integrated platform” (M36).

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 16/158

2 Introduction

2.1 Purpose of this document

Deliverable D5.4 presents the outcomes of all tasks carried out in WP5 throughout the second

phase (M16-M31) of the work package implementation. The initial progress during the first

iteration of the implementation plan (M07-M15) was reported on D5.1 (M15), D5.2 (M15),

and D5.3 (M15).

T5.1 is dedicated to the development of a series of abstraction models for representing and

describing resources, services, and applications along with telemetry data. These models serve

as the building blocks of the ARDIA modelling framework. Additionally, T5.1 includes the

development of the SERRANO AI-enhanced Service Orchestrator, which effectively translates

high-level and infrastructure-agnostic deployment requirements into resource-specific

deployment scenarios. All these developments are described in Section 4.

T5.2 focuses on the development of multi-objective optimization algorithms for application

deployment across edge, cloud, and HPC resources, and the data management within the

distributed secure storage infrastructure of the SERRANO platform. As part of T5.2, the

Resource Optimization Toolkit has been created, incorporating the developed algorithms.

These developments are presented in Section 5. Furthermore, this task encompasses the

development of data-driven service assurance mechanisms and the development of the Event

Detection Engine, a critical component of the Service Assurance and Remediation service

within the SERRANO platform. These aspects of T5.2 are presented in Section 6.

Moving to T5.3, its main objective is to implement an autonomous and data-driven telemetry

framework within the SERRANO platform. This framework autonomously collects telemetry

data from multiple and heterogeneous infrastructure resources and as well as metrics from

the deployed applications. Section 7 covers the design and implementation of the final release

of the SERRANO telemetry framework.

T5.4 is responsible for the development of a framework to assist developers in incorporating

performance and power model functionality into the design and programming of their digital

services, particularly within the SERRANO platform. Furthermore, T5.4 establishes the

necessary HPC infrastructure and conducts measurements of the energy efficiency of the

developed HPC services. Section 8 includes these developments.

T5.5 focuses on the development of SERRANO hierarchical resource orchestration

mechanisms, leveraging well-established orchestration solutions at edge, cloud, and HPC

platforms. Section 9 provides detailed insights into these developments, including technical

details regarding the integration of the SERRANO orchestration and deployment mechanisms

with other key SERRANO services. Additionally, T5.5 involves the development of essential

software components that enable the seamless execution of workloads in various lightweight

virtualization solutions, hypervisors, and unikernel frameworks. These novel developments

are described in Section 10.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 17/158

2.2 Document structure

The present deliverable is split into eight major chapters:

• SERRANO Intelligent Service and Resource Orchestration Mechanisms

• Intelligent Service Orchestration

• Algorithmic Framework

• Service Assurance and Remediation

• Network and Cloud Telemetry Framework

• Energy and Resource Aware Flow Mapping

• Resource Orchestration Mechanisms

• Lightweight Virtualization Mechanisms

2.3 Audience

The deliverable is public and available to anyone interested in the final release of the SERRANO

intelligent service and resource orchestration mechanisms. Moreover, this document can also

be useful to the general public for obtaining a better understanding of the framework and

scope of the SERRANO project.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 18/158

3 SERRANO Intelligent Service and Resource

Orchestration Mechanisms

The SERRANO architecture was initially introduced in deliverable D2.3 "SERRANO

architecture" (M09), and subsequently refined in its final version in D2.5 "Final version of

SERRANO architecture" (M18), incorporating valuable insights from the development

activities conducted during the first iteration of implementation (M1-M18). D2.5 (M18)

presents a comprehensive architecture overview, encompassing the SERRANO components,

their interfaces, and supported workflows. In this section, we offer a concise description of

the architecture (Figure 1) to facilitate the presentation of the final developments in WP5

regarding the intelligent service and resource orchestration mechanisms in the SERRANO

platform.

Figure 1: SERRANO high-level architecture

The Service Layer includes the AI-enhanced Service Orchestrator (Section 4) that analyses

applications to determine the possible deployment scenarios and translates the given

application requirements (high-level requirements) to lower-level ones. The Orchestration

Layer ensures efficient service orchestration and resource management through the SERRANO

Resource Orchestrator (Section 9). The Resource Optimization Toolkit (Section 5) provides joint

computational and storage resource allocation and service placement algorithms, leveraging

various optimization techniques. The Central Service Assurance manages the runtime lifecycle

of each application deployment across the SERRANO heterogeneous infrastructure. It receives

notifications from the Service Assurance and Remediation mechanisms (Section 6) that include

data-driven mechanisms that facilitate the identification of critical situations and trigger

proactively and reactively re-optimization actions to maintain the required performance

level.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 19/158

Across the SERRANO ecosystem resides the Infrastructure, Platform, and Application

Telemetry stack (Section 7) that collects metrics from the SERRANO infrastructure and

deployed applications. The main components are the Central Telemetry Handler, the

Enhanced Telemetry Agents, and Monitoring Probes. In addition, the Persistent Monitoring

Data Storage allows the management of the historical monitoring data, which is required

mainly by the service assurance and remediation system. In addition, the Resource Layer

includes heterogeneous edge, cloud, and HPC computational and storage resources

encompassing the SERRANO-enhanced resources (Sections 8 and 10), while the Orchestration

Drivers (Section 9.2) enable efficient and transparent deployment of services across the

heterogeneous infrastructure.

The developed intelligent service and resource orchestration mechanisms provide an

abstraction layer that automates the operation and maximizes the utilization of available

diverse resources, supporting a develop once, deploy everywhere approach. This integration

seamlessly links edge, cloud, and HPC resources, facilitating the processing of low-latency

services that necessitate immediate action at their source. At the same time, computationally-

and data-intensive applications are intelligently distributed across a diverse set of cloud and

HPC platforms. The SERRANO platform (Figure 2) is a self-optimizing system that continuously

adapts based on its ability to sense (detect what is happening), discern (interpret senses), infer

(understand implications), decide (choose a course of action), and act (take action), within an

infinite time horizon control loop. Leveraging SERRANO’s abstraction mechanisms, cloud-

native applications are supported towards the edge-cloud-HPC continuum.

Figure 2: The SERRANO platform, utilizing edge, cloud and HPC resources and empowering the
Everything as a Service (EaaS) notion towards the cloud continuum

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 20/158

4 Intelligent Service Orchestration

4.1 AI-enhanced Service Orchestrator

The intelligent service orchestration in SERRANO is enabled by the cooperation of several

components of the SERRANO platform, including mainly the AI-enhanced Service Orchestrator

(AISO) and the Resource Orchestrator but also the Central Telemetry Handler, and the Service

Assurance Mechanism. For utilising intelligent service orchestration, the users interact with

the SERRANO platform using the services provided by the AISO either directly or via a GUI. The

final deployment considerations, as well as the actual deployment of an application to the

available resources, are performed by the Resource Orchestrator. On the other hand, the

Central Telemetry Handler and the Central Service Assurance are responsible for collecting

performance and other data and analysing them to ensure that the application follows the

specific performance levels. In this section, particular focus is given to the AISO and the ARDIA

Framework.

The functionality provided by the AI-enhanced Service Orchestrator and the components’

architecture have already been described in the deliverables D5.1 (M15) and D2.5 (M18). In a

nutshell, the AISO provides a REST API (Figure 3) that facilitates the efficient and intelligent

deployment of applications to the resources linked with the SERRANO platform. For this

purpose, the application owners should have already containerised the application. Next, they

provide the application deployment description in a YAML file and express the application

requirements and their intent based on the parameters specified in the Application Model

(part of the ARDIA Framework). The AISO employs underlying mechanisms that utilise domain-

experts-defined mapping rules and telemetry-data-driven ML models and undertakes the

translation of the given high-level constraints to the ones appropriate for application

deployment, based on the parameters specified in the Resource Model (also part of the ARDIA

Framework). Finally, it invokes the relevant Resource Orchestrator services to request the

application deployment. Considering that the given application requirements and user intent

can usually be satisfied in more than one way, the output provided to the Resource

Orchestrator includes several suggested deployment scenarios that are most appropriate in

each case.

Figure 3: AI-enhanced Service Orchestrator Interface

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 21/158

4.2 Abstraction Models and Mapping Rules

The three abstraction models developed in SERRANO, as part of the ARDIA framework, enable

the interaction among the software components that provide the service orchestration. These

are the Application, Resource, and Telemetry Data Models that have already been described

in deliverable D5.1 (M15). The Application Model provides the terminology required to

express the application requirements, including the user intent. In particular, it enables users

to specify the internal components (aka microservices) of each application, the relations

among them, and, more importantly, the particular constraints that they should satisfy, either

independently from one another or as a whole (an example is presented in Section 4.6). The

Resource Model specifies the parameters of particular importance for different types of

resources, including standalone nodes and accelerators (e.g., GPU, FPGA) as well as the

relations among them. The elements specified in this model are used to formally express

possible deployment scenarios of each application so that the Resource Orchestrator can

further process the relevant application requirements. The Telemetry Data model specifies

the parameters being collected by the Central Telemetry Handler during the deployment and

execution of an application. The data collected and expressed using this model are used by

several components of the SERRANO platform, including the AISO.

Table 1: The Parameters of a Mapping Rule

Parameter Brief Description

Main Parameters Source One or more Application Model parameter

 Target One or more Resource Model parameter

 Transformation The process that should be followed for expressing
application to resource model constraints.

Prerequisites Conditions The conditions that should be satisfied so that this mapping
rule can be potentially applied

Metadata Origin Indicates if this mapping rule has been specified by domain
experts or through the analysis of collected telemetry data

 Direction Indicates if this mapping rule can be used when “moving”
from source to target or vice versa

The functionality provided by the AISO is based on the Mapping Rules specified. The mapping

rules were specified either manually (in close collaboration with domain experts) or

automatically through the analysis of collected telemetry data. Each mapping rule has several

parameters (Table 1), including but not limited to source and target elements, along with the

process that should be followed (aka transformation) for moving from one data

representation to the other one. The source elements are subsets of parameters specified in

the Application Model, whereas the target elements are the appropriate ones specified in the

Resource Model. The transformation specifies the process applied for expressing the

conditions defined based on the source elements to the corresponding ones based on the

target elements, and it may internally use a pre-trained ML model (as presented in Section

4.3). Apart from the aforementioned parameters, each mapping rule includes additional data,

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 22/158

such as the prerequisites that should be fulfilled so that this mapping rule can be used, and

metadata, such as the origin of the mapping rule, its direction of usage (i.e., for "moving" from

source to target elements), etc.

Several mapping rules have been specified to bridge the gap between Application and

Resource Models. The design of these mapping rules was driven by (a) analysis of relevant

publications in this field, (b) ongoing work in other SERRANO tasks / WPs in close collaboration

with the respective partners and (c) analysis of data collected from the execution of the

applications. For instance, based on publication [1] it can be presumed that when the aim is

to avoid high network utilisation or to achieve low response latency, it is preferable to deploy

an application to an edge device (or fog node) rather than to a cloud provider. Also, when

security is of great concern during the execution of an application, the particular node tiers

(Figure 4) should be taken into consideration during deployment by the Resource

Orchestrator, as described in the deliverable D3.4 (M30). For instance, when isolation is of

great importance, a Tier 4 node should be selected.

Figure 4: Security Tiers for the SERRANO platform

Regarding hardware accelerators such as GPU and FPGA, it is common knowledge that an

FPGA consumes less energy that a GPU (or CPU) [2] and can instantly respond to a user’s

request. Nevertheless, their usage often depends on the application design and development

(often some parts of an application should be redesigned or even developed from scratch

using vendor-specific hardware languages) and their capabilities to adapt to computing

environment changes (e.g., usage of a GPU or FPGA for some parts of the application) through

their proper configuration.

The definition of the aforementioned mapping rules was specified in close collaboration with

the domain experts involved in the SERRANO project. Nevertheless, in many cases, the

relation among the application and resource model parameters is much more complicated.

For this purpose, data were collected from the execution of applications (i.e., particular tasks)

using different SERRANO resources, and the collected data were accordingly analysed and

used to develop ML models that capture the exact relation among the relevant source and

target entities.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 23/158

4.3 Telemetry Data Analysis and ML Model Development

The telemetry data collected from the execution of different parts of the three UC applications

were further examined, and relevant mapping rules were specified. More complicated

relations among the elements included in the Application and Resource model were specified

using ML techniques. More precisely, the respective telemetry data from the execution of a

particular task of an application under different resource configurations were collected,

filtered, and accordingly used for the development of the respective ML models. In particular,

regression models were trained based on the data collected to be accordingly used for

prediction purposes.

Data encryption and decryption (UC1) are resource-demanding processes that can be

significantly improved through GPUs or FPGAs. The data collected indicated that total

execution time and energy gained can be significantly improved, especially in the case of AES-

GCM Encryption. Nevertheless, the expected improvement level also depends on other

parameters, such as the number of instantiated computing units, which has to do with the

particular algorithm implementation. The data available about each one of these two tasks

(i.e., encryption/decryption) were filtered and accordingly used for training two different

polynomial regression models that can predict the expected execution speedup and energy

gain based on the resource type and number of instantiated computing units.

Figure 5: Execution speedup in (a) Kalman Filter and (b) Wavelet Transformation using different

types of resources

The analysis of data collected regarding the Portfolio Analysis (UC2) tasks indicated that the

time required, and energy consumed for the execution of Kalman filters can be significantly

improved through the usage of the particular resources (Figure 5 and Figure 6). In this case,

the type of accelerator used has a tremendous impact on the execution speed-up and the

energy consumption gains, with the most significant improvement coming from using an Alveo

U50 accelerator [3]. The time needed and the energy consumed for the execution of a Wavelet

transformation are also affected by the particular resource type. Nevertheless, in this case,

the type of resource has a lower impact on the execution time and energy consumption in

comparison with the corresponding figures noticed for Kalman Filters. The aforementioned

data were used for training an ML model that can predict the expected energy gain based on

the type and particular brand/model of the resource device.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 24/158

Figure 6: Energy gain in (a) Kalman Filter and (b) Wavelet Transformation using different types of

resources

Anomaly detection in manufacturing (UC3) is a challenging process since a considerable

amount of data should be gathered and analysed to detect potential discrepancies that

indicate a failure is about to happen. In this manner, equipment can be utilised for their whole

lifespan and their replacement can be programmed in advance, thus avoiding unexpected

delays in the production line and unneeded expenses. Hence, continuously monitoring and

assessing anomalies in real-time is of great importance. The amount of energy ML techniques

consume in this process is another critical factor [3]. The applications and the respective

microservices were tested under different resource configurations (i.e., in an edge or HPC

device) for the processing of different workloads, and the relevant data regarding the total

execution time of the particular tasks and the energy consumed were recorded (as part of the

WP4 tasks).

Figure 7: ML model for predicting the Total Execution Time of a particular microservice for
different workloads in (a) an Edge Device and (b) in HPC

Then, several polynomial regression models were developed to predict the expected

execution time and energy consumption of different application microservices respectively

(Figure 7 and Figure 8). For this purpose, the data were split in three groups, i.e., training,

validation, and testing, so that they could be used for hyper-parameters tuning, model training

and validation purposes.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 25/158

Figure 8: ML model for predicting the Total Energy Consumption of a particular microservice for
different workloads in (a) an Edge Device and (b) in HPC

4.4 Translation Mechanism

The data provided by the end-user regarding the particular application requirements and user

intent are used by the AISO to detect the potential deployment scenarios feasible in each case

so that the given restrictions are satisfied. Each deployment scenario specifies the type and,

in some cases, the suggested concrete details of the resource. The deployment scenarios are

expressed in JSON format based on the elements specified in the Resource Model.

The AISO examines the data provided by the end user along with the Mapping Rules (MRs)

already specified for translating the given parameters to the appropriate resource constraints.

More precisely, it focuses on the source and target elements of the MRs defined in order to

find the ones that can be directly or indirectly applied to the given parameters. These MRs are

accordingly applied one by one based on their relative order of execution (i.e., priority is

considered). Also, a branch is created if there is more than one way to achieve the same

purpose (i.e., satisfy the respective condition). Through this process, the potential deployment

scenarios are built, each containing several restrictions to the value of the resource model

parameters that should be simultaneously satisfied without any contradiction among them.

In the following paragraphs, the focus is given to the detection and usage of a particular MR.

• Presence of Source Data

In case all source elements are available (i.e., a constraint has been specified regarding the

appropriate set or range of their values), a MR can be directly applied for the translation of

the source parameters (expressed based on the elements of the Application Model) to the

appropriate target parameters (expressed based on the elements of the Resource Model). For

instance, when low data transfer latency is necessary, the system will propose deploying the

application in the Edge Device (i.e., close to the location where the data are being produced)

rather than in a cloud provider.

• Presence of Target Data

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 26/158

On the other hand, when all target parameters are available, the AISO examines possible

deployment configurations to satisfy the given application requirements. More precisely, for

each possible configuration, it uses the predefined ML models for detecting/predicting the

expected outcome and hence selecting the ones the outcome of which is compatible with the

given constraints. For instance, when a particular task should be completed in a limited

amount of time, the system uses the ML models for predicting the expected amount of time

(or a relevant parameter that can be directly linked with this one, such as execution speed-up

factor) for different types of resources and proposes the usage of those resources that should

produce an outcome that is compliant with the initial requirement.

It should be noted that both source and target elements may already exist in the parameters

specified by the end user. In this case, the output of the respective mapping rules should be

compatible with the user data provided. In particular, the output of the mapping rules fired

based on the given source data should be a superset of the given one. Also, the expected

outcome of the possible resource configurations that can take place should be compatible

with the constraints specified by the end user. For instance, if both constraints above about

data transfer latency and energy consumption have been specified, the proposed deployment

scenario should contain those resources that simultaneously satisfy both constraints.

4.5 Integration with a Graphical Interface

The creation of the deployment scenarios and the allocation of the appropriate resources for

the deployment of an application, considering the application requirements and user intent,

are driven by appropriate JSON and YAML descriptions. The owners of each application should

prepare both (either manually or with the aid of a GUI) and accordingly provide them to the

respective SERRANO orchestration and deployment services.

The application requirements and user intent are enclosed in a SERRANO-specific JSON

description with a predefined structure based on the Application Model elements (part of the

ARDIA framework – described in the deliverable D5.1). The AISO checks the JSON structure to

ensure that it complies with the required one and that the elements included are expected.

The allocation of the appropriate type and resource quantities for the deployment and

execution of an application is done using a deployment descriptor. Since the edge and cloud

platforms in SERRANO are managed by Kubernetes instances, the technical details regarding

the deployment of each application are expressed in a Kubernetes-specific YAML file using the

Kubernetes YAML Generator [5].

An effort was put into integrating the Alien4Cloud (A4C) [6] platform with the AISO and the

SERRANO platform to simplify the process above and improve user experience. The A4C

platform was adequately configured to be able to deploy cloud-native applications to the

SERRANO platform. A4C is an open-source software platform for managing applications using

the DevOps paradigm. This platform is compatible with TOSCA [7], which is a standard

modelling specification language for describing applications on cloud computing platforms.

The TOSCA specification was extended for our purposes and an Alien4Cloud Orchestrator

Plugin was developed to deploy applications on the SERRANO ecosystem. The plugin

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 27/158

generates the Kubernetes-based deployment configuration for the application and the intent

specification JSON description as required by the AISO for deploying the application to the

appropriate resources.

The successful integration of the Alien4Cloud platform with the AI-enhanced Service and

Resource Orchestrators enables users to deploy their applications in the SERRANO platform

through a user-friendly environment. The Alien4Cloud platform allows users to check the

status and logs of application components. To this end, the appropriate logic should be

implemented in the developed plugin for the SERRANO platform. Thus, the plugin uses

SERRANO telemetry data to show the current status and application information, such as

kernel executions, component performance, and component restarts.

4.5.1 SERRANO-TOSCA

The SERRANO extension to the TOSCA specification contains two main parts: the intent model

and the Kubernetes model. The intent is modelled using TOSCA data types (strings, numbers,

lists, maps, scalar units for size), and some input fields are constrained. For example, the Data

Storage Duration intent allows only two values: Short-Term and Long Term; the Service Level

Up-Time intent is constrained to match the pattern “>/=[0-9]{1,2}\%”: greater than or

equal with a number (1 or 2 digits) and a percent sign.

Figure 9 presents a class diagram for the developed specification. On the right part, there are

data types, i.e. entities that only contain properties. On the left part, there are Node types,

i.e. entities that have properties, requirements, and capabilities. A node requirement must be

satisfied through the connection with another entity that exposes the required capability.

Figure 9: Class diagram for SERRANO-TOSCA entities

The Kubernetes entities selected for modelling the TOSCA extension are Persistent Volumes,

and Config Maps. The Config Map is a data type defining a name, a mount path, and the data

map (where each key is a file name, and the corresponding values are the file content). The

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 28/158

repository TOSCA type is used to model private Docker Registries, and a new artefact type

derived from tosca.artifacts.Deployment.Image is introduced to refer to container images.

Containers and Persistent Volumes are modelled using TOSCA node types. The proposed

extension defines an abstract SERRANO Service named Container, extending the root type and

defining the following:

• Properties – fields that allow the user to change values during application definition

o Intent – the previously mentioned data type modelling all parameters from the

Application model of the ARDIA Framework.

o Config Map – files required for the configuration of the component

o Labels – labels for the Kubernetes specification of this component

• Capabilities – fields that expose a given functionality of this component

o Scalable – allows the user to set a default, min, and max number of replicas for

this component; this capability exists in the default TOSCA definition.

o Attach – exposes the capability serrano.cap.PVAttach to attach one or more

Persistent Volumes to this component; this capability is defined for the project

The Persistent Volume definition contains all necessary fields extracted from the Kubernetes

Specification for persistent volumes. This node expresses a requirement for the

serrano.cap.PVAttach capability, which is exposed by the Container node and all further

extensions of this node.

Two additional abstract service definitions have been constructed: Data Broker and Secure

Storage. Both services are core services the SERRANO platform provides, and the use case

components can impose requirements over their capabilities. If an application topology

contains abstract services, these will not be deployed, but all components that depend on

abstract services will have their configuration files updated with the endpoint of the

SERRANO-provided core service. The abstract services provided by SERRANO must first be

registered in the Alien4Cloud administration panel. Moreover, an explicit version of these

services has been defined, in case the end-user wants to have a private deployment of the

Data Broker or Secure Storage services. For example, if users want to deploy the microservices

at the edge, they can also deploy an instance of the Data Broker component nearby instead

of using the cloud-based Data Broker service provided by SERRANO.

Finally, the plugin uses the TOSCA life-cycle parameters to update the ConfigMap of a

component that depends on another component (e.g., uses its API). The developer of a

SERRANO-TOSCA component has specific keywords in the ConfigMap that are replaced during

the generation of the YAML file. Then, the developer of the TOSCA definition will add these

keywords to the create step of the TOSCA life-cycle interface, as presented in the following

code listing (Table 2). In this case, the ConfigMap must contain the keywords

INPUT_DATABROKER_IP and INPUT_DATABROKER_PORT, which will be replaced by the actual

IP address and port of the target component satisfying the mqtt requirement of this

component.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 29/158

Table 2: TOSCA parameters for updating Kubernetes ConfigMap

interfaces:
 Standard:
 create:
 inputs:
 INPUT_DATABROKER_IP: { get_property: [REQ_TARGET, mqtt, ip_address]}
 INPUT_DATABROKER_PORT: { get_property: [REQ_TARGET, mqtt, port]}

4.6 Example of Usage

We utilized the AISO and ARDIA Framework to facilitate the infrastructure-agnostic deploy.

This deployment comprised three microservices. For a more detailed technical insight into this

application, refer to Deliverable D6.5 (M27). The requested user intent was the provision of

instant response to events coming from sensors while keeping energy consumption as low as

possible. The application was containerised, and the Kubernetes deployment descriptions

were prepared in advance so that it could be accordingly used for resource allocation and data

collection for the ML model training. The provided Kubernetes descriptors were used to check

if the Orchestrator plugin generates the correct configuration. Also, an initial JSON file with

the application requirements was developed by the partners. The example presented here

shows how users can create these documents and deploy an application using the plugin

developed for the Alien4Cloud platform.

4.6.1 Application requirements, intent specification and deployment

description

The Alien4Cloud framework has been properly configured so that the users can express the

application requirements and their intent along with the application deployment description

based on the SERRANO Abstraction Models (part of the ARDIA framework). Figure 10 presents

the visual representation of the application in Alien4Cloud. The application has been

composed in the Topology Editor interface using the SERRANO-TOSCA definitions specific to

this use case. The considered application has three components (on the left side in the figure),

all expressing a requirement (dependency) on the API capabilities exposed by the Data Broker

and Secure Storage services. In this example and in the Topology Editor, the API dependencies

are abstract, meaning the SERRANO platform provides them. The Data Manager component

(the top one in the figure) also requires a Persistent Volume to be mounted in this container

file system. The volume is used to store data received from a remote location that will later

be used by the other two components. The other two components (i.e., Classifier Trainer and

Classifier Inference) receive messages from the Data Manager and use the Storage Service to

read data for training and classification.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 30/158

Figure 10: Application definition using SERRANO-TOSCA definitions in Alien4Cloud Topology Editor

The intent can be specified for each component extending the Container definition. When

clicking on one of the components, for example, the Classifier component, the user can set

different properties, such as the intent. Figure 11 shows the main dialogue for setting the

intent parameters. The intent is categorised based on different dimensions of the possible

constraints, however some remain top level, such as Energy Consumption and Overall Cost.

The figure shows the dropdown when setting the Energy Consumption parameter. The user

can access the different categories from the left side panel or click the edit button from the

right panel.

Figure 11: Intent Dialogue for one component in Alien4Cloud

Figure 12 presents the intent dialogue for the Application Performance dimension. The total

execution time is set to low, and all other parameters are not set. Here, as can be observed,

the user can set constraints on the type of accelerator the component needs (e.g., GPU). The

example application does not explicitly require any accelerator because the computationally

intensive part is executed using the Functional as a Service (FaaS) execution model that allows

the on-demand deployment of accelerated kernels through the SERRANO SDK (Section 9.4.3).

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 31/158

Figure 12: Intent dialogue for the application performance dimension

The Orchestrator plugin developed for Alien4Cloud reads the SERRANO-TOSCA topology

definition, which also contains the intent, and generates the corresponding JSON and YAML

descriptions. Generating the intent JSON is straightforward. All that is needed is a

transformation from the TOSCA to JSON format. The generation of Kubernetes-based

deployment entities is more challenging. Each component is processed, and a Deployment

object is created. The next step is to create the ConfigMaps associated with each component

and add it to the Deployment object. Persistent Volumes and Persistent Volume Claims are

then created and linked with the deployment. Finally, the TOSCA requirements of each

component are inspected to see if the current component, C1, depends on another

component, C2. Component C2 can be either a user-defined component or an abstract service

the SERRANO platform provides. In the first case, a Kubernetes Service is defined for C2, and

the config map of C1 is updated to use the Service name as the IP address. In the latter case,

the plugin is configured to know the address of the SERRANO-provided services that will later

be used to update the ConfigMap of component C1. Finally, dependencies between

components are considered when populating the intent JSON, specifically the application

workflow field. The Orchestrator will impose that C2 will start before C1.

After all the nodes have been investigated, the request will be sent to the AISO. The AISO will

respond with the unique deployment identifier the Resource Orchestrator provides. This

identifier will be used to query the SERRANO telemetry services for information about the

component status and logs. Figure 13 shows the status during deployment. The two abstract

services provided by SERRANO are up and running, and the three components from the use

case application are under deployment. The user can inspect the deployment-related events

using the Events tab on the right sidebar. Logs and performance metrics can be accessed in

the Logs interface by clicking the last button on the left sidebar.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 32/158

Figure 13: Deployment runtime interface

SERRANO users, who are not necessarily the developers of an application, can use the

components in the catalogue to compose their application topology. They can use the

SERRANO storage and messaging services or deploy their own instance. The developed

Orchestrator plugin transforms this topology dynamically in a Kubernetes specification. User

intent can be formulated for each component using a user-friendly dialogue; the intent will be

transformed to the JSON required by the AISO, taking into consideration dependencies. The

two descriptions are compiled and sent to the AISO, which in turn contacts the Resource

Orchestrator. The deployment unique identifier is returned to the Orchestrator plugin and can

be used to inspect the status of the components and performance metrics.

4.6.2 Mapping Rules and Translation Mechanism

The process output described in the previous section is the JSON description with the

application requirements and user intent, along with the YAML deployment descriptor file

with additional parameters about the application – microservices deployment (Figure 14).

The AISO further processes the given descriptions, especially the data recorded in the

provided JSON description, taking into account the already specified Mapping Rules. In brief,

the given workload amount is used by the AISO in order to figure out the anticipated execution

time and energy consumption for resources of different types and eventually select and

suggest the most appropriate one. For example, based on the data and modes presented in

the previous section, the AISO detects that HPC performs much better than an edge device.

However, considering the size of data and the amount of time necessary for their

transmission, it proposes the usage of an edge device. The output of the above process is a

JSON description (Figure 15) with the potential deployment scenarios that can take place (in

this example, only one deployment scenario is available).

Finally, the SERRANO Resource Orchestrator utilizes the created descriptions to allocate

suitable resources and deploy the corresponding microservices. Once the deployment is

completed, the SERRANO Resource Orchestrator returns a unique identifier, facilitating

further actions. With this identifier, users can access additional information about the

application deployment and manage it seamlessly through both the AISO and the Alien4Cloud

GUI.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 33/158

Figure 14: Overview of the given YAML and JSON files – AISO input

Figure 15: AISO Deployment Scenario(s) – JSON File Provided to Resource Orchestrator

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 34/158

5 Algorithmic Framework

The resource allocation problem in heterogeneous, dynamic, and multi-technology

environments is highly complex, mainly due to the multitude of conflicting objectives involved.

To address this complexity, the utilization of multi-objective optimization algorithms becomes

imperative. Towards this direction, we developed a set of algorithms that leverage multi-

objective optimization, AI/ML techniques, and heuristics. These algorithms offer a range of

trade-offs between optimality and complexity, enabling efficient satisfaction of the diverse

and stringent requirements of heterogeneous and distributed applications. In addition, a

selection of these algorithms has been integrated into the Resource Optimization Toolkit

(ROT). Next, we present the algorithms developed during the second iteration of the

implementation period (M16-M31), the final developments in the ROT, and the successful

integration of these algorithms into the toolkit

5.1 Cloud-native Applications’ Workload Placement in the

SERRANO Edge-Cloud Continuum

The standard monolithic application architectures, where all logic resides within a unified and

inseparable entity, proved quite efficient in the past. Nonetheless, the gradual establishment

of cutting-edge ICT technologies (5G/6G, optical networks, virtualization) have escalated the

application design complexity. Coupled with the relentless need for updates to satisfy the

ever-increasing Quality of Service (QoS) demands, the traditional monolithic approach stands

inadequate in this rapidly evolving landscape, thereby necessitating a novel application

architecture. The cloud-native approach presents itself as a compelling alternative: By taking

full advantage of the cloud computing model and decomposing the applications into

microservices, it offers the flexibility, scalability, and robustness. Moreover, emerging

services, interconnected products, and other digitized assets generate massive amounts of

data at the network’s edge, often requiring ultra-low processing delays. To address these

challenges, the edge computing paradigm has arisen, where computing units are placed at

various locations close to the data sources. Moreover, edge resources can be utilized in

conjunction with the cloud, forming a robust edge-cloud continuum.

The present work focuses on developing a novel mechanism to appropriately allocate the

available resources across the various layers of an edge-cloud infrastructure to support the

incoming workload from cloud-native applications. The aim is to jointly optimize a weighted

combination of the average (per application) delay and average service cost while

simultaneously guaranteeing that the delay between dependent microservices and the

available infrastructure resources align with the applications’ requirements. Initially, the

problem is modelled as a Mixed Integer Linear Programming (MILP) problem. To tackle the

excessive execution time of finding the optimal solution, a fast heuristic algorithm is

implemented, referred to as the Greedy Resource Allocation Algorithm (GRAA). This algorithm

is further employed by a novel Rollout technique to optimize further the generated solution

(namely Rollout based on GRAA), relying on Reinforcement Learning (RL) principles.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 35/158

5.1.1 Related work

The resource allocation problem in virtualized environments is a multi-dimensional research

area that has attracted the interest of the research community. The modelling of the problem

among the different works varies according to the considered topology and the adopted

technologies, while the proposed solutions employ techniques from the wider realm of

mathematics and computer science.

Authors in [9] developed “Foggy”, an architectural framework based on open-source tools

that handles requests from end users in a multi-level heterogeneous fog/edge environment.

The requests arrive in a FIFO queue, and at each stage, the available nodes are ranked by their

processing power and their networking towards the end user to extract the best match. The

authors in [10] proposed a dynamic resource scheduling scheme for critical smart-healthcare

tasks in a edge-cloud topology. Their model consists of a multi-agent system (MAS) with four

kinds of agents named personal agent (PA), master personal agent (MPA), fog node agent

(FNA), and master fog node agent (MFNA). The scheduling strategy relies on effective

prioritization of the tasks according to their criticality and on balancing network load. In [8] a

system for microservices placement in a multi-layered fog/edge environment is implemented,

targeting to place them as close as possible to the data sources.

Reinforcement learning is a technique that has been gaining momentum in the context of

resource allocation. The authors in [11] present a deep reinforcement learning approach,

based on state-action-reward-state-action (SARSA), for addressing the problem of task off-

loading and resource allocation in Mobile Edge Computing (MEC) environments. They model

user requests as a sequence of sub-tasks, which can be executed by either the nearest edge

server, the adjacent edge server, or the central cloud. The proposed solution aims to minimize

service delay and energy consumption by dynamically making offloading decisions and

allocating resources based on the current state of the infrastructure. Wang et al. [12] present

a solution for the microservice coordination problem in mobile edge computing environments

where mobile users (e.g., autonomous vehicles) offload computation to the edge clouds. The

authors aim to minimize a weighted combination of delay and migration costs by determining

the optimal deployment locations for microservices. They first propose an offline algorithm

able to derive the optimal objective and then a Q-learning-based reinforcement learning

approach that produces a near-optimal solution in real-time. Chen et al. [13] propose a deep

reinforcement learning solution for microservice deployment in heterogenous edge-cloud

environments. They consider microservices as a service chain, in which the microservices must

be executed in a pre-specified order. Simulations are conducted with a combination of real

and synthetic data, with the objective of minimizing the Average Waiting Time (AWT) of the

microservices.

In this work, we explore the assignment of microservice-based applications in a distributed

edge-cloud infrastructure, considering key operational aspects. Contrary to the mentioned

works, we address the dependencies formed by communicating microservices as delay

constraints between the corresponding service nodes to guarantee their seamless

communication, which is a crucial concern when considering geographically dispersed

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 36/158

infrastructures. These dependencies, often in the form of information exchange requirements

or service chains, are directly affected by communication latency during runtime. In addition,

to the extent of our knowledge, we are the first to introduce the multi-agent Rollout technique

in such a scenario. This unique optimization approach, grounded in Dynamic Programming

and Reinforcement Learning principles, utilizes greedy heuristics to approximate future

decisions. Albeit easy in understanding and implementation, it can provide significantly

improved solutions.

5.1.2 Problem formulation

We consider a hierarchical edge-cloud infrastructure, with multiple layers of edge resources

(e.g., on-device, near-edge, far-edge) to serve the incoming cloud-native workload. We

assume that the edge layers consist of machines with relatively limited resources, such as

raspberry Pi’s, NVIDIA Jetson, servers, mini – Datacenters, etc. while the cloud layer has

practically unlimited resources.

The hierarchical edge-cloud infrastructure is denoted as an Undirected Weighted Graph 𝐺 =

(𝑉, 𝐸). Each node 𝑣 ∈ 𝑉 is described by the tuple 𝜏𝑣 = [𝑐𝑣, 𝑟𝑣, 𝑜𝑣, 𝑛𝑣], where 𝑐𝑣 is node’s 𝑣

CPU capacity measured in CPU units, 𝑟𝑣 is the node’s RAM capacity measured in RAM units,

𝑜𝑣 is the node’s operating cost and 𝑛𝑣 is the node’s networking cost coefficient. Operational

cost relates to the expenses made for purchasing, deploying, and operating the respective

computing/storage systems. This cost is small for the cloud layer, since providers achieve

economies of scale, and gradually increases for the edge layers, due to their limited resources,

the small number of customers and their geographically dispersed placement. Networking

cost coefficient 𝑛𝑣 results from the usage of any link from the nodes where data are generated

to the node(s) 𝑣 where computing operations take place and is multiplied by the ingress data

to deduce the actual networking cost of service. The coefficient is minimal for the near edge

nodes, where links are shorter in distance and cheaper to install, while it gradually increases

up to the massive links connecting the cloud nodes. Generally, data is generated at the lower

levels of the infrastructure that can be either equipped with computing resources or not. As

they are typically located in the near edge, the delay is small for transferring the data to a

subset of near edge nodes as they are located closer to the data-source, given their plurality

and thus higher geographical density, while it increases for the higher layer nodes (far edge,

cloud). Finally, each link 𝑒 ∈ 𝐸 between two nodes 𝑣 and 𝑣′ is characterized by a weight 𝑙𝑣,𝑣′,

representing the communication (propagation) delay of nodes 𝑣 and 𝑣′.

The workload under consideration consists of a set 𝐴 of cloud-native applications. Each

application 𝑎 ∈ 𝐴 is described by an Undirected Weighted Graph 𝐺𝑎 = (𝑉𝑎, 𝐸𝑎), with the

nodes 𝑉𝑎 corresponding to the microservices that make up the application and the arcs 𝐸𝑎

the inter-dependencies (communication requirements) among them. Each cloud native

application has a source node 𝜋𝑎 ∈ 𝑉 and each microservice 𝑖 = 1, … , |𝐼𝑎| of application 𝑎,

has specific resource requirements described by the tuple [𝜀𝑎,𝑖, 𝜌𝑎,𝑖, 𝑠𝑎,𝑖], where 𝜀𝑎,𝑖 is the

microservice’s CPU demand, 𝜌𝑎,𝑖 is its memory demand and 𝑠𝑎,𝑖 is the size of the input data.

Furthermore, each arc 𝑒 ∈ 𝐸𝑎 between two microservices 𝜄, 𝜄′ ∈ 𝑉𝑎 has a weight 𝜆𝛼,𝜄,𝜄′ that

represents the maximum acceptable delay between the corresponding service nodes 𝑣, 𝑣′ of

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 37/158

these microservices. This is a measure of the intensity of the dependency between these two

microservices, in a sense that highly dependent microservices should be served by the same

or geographically approximate nodes to reduce communication costs and guarantee

application's efficiency with in-time calculations.

In what follows, we present the mathematical formulation of the cloud native resource

allocation problem over a cloud-edge infrastructure. The optimization objective is a weighted

combination of the average (operational and networking) cost and the maximum delay per

application assignment, with respect to computing and networking constraints imposed by

the applications requirements and nodes’ resource availability.

5.1.2.1 MILP formulation

Table 3: MILP variables

Notation Interpretation

𝑉 Total number of nodes

𝐴 Total number of applications

𝐼𝑎 Total number of microservices for the 𝑎’th application

𝑜𝑣 Operating cost of node

𝜆𝑎,𝑖,𝑖′ Relative upper delay limit between micro-
services 𝑖, 𝑖’ of an application

𝑙𝑣,𝑣′ Communication delay between nodes 𝑣 and 𝑣’

𝑐𝑣 Total available CPU units of node 𝑣

𝑟𝑣 Total available memory units of node 𝑣

𝜀𝑎,𝑖 CPU units required by the 𝑖’th microservice of application 𝑎

𝜌𝑎,𝑖 Memory units required by the 𝑖’th microservice of application 𝑎

𝑛𝑣 Networking cost coefficient of node 𝑣

𝑠𝑎,𝑖 Weighting coefficient to control the optimization objective

𝑥𝑣,𝑎,𝑖 Binary variable, which is equal to 1 if the 𝑖’th microservice of application 𝑎
is assigned to node 𝑖, and 0 otherwise

𝜏𝛼 Integer variable that denotes the monetary cost for serving the application

𝜃𝛼 Integer variable that denotes the maximum propagation latency of the
cloud-native application

Objective function:

min 𝑤 ∙ ∑ 𝜏𝛼

𝛢

𝛼=1

+ (1 − 𝑤) ∙ ∑ 𝜃𝛼

𝛢

𝛼=1

 (1)

Subject to the following constraints:

C.1. Placement of the microservices to nodes. For each application 𝑎 = 1, … , 𝐴 and for each

microservice 𝑖 = 1, … , 𝐼𝑎

∑ 𝑥𝑣,𝑎,𝑖

𝑉

𝑣=1

= 1 (2)

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 38/158

C.2. Respect of the relative latency between the applications’ microservices. For each

application 𝑎 = 1, … , 𝐴, and each pair of microservices of application a, 𝑖, 𝑖′ = 1, … , 𝐼𝑎,

𝑙𝑣,𝑣′𝑥𝑣,𝑎,𝑖 + 𝑙𝑣,𝑣′𝑥𝑣′,𝑎,𝑖′ ≤ 𝜆𝑎,𝑖,𝑖′ + 𝑙𝑣,𝑣′ (3)

C.3. The allocated CPU units of the assigned microservices cannot surpass the number of

available CPU units at each node. For each node 𝑣 = 1, … , 𝑉,

∑ ∑ 𝜀𝛼,𝑖𝑥𝑣,𝑎,𝑖

𝐼𝑎

𝑖=1

𝐴

𝑎=1

≤ 𝑐𝑣 (4)

C.4. The allocated Memory units of the assigned microservices cannot surpass the number of

available Memory units at each node. For each node 𝑣 = 1, … , 𝑉,

∑ ∑ 𝜌𝑎,𝑖𝑥𝑣,𝑎,𝑖

𝐼𝑎

𝑖=1

≤ 𝑟𝑣

𝐴

𝑎=1

 (5)

C.5. Total monetary application cost 𝜏𝑎calculation. For each application 𝑎 = 1, … , 𝐴

𝜏𝛼 = ∑ ∑(𝑜𝑣 + 𝑛𝑣 ∙ 𝑠𝑎,𝑖)

𝐼𝑎

𝑖=1

∙ 𝑥𝑣,𝑎,𝑖

𝑉

𝑣=1

 (6)

C.6. Maximum per application latency (propagation) calculation. For each node 𝑣 = 1, … , 𝑉,

for each cloud native application 𝑎 = 1, … , 𝐴, and each of its microservices 𝑖 = 1, … , 𝐼𝑎,

𝜃𝛼 ≥ 𝑥𝑣,𝑎,𝑖 ∙ 𝑙𝜋𝑎,𝑣 (7)

The objective function (Eq. 1) is the weighted sum of the maximum delay and cost per

applications’ assignments, where 𝑤 = 0 considers purely the delay minimization problem,

while 𝑤 = 1 deals with the cost minimization problem. Any intermediate value of w considers

both of the aforementioned parameters with different contribution in the calculation of the

total cost. Note that our considered formulation supports general workloads (not strictly

cloud-native applications) that can take the form of an application with a single microservice.

5.1.3 Resource allocation mechanisms

Given the problem is of the NP-hard class [16], the proposed MILP is computationally

intensive, with prohibitively large execution times even for small-scale problems. Therefore,

we developed sub-optimal mechanisms. Firstly, we present the Greedy Resource Allocation

Algorithm (GRAA), designed to deduce the optimal placement for each microservice in a

greedy fashion. Subsequently, we introduce the multi-agent Rollout mechanism, a meta-

heuristic algorithm that exploits GRAA to deliver an improved solution through an iterative

process.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 39/158

5.1.3.1 Greedy Resource Allocation Algorithm (GRAA)

GRAA is a greedy heuristic that seeks to obtain a satisfactory, albeit sub-optimal, solution by

addressing the application demands in a best-fit manner. GRAA takes as input the

infrastructure graph 𝐺 = (𝑉, 𝐸) along with all the applications’ demands and its microservices

described by graph 𝐺𝑎 = (𝑉𝑎, 𝐸𝑎) for application 𝑎, ∀𝑎 = 1, … , 𝐴. Applications are handled

sequentially. After selecting an application, its first microservice is selected and the candidate

infrastructure nodes with enough resources are calculated in order to accommodate it. These

nodes are ranked based on the objective function considering the cost and the latency

introduced by the assignment of the microservice 𝑖 = 1, … , 𝐼𝑎. to each node. The best node

𝑣 ∈ 𝑉 is selected and the demanded by the microservice computing and memory resources

are reserved. If the application consists of more than one microservices, the next microservice

is selected. The same process is followed for the following microservice with the addition of

the relative latency constraint between the communicating microservices. Hence, given the

first microservice’s location, the nodes 𝑣′ ∈ 𝑉 with communication latency below the

microservices limit are considered, 𝑙𝑣,𝑣′ ≤ 𝜆𝜇𝑎,1,𝜇𝑎,2
. If multiple nodes meet the criteria, the

second microservice is placed in the optimal one, which could be identical to the first

microservice’s node. This process is repeated until the 𝐼𝑎-th microservice of the application is

served. If a suitable node to host an application’s microservice cannot be found, the procedure

is re-initiated for the same application considering the second-best node for the first

microservice and so forth. Once a solution is found, the utilization of the resources is updated

and the application is marked as served. The above process is repeated for all applications,

returning the final assignment and the value of the objective function (Eq. 1).

Figure 16: Flowchart of the GRAA heuristic.

From the description of the aforementioned procedure, it is possible that the selection of the

first node can result in an infeasible solution due to the latency constraints among the

application’s microservices. Although this may occur for edge resources which are

characterized by limited capacity, this not the case for the abundant cloud resources, which

can handle application demands at the price of increased propagation latency.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 40/158

The complexity of this approach is polynomial, with a worst-case execution time of

𝑂(|𝐴| ∙ |𝐼𝑎| ∙ |𝑉|), assuming all the nodes |𝑉| are candidate locations to serve the first

microservice of each application. Figure 16 illustrates a typical iteration of GRAA.

5.1.3.2 Multi-agent Rollout

To further improve the performance of GRAA, we developed a multi-agent Rollout

mechanism. Rollout [14],[15], one among the most recognized reinforcement leaning

techniques, aims to provide a close to optimal solution by leveraging a base policy (like GRAA).

It is an iterative process that takes each time as input an instance of the resource assignment

problem (concerning applications with microservices) along with a partial solution (some

microservices assigned to nodes) and constructs the complete solution step-by-step. This

technique becomes particularly useful when the exact methods are too slow and/or when

solutions provided by heuristics are inefficient.

Assuming that the first (𝑎-1) applications have been served and application 𝑎 is up next, the

multi-agent rollout heuristic gets as input a solution path 𝑜 = [𝑜1, … , 𝑜𝑎−1] of size ∑ 𝑜𝑘 ∙ 𝐼𝑘
𝑎−1
𝑘=1 ,

where states 𝑜𝑘, for 𝑘 = 1, … , 𝑎 − 1 contain the assignment of the microservices of

application 𝑘 = 1, … . , 𝑎 − 1 to processing nodes. State 𝑜𝑎 is then broken down into 𝐼𝑎 stages

each corresponding to the assignment of one of the 𝐼𝑎 microservices of application 𝑎 to

processing nodes. Initially, a number of possible placements 𝑃𝑎,𝑖 for each microservice 𝑖 =

1, … , 𝐼𝑎 are calculated. Then, to determine the placement of a microservice 𝑖, one of the

available placement options 𝑝 ∈ 𝑃𝑎,𝑖 is selected and the respective service cost is calculated

based on the provided objective function. Meanwhile, the cost for the remaining

microservices and applications is computed using the GRAA heuristic (base policy), resulting

in a total cost 𝜎𝑝. When all the possible placements 𝑃𝑖 of microservice i have been evaluated,

the one yielding the lowest cost 𝜎𝑖 is selected (Figure 17). The utilization of the node that

serves the microservice is updated accordingly, the microservice is marked as served and the

procedure continues with the following microservice. The placement of the microservice 𝐼𝑎

of application 𝑎 indicates the transition to state 𝑜𝑎+1 and the same procedure is repeated

until all the application demands A are served. Finally, the allocation of resources to nodes is

returned along with the objective value of the performed assignment.

Figure 17: Multi-agent Rollout options for serving the i-th microservice of application a

Consider an application 𝑎 consisting of 𝐼𝑎 microservices. Each microservice can be placed (in

the general scenario) in any node of the infrastructure, resulting in a state size of |𝑉|𝐼𝑎 for the

collective decision of the application’s placement. When the allocation of resources of an

application a is segmented into |𝐼𝑎| sequential decisions by agents, the state space is reduced

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 41/158

into |𝑉| ∙ |𝐼𝑎| states. In this case, the control space complexity from the different options when

serving the applications is traded off with state space complexity.

5.1.4 Performance evaluation

For our experiments, we considered two topologies for the hierarchical cloud-edge

infrastructure, with different characteristics regarding the number of nodes at the different

layers and their computing capacity (Table 4): a basic that consists of 19 nodes and an

extended one with 53 nodes, with the cloud having enough capacity to serve the examined

workloads. We assumed that both topologies are organized into a hierarchical infrastructure

consisting of nodes (locations) belonging to three different layers: the near-edge, far-edge,

and cloud.

The basic topology was used for performance comparison between our GRAA heuristic, the

multi-agent Rollout, and the built-in optimal MILP solver of MATLAB. The execution times for

the optimal solver became prohibitively large for larger configurations, hence using the basic

topology. The extended topology considers the same node attributes, but their numbers are

scaled to 40 near-edge nodes, 10 far-edge nodes, and 3 central cloud locations. The extended

topology was used for the rest of the experiments to provide a closer-to-real-world scenario

and demonstrate the scalability of the proposed algorithms.

Table 4: Characteristics of the computing nodes of the basic and extended topologies

 Near-Edge Far-Edge Cloud

Basic topology (#Nodes) 15 3 1

Extended topology (#Nodes) 40 10 3

𝑐𝑣 [4, 8] [80-120] 500

𝑟𝑣 [4, 16] [120-200] 1000

𝑜𝑣 [2, 3] [1,1.5] [0.3,0.7]

𝑛𝑣 0.1 0.25 0.5

With regards to the workload, the demands were generated randomly at the near-edge nodes,

with the number of microservices per application drawn from a uniform distribution in the

close interval [1,5]. The workload size of each application was also randomly selected in the

interval [1,5], measured in normalized size units. Dependencies between pairs of

microservices were created randomly with probability equal to 0.3, while the latency

constraint among them varies in the close interval [0.5,3.5] latency units. The processing and

memory requirements of each microservice are drawn from the uniform distribution in the

close interval [1, 4] and [1, 8] respectively.

The proposed mechanisms were developed in MATLAB and the experiments were conducted

on a 6 core 2.6 GHz Intel Core i7 PC with 12 GB of RAM.

Initially, we benchmarked the performance of the multi-agent rollout and the greedy heuristic

against the optimal solution provided by the MILP in means of execution time and optimality.

This was done for randomly selected application demands (ranging from 50 to 300) and for

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 42/158

weighting coefficient 0.01. This coefficient corresponds to the latency optimization problem,

while still considering a minimal cost factor.

Table 5: The total cost and the execution time for w=0.01 for the different mechanisms
A

p
p

lic
at

io
n

d

em
an

d
s MILP Multi-agent

Rollout

GRAA

Obj.
value

Exec. Time
(sec)

Obj.
value

Exec. Time
(sec)

Obj.
value

Exec.
Time (sec)

50 55.92 92.37 56.31 17.3 56.84 0.12

100 115.15 507.42 116.17 69.42 117.90 0.22

150 228.51 2453.16 236.49 147.72 252.38 0.35

200 409.94 10000 421.6 252.09 438.62 0.47

250 657.8 10000 675.42 349.74 702.37 0.67

300 - 10000 1051.8 348.82 1079.2 0.89

Regarding the performance of the proposed mechanisms, GRAA exhibited the worst

performance, with a gap up to 10% from the optimal solution, whereas the Multi-agent

Rollout managed to generate solutions within 3.5% of the optimal in all cases. In terms of

execution time, GRAA exposed the shortest, in the order of milliseconds, even for higher

workloads. Rollouts execution time while grew polynomially with the workload increment.

Finally, the MILP solver showcased exponentially increasing execution times, while it was

unable to produce a feasible solution within the set period for the largest workload.

Figure 18: The pareto efficiency chart

Figure 19: The number of microservices

allocated at the various layers

Figure 18 portrays the allocative efficiency chart for the two objectives that are taken into

consideration, namely the monetary cost for the application execution and the average

latency per application for the different weighting co-efficients used in the objective function.

As anticipated, the lowest cost is attained when cloud resources are highly utilized and thus

the propagation latency increases as cloud resources are located in a few distant locations to

which the data are transferred. Conversely, when the single optimization criterion is the

minimization of latency, the propagation delay is reduced by 70% compared to the previous

case, while the monetary cost is increased by almost 75%.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 43/158

Next, we examined the utilization of edge and cloud resources for serving 600 cloud native

application demands for the different weighting coefficients w (Figure 19). Edge resources are

utilized more in small weight values, as the objective is approaching the delay minimization

and edge layers consist of nodes in geographic proximity to the data-source. In this case the

microservices of an application expand over the resources of the edge layer. On the other

hand, cloud resources are heavily utilized in high w values, as the objective gravitates towards

monetary cost minimization, thereby favoring the “cheap” cloud nodes. For intermediate w

values, applications microservices are distributed over the edge-cloud continuum. This

showcases the importance of edge resources in the minimization of the applications latency

for time critical operations.

Finally, we examined the contribution of networking and operational cost for the different

weighting co-efficient values (Figure 20). When the objective function targets the

minimization of the monetary cost, the cloud resources are preferred with the operational

and networking cost contributing almost equally to the total cost, as the processing cost is low

while the networking cost increases for the transferring the application data to the cloud. On

the other hand, when the objective is the minimization of latency and edge resources are

utilized, the processing cost of the edge resources is the main factor of the total monetary

cost, while networking costs constitute only 12% of the overall cost.

Figure 20: Operational and networking cost for the different objective co-efficients

5.1.5 Conclusions

In this study, we addressed the problem of resource allocation in multi-layered edge-cloud

infrastructures for optimally serving cloud-native applications. We considered multiple

important yet often overlooked parameters, such as the delay constraints posed by the

dependencies among microservices. GRAA was developed to provide a sub-optimal solution

that is further optimized by the Rollout technique. We demonstrated the trade-off between

delay and monetary cost of service and proved the efficiency of the Rollout technique, which

provided a significant improvement in the GRAA’s solution, while also maintaining a tolerant

computational time.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 44/158

5.2 Security-aware Resource Allocation in the SERRANO

Edge-Cloud Continuum

Allocating resources in a distributed multi-tenant infrastructure poses challenges for a

centralized orchestrator. In order to address these challenges, hierarchical orchestrator

architectures are employed to enable a more efficient resource allocation. SERRANO Resource

Orchestrator follows a declarative approach, instead of an imperative one, for describing the

workload requirements to the Local Orchestrator. This provides several degrees of freedom

to the Local Orchestrator for serving in an optimal manner the “request”, satisfying both the

central orchestrator and the resource’s objectives. Then, the control is passed to Local

Orchestrators that are responsible for the actual deployment based on the desired

performance requirements.

In this work, we assume varying levels of workload isolation achievable through lightweight

virtualization mechanisms, establishing distinct tiers of security and trustworthiness, each

with its own quantified computational and storage requirements. We model the respective

resource allocation problem, i.e., of provisioning edge-cloud continuum resources for cloud-

native applications subject to applications’ performance and security requirements, as a

Mixed Integer Linear Program. Additionally, a best-fit heuristic is introduced to reduce the

execution time for real-size scenarios, leveraging clustering algorithms to perform a fast

assignment of applications to resources while maintaining a tolerable optimality gap. Finally,

a Multi-agent Reinforcement Learning based mechanism is also proposed to trade off

execution time of the proposed heuristic with performance. Through extensive simulation

experiments, we demonstrate the merits of our proposed mechanisms and explore the several

trade-offs that emerge from conflicting objectives.

5.2.1 Related work

To enable the secure execution of cloud-native applications, frameworks are introduced that

support container execution in a sandboxed environment based on micro-VMs. Recent works

also recommend unikernels [18][19] that have minimal memory/system footprint, achieve

high performance, and provide strong isolation equivalent to that of virtual machines. These

trends give rise to several fundamental challenges related to application deployment, the

support of heterogeneous infrastructures, and the provided security. The authors in [20] focus

on the challenges and requirements for building a scalable and trustworthy multi-tenant AIoT

(Artificial Intelligence of Things) cloud-native platform. They first identify several key

challenges, including security, privacy, and trust and highlight how these challenges differ in a

multi-tenant edge environment compared to a central cloud. They also present the state-of-

the-art methods for addressing these challenges and describe open research areas.

In [21], the authors propose a security-aware dynamic scheduling approach for cloud-based

industrial applications in a two-tier infrastructure. They introduce a three-level security model

corresponding to public, semi-public, and private data. Then, a distributed Particle Swarm

Optimization heuristic is developed to perform resource allocation and a dynamic scheduling

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 45/158

mechanism for real-time optimization. The authors in [22] propose a security-aware

offloading model for a multi-user environment. A new security layer is introduced utilizing the

AES cryptographic algorithm to prevent attacks such as sniffing, jamming and eavesdropping.

The resource allocation problem is formulated with the optimization objective of minimizing

the latency and energy overhead of mobile users, leveraging a Deep Reinforcement learning

algorithm. The work in [23] presents a security-aware task offloading method for maximizing

the total profit of edge nodes in an Edge-Cloud computing (ECC) environment. A security

model is constructed, which utilizes several confidentialities (IDEA, DES, AES etc.) and integrity

(Tiger, SHA1, MD5 etc.) services for coping with security threats. A genetic algorithm is

developed to solve the resource-allocation problem.

Indeed, the dependencies among an application’s microservices, typically manifesting in the

form of information exchange or service chains, are frequently overlooked. Guaranteeing

seamless communication among interdependent components is of paramount importance

when dealing with geographically dispersed infrastructures. In our model, we represent these

dependencies as communication delay requirements. In addition, application isolation

mechanisms should be considered, such as virtualization and containerization techniques,

where applications are executed in sandboxes [24], or even unikernels. Coupled with

hardware extensions [25], these mechanisms can provide increased security for multi-tenant

execution. These requirements of applications and resources across the edge-cloud

infrastructure introduce, from an algorithmic perspective, a high number of constraints that

need to be addressed simultaneously considering different optimization criteria.

5.2.2 Infrastructure description

We focus on a multi-layer edge-cloud infrastructure (Figure 21), encompassing computing and

storage resources across various layers. The considered infrastructure comprises devices

positioned at different locations, spanning from “near-edge” (i.e., from on-premises to tens

of kilometres) to “far-edge” devices (i.e., some hundreds of kilometres) and cloud datacentres

(i.e., typically several thousand kilometres away, situated in various geographic regions

worldwide).

Figure 21: Heterogenous resources across the edge-cloud continuum.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 46/158

The management of the infrastructure and the service of the applications is performed

through a hierarchical two-level system. The high-level orchestrator assigns application

requests to local orchestrators, each controlling a subset of infrastructure nodes. This provides

several degrees of freedom to the Local Orchestrator to serve in a highly efficient manner the

deployment request, satisfying both the central orchestrator and the resource’s objectives,

with a minimal decision-making timeframe.

The resources can vary both in size and capabilities, with common examples including micro-

datacentres, modular datacentres in shipping containers, specialized computing devices (e.g.,

FPGA, GPU), and IoT devices (e.g., Raspberry Pi, NVIDIA Jetson). These can be deployed on

providers’ premises (e.g., the Central Office - CO), or on other large and small premises (e.g.,

stadiums, malls, businesses, houses). Special hardware can enable trusted execution. Various

networking mechanisms using wired (optical) and wireless (e.g., 5G) technologies provide the

required interconnection of the individual edge and cloud layers. These multi-domain and

multi-technology network paths are typically controlled and managed by multiple telco

operators. In this work, we abstract the communication paths between the resources in the

same or different layers as virtual links with specific latency. These values depend on the

networking locality of the resources, with those nearby resulting in lower latency than those

far apart. Hence, the propagation delay increases in accordance with the physical distance of

the data generation point.

To ensure secure application execution, the infrastructure leverages advanced software

mechanisms and, in some cases, peripheral hardware. In this way it facilitates varying

workload isolation levels and trusted execution across layers, even amid untrusted physical

nodes typical of edge devices. Figure 22 illustrates the diverse levels of workload isolation that

can be achieved using the novel mechanisms that are also developed in the context of the

SERRANO project. For clarity, we provide an overview of the supported SERRANO security

tiers. More technical details are available in the deliverables D3.3 (M15) and D3.4 (M30).

Figure 22: Different levels of workload isolation

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 47/158

Tier-0 represents generic containers. Tier-1 embodies microVM sandboxing [18],[26], where

applications run atop a microVM. This requires booting a complete virtualization stack

(including VMM, kernel, rootfs), which remains active until the application's termination.

Despite progress in minimizing the overhead of VMMs regarding CPU and memory footprint,

even the latest VMMs display a 30% overhead in memory management and address

translation, plus additional CPU usage for handling I/O and context/mode switches. This also

considers the extra memory used by the VMM and the necessity for a full OS system (the

micro-VM) to be active for container spawning. Storage overhead is proportional to the

application. However, a microVM can support container execution with a minimum rootfs,

typically in the tens of MBs, with typical applications in the hundreds of MBs.

Tier-2 is defined by unikernel execution, where CPU, memory, and storage footprints are

minimized as the application is compiled as a machine image, thereby eliminating unnecessary

OS and library software stacks. According to [25], this results in at least a 20% reduction in

CPU and memory overhead, while the application binary footprint decreases by at least 60%.

This reduction is achieved by excluding the OS/libraries from the application, apart from the

optimized build. Tier-3 and Tier-4 are similar to Tier-0 and Tier-1, respectively, but with

enhanced security provided by secure boot. In these cases, a simple peripheral hardware

(known as Trusted Platform Module) is required to provide hardware-based, security-related

functions. Additionally, trusted execution in Tier 4 requires the use of an attestation

mechanism in the hypervisor layer.

Table 6: Multipliers of the computing and storage requirements for the different security and
trustworthiness tiers

Multipliers Tier 0 Tier 1 Tier 2 Tier 3 Tier 4

CPU 1 1.3 0.8 1 1.3

RAM 1 1.3 0.8 1 1.3

Storage 1 1.1 0.4 1 1.1

Each tier imposes distinct demands on computing and storage resources, which we have

quantified in Table 6. The presented values are normalized with respect to the generic

workload requirements of Tier 0. Hence, the value of 1.3 of the CPU overhead for Tier 1

indicates that Tier 1 execution requires 30% more processing resources than Tier 0, whereas

Tier 2 requires 20% less. Hence, when deploying a cloud-native application, it is essential to

provide: (i) the computing and storage requirements for each microservice, (ii) specify the

maximum delay between them for optimal execution in the infrastructure and additionally,

(iii) the minimum level of security and isolation for each microservice to ensure the

application's secure and efficient operation.

5.2.3 Problem formulation

We assume a hierarchical edge-cloud infrastructure that is denoted by a Complete Undirected

Weighted Graph 𝐺 = (𝑉, 𝐸). The set of nodes V corresponds to distinct geographical areas

where a set 𝑀𝑣 of computing resources are available, as well as the locations where workloads

are generated (which may or may not be capable of local processing). A fixed communication

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 48/158

(propagation) latency 𝑙𝑣,𝑣′ is introduced among different nodes 𝑣, 𝑣′ ∈ 𝑉. This latency takes

into consideration the nodes’ propagation delay, as well as additional delays incurred within

the nodes during the communication process. Machines 𝑀𝑣 (virtual and/or physical) are

deployed on the different nodes 𝑣 ∈ 𝑉 and are controlled by low-level orchestrators 𝑂. Each

low-level orchestrator 𝑜 ∈ 𝑂 controls a subset of nodes 𝑉𝑜 ⊆ 𝑉 and therefore controls 𝑀𝑜 =

⋃ 𝑀𝑣𝑣∈𝑉𝑜
 machines, with two orchestrators controlling distinct set of resources (𝑉𝑜 ∩ 𝑉𝑜′ = ∅,

for 𝑜, 𝑜′ ∈ 𝑂).

The machines serve the workloads at different security tiers 𝑆 = {0, 1, 2, 3, 4}, where integers

from 0 to 4 are used to represent the different workload isolation levels. Also, a subset of the

machines Mvs
⊆ 𝑀𝑣 are equipped with hardware peripherals (secure boot) to support the

execution of tier 3 and 4 workloads 𝑆′ = {3,4}. Each machine 𝑚 is described by the tuple 𝜏𝑚 =

[𝑐𝑚, 𝑟𝑚, ℎ𝑚, 𝑠𝑚, 𝑝𝑚], where 𝑐𝑚 is the CPU capacity of the machine measured in CPU units, 𝑟𝑚

is the RAM capacity of the machine measured in RAM units, ℎ𝑚 is the storage capacity of the

machine measured in GB’s, 𝑠𝑚 indicates the existence of secure boot (value 1) or not (value

0) and 𝑝𝑚 is the operational cost of the machine that is the cost of use for a given period of

time (time unit).

The workload in our scenario consists of a set 𝐴 of cloud-native applications. Each application

𝑎 ∈ 𝐴 is represented by an Undirected Weighted Graph 𝐺𝑎 = (𝑉𝑎, 𝐸𝑎), where the nodes

𝑉𝑎 denote the microservices that make up the application, and the edges 𝐸𝑎 denote the

existence of inter-dependencies among them. We adopted an undirected graph

representation of the cloud-native applications, as we are concerned with the delay constraint

formed by their communication dependency, which is assumed to be bi-directional in that

case. The data of each application is generated at node 𝑔𝑎. Each microservice 𝑖𝑎 ∈ 𝑉𝑎, has

specific requirements described by the tuple [𝜀𝑎,𝑖, 𝜌𝑎,𝑖, 𝜔𝑎,𝑖, 𝜎𝑎,𝑖, 𝜆𝑎,𝑖], where 𝜀𝑎,𝑖 is the

microservice’s CPU demand, 𝜌𝑎,𝑖 is its memory demand, 𝜔𝑎,𝑖 is the storage demand, 𝜎𝑎,𝑖 is the

minimum security tier requirement and 𝜆𝑎,𝑖 is the duration of microservice in time units. Note

that the computing and storage resources are specified assuming Tier 0 execution. This

eliminates the need for users to profile the requirements of their applications for the different

security tiers. Hence, when deploying the microservices in a machine with respect to the

specified security tier requirement, the CPU, RAM, and storage requirements of the

microservices need to be considered based on the selected security tier and thus with the

respective multipliers 𝜀𝜎̂ , 𝜌̂𝜎, 𝜔̂𝜎 (Table 6) to calculate the security-tier-specific computing

and storage requirements.

Moreover, each link 𝑒𝑖𝑎,𝑖𝑎
′ that connects two microservices 𝑖𝛼, 𝑖𝑎

′ ∈ 𝑉𝑎, with 𝑖 ≠ 𝑖′ denotes a

maximum acceptable latency requirement 𝛿𝑖𝑎,𝑖𝑎
′ ; this implies that microservices 𝑖𝛼, 𝑖𝑎

′ can be

assigned to machines 𝑚, 𝑚′ and corresponding service nodes 𝑣, 𝑣′ only if 𝛿𝑖𝑎,𝑖𝑎
′ ≥

𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′. This delay constraint measures the intensity of the dependency between them

in the sense that highly dependent microservices should be placed on the same or

geographically approximate nodes. Finally, each application 𝑎 ∈ 𝐴 has a delay limit 𝐷𝑎, which

is the maximum acceptable delay between any node that hosts any of the application’s

microservices and the source node where the application’s demand is generated. This is a

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 49/158

general measure of the application’s overall time-sensitivity, in a sense that a time-sensitive

application requires all its microservices to be processed by nodes with low delay.

5.2.3.1 MILP formulation

Table 7: MILP variables

Variable Interpretation

𝑥𝑎,𝑖,𝑜 Binary variable equal to 1 if microservice 𝑖 = 1, … , 𝐼𝑎 of application 𝑎 = 1, … , 𝐴 is
assigned to low level orchestrator 𝑜 = 1, … , 𝑂

𝑦𝑎,𝑖,𝑚,𝜎 Binary variable equal to 1 if microservice 𝑖 = 1, … , 𝐼𝑎 of application 𝑎 = 1, … , 𝐴 is placed
at machine 𝑚 = 1, … , 𝑀𝑣 and is served at security level 𝜎 = 0, … ,4

𝜃𝑎 Integer variable that denotes the latency of application 𝑎 = 1, … , 𝐴

𝑇𝑎 Integer variable that denotes the total monetary cost of serving the cloud native
application 𝑎 = 1, … , 𝐴

𝑤𝑖 Weighting coefficients for 𝑖 = 1,2,3 to control the contribution of operational cost and

latency in the objective function with ∑ 𝑤𝑖
3
𝑖=1 = 1

- Objective function. Minimize a weighted combination of the operational cost,

communication delay and security tier.

min 𝑤1 ∙ ∑ 𝑇𝑎

𝐴

𝑎=1

+ 𝑤2 ∑ 𝜃𝛼

𝛢

𝛼=1

+ 𝑤3 ∑ ∑(|𝑆| − 𝜎𝑎,𝑖 − 1)

𝐼𝑎

𝑖=1

𝛢

𝛼=1

Subject to the following constraints:

-C.1. Each microservice 𝑖 = 1, … , 𝐼𝑎 of each application 𝑎 = 1, … 𝐴 must be assigned to a low-

level orchestrator.

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼𝑎, ∑ 𝑥𝑎,𝑖,𝑜 = 1

𝑂

𝑜=1

-C.2.The microservices 𝑖 = 1, … . , 𝐼𝑎 of each application 𝑎 = 1, … 𝐴 that are executed with

security Tier 𝜎 = 0, . . ,4 must be assigned to a machine of the selected orchestrator o.

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼𝑎, ∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭𝑜 , ∑ ∑ 𝑦𝑖,𝑎,𝑚,𝜎 ≥

|𝑆|

𝜎=1

𝑀𝑜

𝑚=1

𝑥𝑎,𝑖,𝑜

-C.3. The microservices that are executed with security Tier 3 and 4 need to be placed at nodes

with extra peripheral hardware.

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼𝑎, ∀𝜊 ∈ 𝛰, ∀𝑚 ∈ 𝛭𝑜,, ∀𝑠 ∈ 𝑆′, 𝑦𝑖,𝑎,𝑚,𝜎 ≤ 𝑠𝑚

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 50/158

-C.4. The total CPU required from all the microservices 𝑖 = 1, … . , 𝐼𝑎 of application 𝑎 =

1, … . , 𝐴 deployed at a machine m must not exceed its capacity.

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭𝑜, ∑ ∑(𝜀𝜄,𝑎 ∙ 𝜀𝜎̂)

 𝐼𝑎

𝑖=1

∙

𝐴

𝑎=1

𝑦𝑖,𝑎,𝑚,𝜎 ≤ 𝑐𝑚

-C.5. The total RAM required from all the microservices 𝑖 = 1, … . , 𝐼𝑎 of application 𝑎 =

1, … . , 𝐴 deployed at a machine m must not exceed its capacity.

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭𝑜 , ∑ ∑(𝜌𝜄,𝑎 ∙ 𝜌̂𝜎)

 𝐼𝑎

𝑖=1

∙

𝐴

𝑎=1

𝑦𝑖,𝑎,𝑚,𝜎 ≤ 𝑟𝑚

-C.6. The total Storage required from all the microservices 𝑖 = 1, … . , 𝐼𝑎 of application 𝑎 =

1, … . , 𝐴 deployed at a machine m must not exceed its capacity.

∀𝑜 ∈ 𝑂, ∀𝑚 ∈ 𝛭𝑜 , ∑ ∑(𝜔𝜄,𝑎 ∙ 𝜔̂𝜎)

 𝐼𝑎

𝑖=1

∙

𝐴

𝑎=1

𝑦𝑖,𝑎,𝑚,𝜎 ≤ ℎ𝑚

-C.7. The trusted execution tier of a machine that is assigned a microservice must be equal or

greater than the tier demanded by the microservice.

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼𝑎, ∀𝑚 ∈ 𝛭𝑜,∀𝑜 ∈ 𝑂, ∀𝜎 ∈ 𝑆

 𝑦𝑖,𝑎,𝑚,𝜎 ∙ 𝜎 ≥ 𝜎𝑎,𝑖

-C.8,9. The microservices 𝑖 = 1, … . , 𝐼𝑎 of application 𝑎 = 1, … . , 𝐴 must be assigned to a

machine that is situated in a node 𝑣 that respects the application’s delay limit.

∀𝑎 ∈ 𝐴, ∀𝑖 ∈ 𝐼𝑎, ∀𝑚 ∈ 𝛭𝑜 , ∀𝑜 ∈ 𝑂,

𝑙𝑚,𝑔𝑎
∙ 𝑦𝑖,𝑎,𝑚,𝑜 ≤ 𝜃𝑎, 𝜃𝑎 ≤ 𝐷𝑎

-C.10. For each pair of connected microservices 𝑖, 𝑖′ of an application 𝑎 = 1, … , 𝐴, the selected

machines must respect the dependent microservices delay limit.

𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′ ∙ 𝑦𝑖,𝑎,𝑚,𝑜 + 𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′ ∙ 𝑦𝑖′,𝑎,𝑚′,𝑜 ≤ 𝛿𝑎,𝑖,𝑎,𝑖′ + 𝑙𝑣,𝑣′:𝑚∈𝑣,𝑚′∈𝑣′

-C.11 Monetary cost calculation for application 𝑎 = 1, … , 𝐴

∀𝑎 ∈ 𝐴, 𝑇𝑎 = ∑ ∑ ∑ 𝑦𝑖,𝑎,𝑚,𝑜

𝑀𝑜

𝑚=1

𝑂

𝑜=1

𝐼𝑎

𝑖=1

∙ 𝑝𝑚 ∙ 𝜆𝑎,𝑖

5.2.3.2 Best-fit heuristic

The presented MILP approach is computationally intensive and exhibits a prohibitively large

execution time, even for medium-sized problems. To address this, we developed sub-optimal

mechanisms. The first mechanism is a greedy best-fit heuristic. It takes as input the

infrastructure graph G and application demands A and allocates resources sequentially for the

cloud-native applications concerning computing and storage capacity, security, and latency

constraints while simultaneously optimizing the set objective function. To do so, it examines

each microservice independently and allocates resources in a best-fit manner according to the

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 51/158

specified objective function. When it fails to serve a microservice due to either communication

latency or computing or storage capacity constraints, it backtracks and re-allocates resources

for the problematic microservices.

The algorithm begins by ordering the cloud-native application demands based on their

application delay limit 𝐷𝑎 . As applications consist of dependent microservices, the pairs of

microservices are also ordered based on their latency requirements (in latency units l.u.) from

the strictest to the loosest. This way, the algorithm prioritizes applications and microservices

with stricter latency requirements to maximize the chances of meeting the requirements

while decreasing any reallocations due to backtracking.

The allocation of resources for cloud-native applications is performed sequentially. Given a

microservice of an application 𝑎, the algorithm identifies the candidate orchestrators to serve

it. These orchestrators are selected based on their ability to meet the application’s latency

requirement 𝐷𝑎 and their machines’ ability to fulfil communication constraints with already

assigned microservices. Afterward, the selected orchestrators are sorted in ascending order

based on their objective value, which is the weighted average of their machines’ cost, security,

and latency towards the data generation node. The orchestrators are examined sequentially,

beginning with the one offering the best objective value.

If an application contains only one microservice, the algorithm selects the top-ranked

orchestrator and subsequently identifies candidate machines. These machines possess the

required computing and storage resources and an equal or higher trusted execution tier than

the one demanded by the microservice. Additionally, these machines must be situated in

nodes that satisfy the application’s delay requirement. The algorithm then assigns the

microservice to the candidate machine that yields the best objective value. If the application

contains multiple microservices, the above process applies for the first microservice. However,

for every subsequent microservice, the identification of the candidate machines also considers

the latency requirements among interconnected microservices.

Figure 23: Flowchart of the greedy best fit heuristic

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 52/158

If no feasible placement is found for a microservice due to communication, resource, or

security constraints, the affected inter-connected microservices that have already been

served are de-allocated, freeing up the occupied resources. The algorithm will then attempt

to re-embed the impacted microservices (possibly in a new orchestrator) as well as the one

examined in this step until a feasible solution is found. This process is repeated until all

microservices within an application are served, at which point the algorithm proceeds by

selecting the next application in line. The algorithm terminates once all applications have been

served. Figure 23 illustrates a typical iteration of the algorithm.

5.2.3.3 Multi-agent Rollout Heuristic

We also developed a multi-agent rollout [14][15] mechanism to enhance the performance of

the greedy best-fit heuristic and trade-off execution time with performance. Rollout is a well-

known reinforcement learning technique that provides a near-optimal solution by leveraging

a base policy, which in this case is the greedy best-fit heuristic of the previous sub-section. It

follows an iterative process that takes, at each step, an instance of the problem along with a

partial solution and constructs the final solution incrementally.

After selecting an application, the multi-agent rollout algorithm assigns an agent to each

application’s microservice. These agents co-operate/compete with time in order to fulfil the

assigned applications requirements based on the set objective function. Each agent acts

sequentially by examining all possible placements across the different orchestrators and their

nodes. As the search space can be large, nodes that do not include machines that fulfil the

following requirements are pruned: (i) the minimum latency requirements of the already-

served communicating microservices of the applications, (ii) the CPU, RAM, and storage

capacity, (iii) the minimum trusted execution requirements and (iv) the application latency

constraint 𝐷𝑎. Furthermore, for each node, if more than one machines meet the problem’s

constraints, only the placement in the one that yields the best objective is evaluated. This way,

each agent, in the worst case, evaluates at most ∑ 𝑣𝑜𝑜 possible placements for a microservice

(instead of ∑ 𝑀𝑜𝑜).

The best-fit heuristic discussed in the previous sub-section is utilized to approximate the cost

of the remaining microservices of the examined application and the microservices of the other

applications. The process is repeated for all potential placements of the given microservice,

and the one that exhibits the lowest cost, including the cost of the allocation of the remaining

microservices that is provided by the greedy heuristic algorithm, is selected. The allocation for

the current microservice is marked as completed and resources are updated for the machines

of the selected nodes. This marks the transition to the next state, the next microservice of the

current application a. When all the application microservices are served, the application is

marked as served and the aforementioned process is repeated for the next application.

The purpose of using the multi-agent version of Rollout is to reduce the state space of the

problem. The state space is reduced by breaking down the allocation of resources for an

application 𝑎 and a microservice 𝑖 ∈ 𝐼𝑎 taking sequential decisions and applying one-agent-at-

a-time instead of all-agents-at-once. By pruning the example nodes and evaluating only one

machine per node, as explained earlier, the state space is further reduced. In this way, the

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 53/158

control space complexity stemming from the various options for serving the applications is

traded off with state space complexity, and the computational requirements are proportional

to the number of microservices 𝐼𝑎 of the different applications 𝑎 and the number of nodes

within the different orchestrators.

5.2.4 Performance evaluation

5.2.4.1 Experimental setup

We performed several simulation experiments to examine the performance of the proposed

mechanisms. The mechanisms were developed in MATLAB, and the experiments were

conducted on a 6 core 2.6 GHz Intel Core i7 PC with 12 GB of RAM. We assumed a hierarchical

infrastructure that spans the edge-cloud continuum and is split into three layers that

correspond to near edge, far edge, and cloud nodes. We introduced two different topologies,

namely “basic” and “extended”, each consisting of nodes with computing machines of distinct

characteristics and capacities, as summarized in Table 8. Note that values exhibited in the

close interval [𝑎, 𝑏] are sampled from the uniform distribution over that range.

Table 8: Characteristics of the computing nodes of the different topologies

 Near-edge Far-edge Cloud

Nodes (basic) 25 4 1

Nodes (extended) 40 7 2

Machines per node (basic) 1 [7,10] 50

Machines per node (extended) 2 [10,15] 100

CPU (CPU units) [4,8] [5,10] [8,12]

RAM (RAM units) [1,4] [2,8] [4,16]

STORAGE (GB units) [4,16] [8,32] [16,64]

Monetary COST (Cost Units) [6,7] [3,4] [1.5,2]

In both topologies, the near edge layer comprises many nodes with few low-capacity

computing systems placed close to the data sources. Conversely, the cloud layer comprises a

limited number of nodes that host an abundance of high-powered machines. The cost of the

near-edge nodes was taken to be around 4 times higher than the central cloud.

Table 9: Cloud-native applications’ workload characteristics

Number of microservices [1,7]

Delay constraint [2,10]

Microservices’ CPU demand [1,2]

Microservices’ RAM demand [0.5,1]

Microservices’ storage demand [1,5]

Dependency chance for a pair of microservices 25%

Dependency delay constraint [0.5,3.5]

Regarding the communication delay between infrastructure nodes, we assumed that near-

edge resources require between [0.5, 1.5] l.u., far-edge resources [3, 4] l.u., and cloud

resources [7, 8] l.u. from the data generation points. Although the exact values are not

standardized, we used [8] as a guideline.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 54/158

For the workload, we focused on two scenarios: (i) a small and (ii) a medium-sized consisting

of cloud-native applications of a maximum of 7 microservices (Table 9). Note that an

application with a single microservice can represent a generic end-user demand, while

microservice replicas are considered as microservices with identical resource profiles. We set

the dependency probability between any pair of microservices to 25% and the respective

delay constraint to range between 0.5 and 3.5 l. u.

5.2.4.2 Experimental results

Initially, we compared the performance of the proposed sub-optimal mechanisms, the greedy

heuristic, and the multi-agent rollout with respect to the optimal solution provided by the

MILP mechanism. For the evaluation we considered the following optimization criteria: (i)

minimization of the operational cost (𝑤1 = 1), (ii) minimization of the applications latency

(𝑤2 = 1), (iii) maximization of trusted execution (𝑤3 = 1), and (iv) all optimization criteria

(𝑤1 = 𝑤2 = 0.4, 𝑤3 = 0.2). We used the “small” topology described in Table 9 and a small

workload of 50 applications. The execution time for the optimal solver was limited to 60

minutes, and the presented results are averaged over 20 simulations. The results of the

simulation experiments are illustrated in Figure 24.

Figure 24: Optimality gap for the different
optimization criteria

Figure 25: Allocation of microservices at the
different layers of the edge-cloud continuum

The heuristic has an optimality gap of 14.5% when the main optimization criterion is latency

minimization. This happens due to the high competition for the limited near-edge resources,

which requires a more sophisticated resource allocation approach to allocate these resources

effectively. For the same reason, the “all-optimization criteria” and “trusted execution” lag by

11% and 10% from optimal, respectively. However, when the optimization criterion minimizes

the operational cost, the search space is much smaller; thus, the heuristic's performance is

close to optimal, underperforming only by about 3%.

On the other hand, the Multi-agent Rollout exhibited significantly better performance, with

the worst case being the latency optimization. However, it substantially improved the greedy

heuristic solution due to the consideration of future placements, providing a 4.5% optimality

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 55/158

gap. Additionally, in the case of monetary cost minimization, the optimality gap provided was

smaller than 1%, indicating that Rollout found an almost optimal assignment.

As for the execution time, the best-fit heuristic provided an almost instantaneous assignment,

with an average time of 0.01 seconds per application placement. On the other hand, the

Rollout algorithm performed much slower, at an average of 0.9 seconds per application, with

a standard deviation of 0.3 seconds. Finally, the optimal solver exceeded the 3600 time limit

in all cases, resulting in an average of 72 seconds per application.

Next, the multi-agent rollout mechanism was evaluated for the extended topology with 300

microservices and was compared to the best-fit heuristic, which is the baseline scenario for

this set of experiments. We began by analysing the allocation of microservices for the different

mechanisms and optimization criteria across the edge-cloud continuum (Figure 25). The

experiments showed that resource allocation patterns varied based on the optimization

objective. When cost or the trusted execution was prioritized, cloud resources were favoured

due to their high capacity and the higher availability of trusted execution tiers. Conversely,

when latency minimization was the main objective, near and far edge resources were heavily

utilized. Additionally, when all the optimization criteria were simultaneously optimized, the

solution proved beneficial in allocating resources tailored to the application's specific needs.

This highlights the advantages of considering all the optimization criteria in a multi-objective

optimization approach during the resource allocation process and the ability of the rollout

mechanism to achieve an improved allocation of resources by leveraging the decisions of the

heuristic in a reinforcement learning manner.

Figure 26: Operational cost overhead for the
different optimization criteria

Figure 27: Experienced latency for the different
optimization criteria

In Figure 26, we present the results of experiments regarding the average cost overhead

associated with security as an additional constraint, compared to generic workload demands,

which acts as the baseline scenario for this case for the different optimization objectives. The

cost overhead for a microservice's placement is determined as the percentile increase in cost

between its deployment in a default container, (Tier-0), and the deployment method chosen

in the assignment.

As anticipated, the highest cost overhead is incurred in the maximization of trusted execution,

where machines with higher tiers, which are more expensive, are favoured. Trusted execution

is also considered in the “all optimization criteria” scenario, therefore producing increased

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 56/158

cost overhead. Conversely, the effect of additional security on cost overhead is lower for the

other two optimization objectives, where trusted execution is not considered.

Finally, in Figure 27, we present the effect of the different optimization criteria on the average

propagation latency. As expected, the lowest average latency is achieved when the

optimization criterion minimizes latency. Conversely, when the operational cost is optimized,

as many microservices as possible are placed on the “cheaper” far-edge and cloud layers,

increasing latency. In the trusted execution optimization case, microservices are placed on

machines with high-security tiers generally located in the upper layers (extra hardware),

leading to higher average propagation latency. The weighted optimization approach trades

off the requirements of different criteria and achieves a relatively smaller latency.

By comparing the Multi-agent Rollout with the greedy heuristic mechanism performance, we

observe that the Rollout approach generally results in a marginally lower cost overhead and

communication latency for all objectives except for trusted execution. As the Rollout

mechanism produces an enhanced solution, when the cost contributes to the objective,

Rollout discovers the most cost-efficient machines that usually possess lower security levels

and subsequently lower security cost overhead. Similarly, with latency as an objective, Rollout

manages to place more microservices on edge nodes and machines with adequate security

tiers, thus lowering overhead costs. Similarly, for the trusted execution objective, the rollout

mechanism improves the solution by placing more microservices on machines with a higher

security tier, leading to a higher security cost overhead. These findings highlight the

importance of considering multiple optimization criteria when allocating resources for cloud-

native applications across the continuum. While prioritizing a single objective may lead to

optimal results for that specific objective, it may negatively impact other criteria, such as

latency or operational cost. Therefore, a comprehensive approach that balances multiple

objectives can lead to a more efficient allocation of resources, resulting in improved

application performance, reduced costs, and better resource utilization.

5.2.5 Conclusions

In this study, we aimed to address the challenge of allocating resources to cloud-native

applications within a hierarchical edge-cloud infrastructure. Our approach considered critical

factors such as the inter-dependencies among microservices and the trusted execution

requirements of cloud-native applications. To meet microservices’ varied security and

isolation demands, we considered SERRANO’s innovative technologies, such as sandboxing

and unikernels. To model the resource allocation problem, we formulated a multi-objective

optimization problem that balances various conflicting objectives, such as minimizing

operational costs and propagation latency from data generation points, while considering the

workloads’ security tier requirements. We developed optimal and sub-optimal mechanisms

that efficiently trade-off performance for execution time, as demonstrated in our

experiments.

Our results showed that the greedy best-fit heuristic fell short of optimal performance by an

average of almost 11% for all optimization criteria. However, the multi-agent rollout

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 57/158

mechanism significantly improved the greedy heuristic's performance, achieving close to

optimal levels at 3.7%. Furthermore, our experiments highlighted the trade-offs between

delay, cost, and security. In conclusion, our study provides a novel approach to resource

allocation in a hierarchical edge-cloud infrastructure, addressing crucial factors such as

security, isolation, and inter-dependencies among microservices.

5.3 Intent-based Allocation of Cloud Computing Resources

Using Q-Learning

Resource allocation is a critical operation regarding the efficient use of the infrastructures.

The majority of the formulated resource allocation problems and respective mechanisms

assume a model where workload requirements are provided with certainty (e.g., from a user),

while orchestration mechanisms have a clear view of the resources' characteristics and status.

In practice, however, these assumptions are not always valid. Users often have a subjective

notion of their needs (e.g., what one considers low or high cost) and an abstract view of the

available infrastructures. As a result, they are not able to specify in a certain, numeric manner,

their requirements or match them to an infrastructure’s actual characteristics. Also,

orchestration mechanisms cannot always monitor efficiently the resources due to their high

number and the dynamicity of their status. In addition, since not all resources belong to the

same providers, it is reasonable that some providers are not willing to share the same level of

details regarding their resources.

Figure 28: Intent-driven resource allocation

Recently, intent-based operations have been presented by various actors (providers,

standardization organizations, academia) [28][29] as a way for applications and users to

express their requirements regarding the use of Information and Communication Technology

infrastructures, e.g., computing, networking, etc.

Overall, the goal is to focus on what one needs from an infrastructure instead of how to

achieve it. In this context, our work considers intent-based resource allocation for cloud

computing infrastructures (Figure 28). The idea is that application requirements are provided

in an infrastructure-agnostic manner, assuming that application owners cannot provide the

numeric requirements of their workload. The main contribution of our work is a Q-learning

based Reinforcement Learning (RL) methodology that translates the users'/applications'

intentions to efficient resource allocations.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 58/158

5.3.1 Related work

Reinforcement Learning (RL) is a machine learning method that has recently gained a lot of

attention from the research community. It is based on one or more agents that learn the

environment of interest by interacting with it [31]. The RL agent gives recommendations and

receives rewards from the environment. The ultimate goal of the agent is to maximize the

total reward. If the reward is positive, the agent will continue to try its effort. If the reward is

negative, the agent should change its policy to have a good value in the next step of the

iteration.

In RL, there are problems that use models and are characterized as model-based and others

that do not use a model of the environment and are called model-free. In the latter, agents

learn to make decisions without having a model of the environment through trial and error.

The most commonly used model-free RL methods include Q-learning, SARSA (State-Action-

Reward-State-Action), Monte Carlo methods, TD-learning (Temporal Difference learning),

Actor-Critic methods and Deep RL. These model-free RL methods are well-suited for problems

where the environment is difficult to model; however, they may require more data for training

and computational resources to learn an optimal state-to-action policy compared to model-

based RL methods.

RL methods have been employed in various problems, including resource allocation: For

optimal wireless resource allocation in order to avoid interference by hidden nodes in

CSMA/CA method [32], in 5G services using deep Q-learning [33][34][35], in hybrid networks

that contain access points, radio frequency and multiple visible light communications [36], in

satellite-terrestrial networks [37] and in optical networks [38]. RL methods have also been

used for resource allocation in edge and cloud computing. [34] proposes a joint task

assignment and resource allocation approach in a multi-user WiFi-based mobile edge

computing architecture. [39] proposed a Q-learning scheme to efficiently allocate edge-cloud

resources for IoT applications. In [40] a computation offloading methodology for deep neural

networks in edge-cloud environments is formulated. [41] use a Deep Reinforcement Learning-

based approach to balance, in an edge computing environment, workload from mobile

devices, so as to decrease service time and reduce failed task rate. In [42] a model-free Deep

Reinforcement Learning approach is also introduced, in order to orchestrate the resources at

the network edge and minimize the operational cost at runtime.

Intent-driven operations have the goal to overcome the complexity of utilizing complex

infrastructures, decoupling the users’ intentions regarding “what” should be done, from the

actual resource orchestration, which specifies “how” it is done. Intent-driven operations have

initially focused on networks [43][44][45], but recently, their application in cloud and edge

computing is also investigated [46][47][48][49]. Authors in [46] define rules that enable users

to express service-layer requirements. The Label Management Service in [47] helps cloud

administrators model their policy requirements.

In [48], a learning-based intent-aware task offloading framework for air-ground integrated

vehicular edge computing is developed. [49] proposes a framework to translate cloud

performance-related intents into specific cloud computation resource requirements. [50]

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 59/158

proposes a strategy that matches multi-attribute tasks to cloud resources. In [51], it is used an

intent-based network system to automate the deployment of virtual network functions in a

cloud-based infrastructure.

The work we present next differentiates from the state of the art by utilizing a Q-learning RL

methodology to translate users' intentions to resource allocations in a cloud infrastructure. In

this process, the provided rewards are based both on the users' feedback and the

infrastructure's status.

5.3.2 System Model and Infrastructure-Agnostic Operations

5.3.2.1 Infrastructure

In our work, we assume a computing infrastructure composed of N interconnected resources

(edge and cloud) with different characteristics in terms of:

• Capacity C={c1,c2,...,cN}. This can be expressed as the number of (virtual) CPUs in case

of a computing resource or the number of GB in case of

a storage resource.

• Cost of use U={u1,u2,...,uN}. This can be formulated in different ways

either as a fixed price or as cost per quantity per time unit (e.g. GB per hour

used).

• Security E={e1,e2,...,eN}. This may depend on particular security features

that the respective resource employs

Other parameters of interest can also be considered.

We also assume these characteristics are discrete and selected from a set of possible values.

This is reasonable to assume based on the cloud computing paradigm of virtualized instances.

In particular, all public cloud providers offer various types of instances, comprising varying

combinations of (virtual) CPU, memory, storage, and networking capacity and are optimized

for different workloads, e.g., compute or memory intensive.

In this context, the considered infrastructure's virtualized resources have capacity, cost, and

security capabilities with discrete values from the following sets:

• Nc levels of capacity: 𝑆𝐶 = {𝑇𝐶1, 𝑇𝐶2, … , 𝑇𝐶𝑁𝐶
}, and ci ∈ SC where 1 ≤ i ≤ N

• Nu levels of cost: 𝑆𝑈 = {𝑇𝑈1, 𝑇𝑈2, … , 𝑇𝑈𝑁𝑢
}, and ui ∈ SU where 1 ≤ i ≤ N

• Ne levels of security: 𝑆𝐸 = {𝑇𝐸1, 𝑇𝐸2, … , 𝑇𝐸𝑁𝑒
} and ei ∈ SE where 1 ≤ i ≤ N

5.3.2.2 Workload

The application requests for computing workload or storage space are submitted to an

orchestration entity that manages the infrastructure. The request is described by the static

characteristics of the workload to be submitted, such as the requested computing capacity

(e.g., in terms of virtual CPUs) or the size of the data to be stored (e.g., 2 GB). It also includes

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 60/158

infrastructure-agnostic parameters, such as regarding the preferable cost, security, and

performance, in the form of intents. This intent can take various forms and shapes, e.g., by

characterizing the need to execute a workload "fast" or to store data with "high" security or

with "low" cost. In our work, we formulate this with a small number of what we call "intent

levels" for the different types of parameters of interest:

• 𝑁̂c levels of capacity: 𝑆̂𝐶 = {𝑇̂𝐶1, 𝑇̂𝐶2, … , 𝑇̂𝐶𝑁𝑐
} where 𝑁̂c<<Nc

• 𝑁̂u levels of cost: 𝑆̂𝑈 = {𝑇̂𝑈1, 𝑇̂𝑈2, … , 𝑇̂𝑈𝑁𝑢
} where 𝑁̂u<<Nu

• 𝑁̂e levels of security: 𝑆̂𝐸 = {𝑇̂𝐸1, 𝑇̂𝐸2, … , 𝑇̂𝐸𝑁𝑒
} where 𝑁̂e<<Ne

S𝑜, 𝑡he j submitted workload of user k, wjk, can be described with the tuple {T̂𝐶jk, T̂Ujk, T̂Eik},

where T̂Cjk ∈ Ŝc, T̂Ujk ∈ ŜU, and T̂Ejk ∈ ŜE. The way these infrastructure-agnostic intent

levels match to the different infrastructure-related resource levels (Section 5.3.2.1) is the key

for the intent-based operations that we research on the present work.

5.3.2.3 Example of Infrastructure-Agnostic Operation

Based on the above, we describe the following example of an infrastructure-agnostic storage

workload request R to be served by the infrastructure. The request's static parameters include

the size of the data to be stored, e.g., measured in GB. Also, the request is accompanied with

intents specifying that this should be served with "low" cost, "high" security: R = {𝑢̂, 𝑒̂} =

{”low”, ”high”}. Assuming that we have 𝑆̂U = 1, 2, 3 and 𝑆̂E = 1, 2, 3 "intent levels" for cost and

security and the intention "low" matches to the value 1, while the "high" to value 3, then these

intents can also be expressed numerically with the tuple R = {𝑢̂, 𝑒̂} = 1, 3

The goal of the methodology we present next is to efficiently translate the provided intents to

specific decisions regarding how the tasks will be served to match as closely as possible to the

users’ or applications’ intentions. For example, we assume that our infrastructure has Nu = 10

different cost levels for a storage resource, in terms of euros per GB per month stored, e.g.,

Su = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. So, when a user has an intent for cost 𝑒̂ = 1 this means

that the methodology has to match this ("intent level") to an actual cost value ("resource

level") from the set Su. In general, we may expect that 𝑒̂ = 1 ("intent level") of cost, matches

to 10, 20, 30 or even 40 euros per GB per month ("resource level"). In practice, however, this

"intent level" is user-specific and can match any available "resource levels" or even none.

5.3.3 Q-learning based Intent Translation

In our work, we are using Q-learning, model-free Reinforcement Learning (RL), approach to

translate the infrastructure-agnostic intent of a user regarding submitted workload to

infrastructure-aware parameters.

5.3.3.1 State, Action spaces and reward

The basic design principles used in our RL-based method and need to be defined, include the

state space S, the action space A and the reward r. The RL process is executed in time steps t.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 61/158

The state of the system environment 𝑠 ∈ 𝑆 at time t, describes the current status of the cloud

infrastructure in terms of the availability of the resources. For simplicity, we assume that a

single task/workload fully utilizes a resource from the N available ones.

As a result, the environment can be represented through a tuple that shows the availability of

the resources: s = {o1, … , oN}, where oi ∈ {−1, 1} indicates whether the respective resource

i is utilized or not.

The action space A contains all possible actions that can be taken, defining the transfer rules

between states. As the agent explores the environment, it experiments with different actions

to learn which are most effective in achieving the goals set. In our work, we assume that at

each step t we can either assign a new task of a user to an available resource or migrate an

existing task to another available resource. As a result, 𝐴𝑡 = {𝑟1, … , 𝑟𝑁}, where N are all the

available resources. In practice, though, only some transitions/actions from one state to

another are possible since we assume that at a single step only one new task can be served or

one existing task can migrate to a different resource. For example, in an infrastructure with

N=4 resources, from the state 𝑠1 = {−1, −1, 1, 1}, indicating that the third and the fourth

resources are utilized, an action is possible to the state s2 = {1, −1, −1, 1}, indicating that a

task migrates from the third resource to the first one, while no action is possible to the state

s3 = {1, 1, −1, −1}, since this requires multiple task migrations.

After the agent takes an action at state s at time t, it will receive a reward r, which can be used

to evaluate the action performed. In order to design the reward function, it is necessary to

determine the objectives based on which a positive or a negative reward will be provided.

One important novelty of our work is that rewards depend not only on the infrastructure (the

typical environment in most related works) but also on the user that submits the task. On the

user side, the reward relates to the level of satisfaction for serving the submitted task

according to (or close to) the user's intention. On the infrastructure side, we focus on the

efficiency with which the infrastructure is actually utilized. These objectives are interrelated

since failing to serve a task due to poor utilization of the available resources results in

unsatisfied users of the provided services.

In practice, user satisfaction can be provided by the user through an immediate feedback

mechanism (e.g., using a User Interface [28]), after the infrastructure serves a task request,

while the infrastructure's utilization can be monitored through a respective system, such as

the SERRANO telemetry framework

In our work, we consider the following reward function: 𝑅𝑡 = 𝑎 ∙ 𝑠𝑓 + 𝑏 ∙ 𝑢𝑙, where sf is the

satisfaction level based on the action performed at time slot t and ul the utilization of the

resources at time slot t.

The a and b weights balance user feedback and resource utilization objectives. Also, we

quantitatively calculate the satisfaction level as the difference between the user's intents and

the parameter (cost, security, etc.) levels of the resources to which these tasks have been

assigned to. For example, let’s assume that a user has submitted two tasks with cost intent

levels equal to 𝑇̂𝑈1 = 1 and 𝑇̂𝑈3 = 3 that correspond to cost u=15 and u’=45 respectively

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 62/158

(based on the user's actual intention). If these tasks are assigned to resources with cost levels

𝑇𝑈4 = 10 and 𝑇𝑈7 = 30 then we calculate the satisfaction level as equal to:

sf =
1

1 + |TU4 − u| + |TU7 − u′|
=

1

1 + |(10 − 15) + (30 − 45)|
=

1

21
.

In practice of course, a user submitted satisfaction level will be somewhat subjective and will

deviate from this "optimal" calculated value.

5.3.3.2 Q-learning methodology

As with any machine learning mechanism, Q-learning has two phases: training and inference.

During the training phase, the agent iteratively interacts with the infrastructure and (in our

work) with the user and learns the optimal action-value function that maps states and actions

to maximize the expected cumulative reward. Through this process, the agent explores the

infrastructure characteristics and the user's intentions. The Q-learning algorithm updates the

estimate of the action-value function for each state-action pair visited by the agent using the

well-known Bellman equation:

Q(s, a) = Q(s, a) + α · [r + γ · max(Q(s’, a’)) − Q(s, a)],

where Q(s, a) is the estimated value of taking action a in state s, α is the learning rate that

determines how much weight to give to new information, r is the immediate reward received

for taking action a in state s, γ is the discount factor between 0 and 1, which determines the

importance of future rewards relative to immediate rewards, max(Q(s’, a’)) is the estimated

value of the best action a' in the next state s'. These so-called Q-values for all possible state-

action pairs are stored in a table, namely the Q-Table. Different selection strategies are

possible for the agent in every state; for example, select an action randomly, select the action

that it has executed the least number of times, or select the action with the largest Q-value.

In many formulations of the Q-learning process, an ε probability parameter sets a trade-off

between exploitation that is choosing the optimal action for the next step, based on the Q-

Table and exploration that is choosing a random action. In all cases, the reward after an action

is taken, leads to the update of the respective state-action Q-value Q(s,a) and the update of

the Q-Table.

The cumulative reward at each time step t is defined as:

Gt = Rt+1 + γ · Rt+2 + γ2 · Rt+3 + ...

where Rt+1 is the immediate reward received by the agent at time step t+1 for taking action at

in state st and γ is again the discount factor. The agent aims to find the optimal policy that

maximizes the expected value of Gt over all possible sequences of actions and states: the

expected cumulative reward. In the inference phase, the trained agent exploits the learned

action-value function and serves new demands based on the current state and user

satisfaction level, using the action with the highest expected reward.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 63/158

5.3.4 Evaluation

We performed a number of simulation experiments to evaluate how the Q-learning

methodology succeeds in identifying a user's intentions in the submitted infrastructure-

agnostic requests. Our experiments focus on the training phase of the Q-learning mechanism.

We consider a cloud environment consisting of storage resources, with Nc =

10 resource levels of capacity: Sc = {10, 20, · · · , 100} GB and with various combinations of the

available characteristics in terms of cost and security levels. We also assume that storage

capacity is a deterministic parameter of the submitted tasks, while capacity and security are

expressed through respective intents. In the experiment performed, we employ various

scenarios for translating intents to resource levels that correspond to different user

intentions. It is clear that there is not necessarily a linear match between the intent and the

resource levels. This means for example that an intent level 𝑇̂U1 is not necessarily equal to

TU1, but depends on the user preferences. In what follows, for simplicity we assume a single

user that submits storage task requests in an infrastructure-agnostic manner through intents.

Initially, in the experiments performed we assumed resources that have different cost

resource levels: 3, 5, 7, while the generated task requests had 2 intent levels. We run the

training process for over 10000 timesteps. The Bellman's Equations parameters had the

following values α = 0.5, γ = 0.9, while ε = 0.5.

Figure 29 illustrates the average reward over time for the first 1k timesteps. We observe that

in all scenarios, the average reward increases over the first 100 timesteps and then stabilizes,

increasing just slightly till 10k timesteps (not illustrated in this figure). This is reasonable

considering the learning processes and the fact that we selected ε = 0.5, meaning that, on

average half of the selected actions are random, that is not based on the calculated Q-values.

What is essential to notice is the effect of the number of cost resource levels in the learning

process. A higher number of cost resource levels results in a smaller average reward and vice

versa lower number of resource levels results in larger average reward. This is due to the fact

that a small number of resource levels means that there is a close relation between resource

and intent levels, making their matching easier.

Figure 29: The average reward over time for different cost resource levels

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 64/158

Figure 30 illustrates the average reward over time for different ε values {0.1, 0.2, …, 0.9} over

10k timesteps. In this way, ε controls the agent’s rate of exploring the environment and

identifying an optimal policy. The figure shows that the reward is the highest for ε=0.2, making

it the optimal value for the specific problem and the goals set. Another approach is to use a

variable epsilon strategy, where the value of epsilon changes over time, being high at first to

enable more exploration and decreasing at some point to exploit the calculated Q-values.

Next, we considered the effect of multiple intent parameters (cost, security, and others) in the

training process (Figure 31). Increasing the number of different intents a user provides for a

single task request leads to a smaller average reward and a slower increase of its value over

time. This due to the fact that it is more difficult to match an increasing number of intents to

the actual parameters' resource levels.

Figure 30: The average reward over time for different ε values

Figure 31: The average reward over time for different number of intent parameters

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 65/158

Finally, we also created a heatmap of the Q-Table (Figure 32) for ε=0.5, 50000 timesteps, and

a single intent parameter. This was created out of curiosity, mainly in order to identify any

properties of the Q-Table. One thing that we can observe is a kind of symmetry of the Q-Table.

This is mainly due to the way the Q-Table is created in terms of step-pairs and the fact that we

consider as valid actions those in which only a single task is migrated to a new resource.

Figure 32: The Q-Table’s heatmap for ε=0.5 and 50000 timesteps

5.4 Resource Optimization Toolkit

The SERRANO platform has to automatically determine the most appropriate resources across

the distributed edge/cloud/HPC infrastructure to deploy the applications, execute accelerated

kernels, and create secure storage policies. The Resource Optimization Toolkit (ROT)

integrates the designed resource allocation algorithms in the SERRANO platform,

implementing the deciding part at the envisioned closed-loop control based on observe,

decide, and act principles. It provides to the SERRANO Resource Orchestrator (Section 9.1) the

required logic to allocate the edge, cloud, and HPC resources to satisfy the applications’

requirements, coordinate the efficient movement of required data across the selected

resources, and support proactively and reactively re-optimization adjustments.

5.4.1 Final implementation and interfaces

Figure 33 presents the architecture of the ROT, its main components, and the interactions

with other components within the SERRANO architecture. The deliverable D5.2 (M15),

detailed the overall design, the main components, their roles, and the initial implementation.

Next, we present their extensions along with the new developments. The architecture

includes one ROT controller and multiple Execution Engines, the actual workers. The controller

includes the Access Interface and Dispatcher components, while each worker comprises the

Execution Engine and the library of the decision algorithms. This approach ensures that the

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 66/158

ROT will always be able to handle quickly any number of execution requests by the Resource

Orchestrator, even in very complex infrastructures.

The ROT controller handles the interaction with the other services (i.e., Resource

Orchestrator, Central Telemetry Handler) within the SERRANO platform. It exposes the

appropriate interfaces that allow bidirectional communication for exchanging commands,

information, and notifications. The Execution Engine receives instructions for starting or

terminating algorithm executions from the ROT controller and performs all the required

actions. It also monitors the node's resources where it is executed and returns related

information. The ROT is implemented in Python, using additional frameworks such as Flask 2.0

[3], Pika [93], and PyQt [94].

Figure 33: Resource Optimization Toolkit (ROT) architecture and main components

It offers two North Bound Interfaces (NBIs), the first is based on REST APIs, and the second is

an asynchronous messaging interface based on the Advanced Message Queuing Protocol

(AMQP). The former exposes control operations to manipulate and inspect the execution of

deployment algorithms, get information for the available Execution Engines, and manage end

users. The latter offers asynchronous communication between the ROT Controller and end

users for exchanging notification messages and results. The Data Broker component of the

SERRANO architecture implements the required asynchronous messaging interface. To this

end, it provides several queues for the asynchronous exchange of messages that are described

using a predefined syntax in JavaScript Object Notation (JSON) format. The detailed

description and syntax of the messages are available in D5.2 (M15). Figure 34 summarizes the

final version of the exposed REST API.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 67/158

Figure 34: Resource Optimization Toolkit REST API

In the second iteration of the implementation plan, we significantly extend the functionality

of the ROT Controller, adding new methods in the REST interface and improving the operation

of the Dispatcher component. The new functionality includes (i) support for multiple users, (ii)

the use of different topics for results and notifications, (iii) improved handling of failures, and

(iv) the implementation of a Python API to abstract the two exposed NBIs.

Moreover, we updated the initial implementation of the mechanisms that provide

asynchronous communication between the ROT components (i.e., ROT Controller & Engines)

and end users. The final implementation uses four different exchanges (Figure 35), supports

multiple users better, and facilitates the scaling features of the ROT.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 68/158

Figure 35: ROT asynchronous communication over SERRANO Message Broker – Final

implementation

In addition, the updated syntax for the internal messages that provide the ROT responses has

the following syntax:

• uuid (string): execution request unique identifier

• status (string): final status of the execution request:

 FAILED: execution request failed

 DONE: execution request finished successfully

 TERMINATED: execution request terminated

• results (string): algorithm execution output

• timestamp (integer): Unix time stamp

5.4.2 Algorithms integration and Python API

Figure 36 presents the overall workflow for executing resource allocation algorithms within

the SERRANO platform, highlighting the roles of the ROT components and their interaction

with other SERRANO services. The purple arrows indicate operations performed through the

exposed northbound interfaces, the green arrows indicate interactions among the primary

ROT services, the black arrows correspond to actions related to the preparation of an

execution request, and the blue to the actual execution.

The resource orchestration algorithms selected for integration in the Resource Optimization

Toolkit are implemented in Python. According to the ROT architecture, an algorithm is

accessible from the Execution Engine's internal components through a custom plug-in

mechanism. This mechanism exposes a standard interface for all integrated algorithms that

determines the explicit syntax of the input parameters and the results for all algorithms. The

interface uses JSON as the data-interchange format to provide input parameters and results.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 69/158

Figure 36: ROT - Workflow for executing an orchestration algorithm in SERRANO

The plug-in mechanism is implemented as a Python wrapper that facilitates access to

algorithms and enables their execution through the Execution Helper component in the

Execution Engines. The algorithms are organized within a predefined module called

"algorithms" in the Execution Engine, with each algorithm implemented in a separate sub-

package (Figure 37). The wrapper receives three parameters from the Execution Helper: (i)

the name of the algorithm module, (ii) telemetry information from the SERRANO Central

Telemetry Handler (CTH), and (iii) algorithm-specific input parameters. Before assigning the

execution request to an Execution Engine, the ROT Controller automatically provides the

necessary telemetry information. The ROT Controller queries the CTH service based on the

requested orchestration algorithm since a different type of information is required to

orchestrate a cloud-native application compared to creating a secure storage policy.

Table 10: ROT plug-in mechanism – AlgorithmInterface abstract class

import abc
import json

class AlgorithmInterface(metaclass=abc.ABCMeta):

 def __init__(self, parameters, infrastructure):
 self.__infrastructure = json.loads(infrastructure)
 self.__parameters = json.loads(parameters)

 def get_input_parameters(self):
 return self.__parameters

 def get_infrastructure_parameters(self):
 return self.__infrastructure

 @abc.abstractmethod
 def launch(self):
 pass

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 70/158

The plug-in mechanism requires that every algorithm’s implementation should include a main

file with the same name as the algorithm’s module, where the execution starts. The file should

include a class with a similar name that should extend

the AlgorithmInterface class (Table 10). It is an

abstract class defined by the plug-in interface, handles

the telemetry information and input parameters, and

provides the appropriate public methods to facilitate

their usage. It also defines the abstract method

launch(), where an algorithm should implement its

specific logic. The final version of the ROT

implementation includes the following orchestration

algorithms (Figure 37): (i) a simple first-fit allocation

algorithm, (ii) the best-fit heuristic for the security-

aware deployment, (iii) the greedy resource allocation

algorithm (GRAA), and (iv) the heuristic for the

distributed storage allocation (i.e., storage policies),

which was presented in deliverable D5.2 (M15).

To facilitate the ROT services integration within the SERRANO platform, we implemented a

Python API that abstracts the integration with the ROT controller and the exposed northbound

interfaces. The API is also part of the SERRANO SDK, while it can facilitate a more general

adoption of the designed framework even outside of the SERRANO platform as a standalone

service. Moreover, the Orchestration Manager, one of the primary services of the SERRANO

Orchestrator (Section 9.1), uses the provided Python API to implement the required

interactions with the ROT service. The API includes a set of methods to abstract the interaction

with the REST interface and various events to handle the low-level operations for interacting

with the asynchronous communication over the SERRANO Data Broker.

Table 11 summarizes the provided methods and events, and Figure 38 shows a related code

snippet. The example presents the execution of various managing requests, such as getting

the list of available Execution Engines (line 52) and execution requests (line 57) and the

request of an algorithm execution (line 67), along with the results handling (lines 18, 33-38).

Table 11: ROT Python API – Provided methods and events

Name Type Description

get_engines() Method Get the available execution engines.

get_engine(engine_uuid) Method Get details about a specific execution engine.

get_executions () Method Get the list of all active executions.

get_execution(execution_uuid) Method Get details about a specific algorithm execution.

get_logs(execution_uuid) Method Get detailed information for a specific execution.

get_statistics() Method Get statistics for the completed executions.

request_execution(algo, parameters) Method
Start the execution for a specific algorithm with the

provided input parameters.

terminate_execution(execution_uuid) Method Terminate a specific algorithm execution.

EventEnginesChanged Event Current state of a specific Execution Engine changed.

EventExecutionCompleted Event An execution request is completed successfully.

EventExecutionError Event Error during the execution of some request.

Figure 37: Integrated orchestration

algorithms

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 71/158

 Figure 38: Code snippet for interacting with the ROT through the provided Python API

5.4.3 Deployment and configuration

The ROT framework components are implemented in Python language and packaged in

container images using the SERRANO CI/CD services, ensuring a smooth and efficient

development workflow. The source code will be available in the official repository of the

SERRANO project [95] under an open-source licence (Apache 2.0). There are separate

container images for the ROT Controller and ROT Execution Engine. The resulting container

images are accessible through the official SERRANO Harbor image repository [96]. Moreover,

corresponding Kubernetes YAML description files are also available to facilitate effortless

deployment on Kubernetes platforms. These files enable the automatic deployment and

scaling of the ROT Controller and ROT Execution Engines within Kubernetes.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 72/158

6 Service Assurance and Remediation

In this section, we provide a comprehensive overview of the Service Assurance and

Remediation (SAR) components. Specifically, we detail the Event Detection Engine (EDE) and

how it is used for the detection analysis of the monitoring data received from the SERRANO

telemetry framework. Once unwanted behaviour has been detected and analysed, the root

cause is determined by computing Shapely values.

The following subsections detail the work performed during the second iteration of the

implementation plan (M16-M31) on SAR. We should note that some information is also

available in D5.2 (M15) however, for the sake of completeness we will include details

regarding the overall architecture of SAR here as well.

6.1 Architecture

The Event Detection Engine (EDE) is a crucial component of the overall Service Assurance and

Remediation mechanisms (SAR) as it enables the timely detection of any performance,

behaviour and time/sequence related anomalies. The technology stack used for its

implementation was chosen in order to create a robust, scalable solution that is also easy to

extend with new state of the art detection methods.

When dealing with distributed systems deployed on heterogeneous hardware platforms, it is

not a question of if but rather when anomalous events will occur. In order to initiate

autonomous remediation of any such events we must first have a reliable anomaly detection

mechanism. While simple point anomalies are quite easy to detect with relatively simple rule-

based mechanisms, contextual and/or sequential anomalies of multivariate data are

challenging. EDE provides a comprehensive set of ML methods that are specifically chosen to

enable the detection of just such anomalous events.

In the context of SERRANO, we improved EDE with a few key features and capabilities. The

main objectives for SERRANO are:

• Identify ML detection methods that are suitable for the detection of anomalous events

in the SERRANO context. These include both supervised and unsupervised methods.

• Implement ML predictive model optimization mechanisms that can be used for both

predictive performance optimization as well as user-defined constraints (i.e. inference

times, computational resource utilization, model size etc.). Moreover, several

visualizations that give insight into model performance have also been implemented,

giving feedback to the end user at every stage of the optimization process.

• Implementation of Explainable AI mechanisms which can give meaningful insight into

what caused a particular anomalous event to occur (root cause analysis). These

methods stand as one of the main outputs of SAR.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 73/158

• Integration into the SERRANO toolchain, especially for the EDE, which should report

detected anomalies. The target integrations include the SERRANO orchestration and

telemetry services.

Figure 39 shows the overall architecture of EDE. This robust framework consists of five primary

components, each tasked with a specific functionality necessary for creating and exploiting

ML-based detection methods. The SERRANO platform enables seamless deployment of cloud-

native applications across distributed infrastructures with highly heterogenous hardware

platforms. This leads to high volumes of data that need to be analysed. To efficiently handle

such demanding workloads (EDE being implemented in Python) we have selected Dask [77] as

the execution backend.

Dask allows for parallel/concurrent execution of training, optimization and prediction tasks,

providing scalability to process the vast amount of data effectively. Furthermore, it can

leverage an existing Dask cluster, simplifying configuration for EDE users that only have to

configure the EDE scheduler. When Dask is deployed on top of Kubernetes autoscaling is also

possible. We have developed a simple Dask scheduler that is capable of on-demand scaling of

a cluster using Kubernetes. In the absence of a user-defined Dask scheduler, EDE will create a

local 3-worker deployment during normal operation. Next, we will discuss some particularities

of the architecture.

Figure 39: Event Detection Engine – General architecture

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 74/158

The first component is the Data Ingestion, which ensures data is available to the ML methods.

We currently support fetching data directly from several data sources, such as Prometheus

[78], ElasticSearch [79], and InfluxDB [101]. Of course, this mechanism is integrated with the

SERRANO Telemetry Service. Local labelled data is also supported for supervised method

training in CSV and JSON formats. This feature is designed to be used for analysis, training, and

optimization phases. We also support MinIO data sources; however, the data will be fetched

locally and not streamed in this scenario.

Legacy support for Attribute Relation File Format (ARFF) files is also enabled in the form of a

custom conversion script. Initially, we had direct support for this Weka-based format however,

as it is of little practical significance during production scenarios it was removed.

Preprocessing is implemented as a separate component and is capable of formatting as well

as augmenting both local training and historical monitoring data to be used for predictive

model creation. Data normalization and scaling is also handled by this component. We should

note that the resulting scaler is also serialized and can/should be used on streamed live

monitoring data.

In addition, statistical analysis is also executed by the pre-processing component. It is

important to note that although there are some predefined data augmentation and analysis

methods, EDE can execute user-defined methods as long as compatibility with the internal

EDE processing pipeline is maintained. In essence, the processing pipeline uses data frames;

thus, augmentation and analysis methods need to accept and return Pandas [80] DataFrames.

Figure 40: Pearson Correlation Raw Data

There are several example analysis and augmentation methods defined in EDE. Figure 40

shows the Pearson correlation between the features (system metrics) collected in case of one

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 75/158

monitored node. This visualization and analysis step can be used for feature engineering use

cases as it measures the strength of the linear relationship between pairs of features.

Next, in Figure 41, we see a reprojection of the data with only three principal components

using t-SNE (t-distributed stochastic neighbour embedding). Here we also highlight the five

classes of labels present in the dataset. As we mentioned, these are only some of the methods

already included in EDE, while users can easily add additional methods.

Figure 41: Feature reduction (t-SNE)

The Training component is used to select, configure, and optimize ML-based predictive

models. In the case of supervised methods, models need to be trained using a labeled dataset.

As with other components within EDE, users can define their own detection methods as long

as they are in accordance with the processing pipeline and respect Scikit-learn [81] API naming

conventions.

Optimization takes several forms. First, we have several Hyper-parameter optimization (HPO)

methods ranging from unguided methods such as Grid and Random Search to guided

approaches based on genetic algorithms, Bayesian methods, Tree of Parzen Estimators etc.

Furthermore, model performance analysis methods and visualizations such as recursive

feature elimination (based on feature importance), training instance selection based on

learning curves etc. are also available. The main goal is to enable users to create predictive

models with good predictive performance.

The optimization methods enumerated in the previous sections can be configured via the

YAML configuration file. A typical use case would entail first running HPO on a selected ML

method. If a Dask cluster is available, each worker will be assigned to evaluate one candidate

solution, thus optimization is significantly faster. Once the best performing hyper-parameters

have been identified users can define additional optimization analysis methods. All steps from

this process are logged and visualization is created where applicable. Finally, the predictive

models are exported. The following subsection details some of the experiments we have

conducted using this methodology. Further research and analysis results can also be found in

D4.4 (M30).

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 76/158

Prediction is handled by a separate component. It is capable of instantiating previously

serialized methods. Usually, joblib [82] is used for model serialization and de-serialization,

although ONNX [83] is also supported for DNN models. All detected anomalies are then

forwarded to the EDE data bus using Kafka [84] topics. This means that other SERRANO tools

and components can check this dedicated topic for any anomalous events being detected.

It is evident that simply detecting anomalies is not enough to enable assurance and

remediation. An analysis of why a particular event is labelled anomalous is required. To this

end, we currently support some explainable AI-based methods, such as the calculation of

Shapley values.

Shapely values [85] can be used to select features with a high degree of impact on a prediction.

This is especially useful in the case of unsupervised methods where this explanation can be

used on a per prediction basis (i.e., why an event is deemed anomalous).

This measurement was first introduced for the study of coalition games. It is defined on a value

function denoted as  of players S. The Shapely value denotes the contribution to the pay out

of a particular feature value, weighted and summed over all possible combinations:

𝜙𝑖() = ∑
|𝑆|! (𝑛 − |𝑆| − 1)!

𝑛!

∞

𝑆⊆
{1,…𝑛}

{𝑖}

((S ∪ {i}) − (S))

Where n denotes the set of all players (in our case features), thus the Shapely value of game

(,n) is used to distribute the total gain (n) to each player in accordance with each

contribution [86]. Player i in our case corresponds to a feature from the dataset, thus n

denotes the total number of input features. Conversely, the Shapely feature value 𝑖 ∈

𝑛, 𝜙𝑖() is the weighted average of the marginal contribution. Resulting from the above

equation, we can compute the nprediction for feature values in a set S, a subset of the features

used to train the model, which are marginalized over features that are not in set S as follows:

𝑥(S) = ∫ 𝑓(𝑥1, … , 𝑥𝑛)𝑑𝑃(𝑥 ∉ 𝑆) − 𝐸𝑋[𝑓(𝑋)]

For our purposes, X is the vector of values from the features of the instance (event) to be

explained, and n is the number of features. Shapely values are symmetrical in the sense the

sense that equal contribution results in equal Shapely values and non-contributing features

have a Shapely value of 0.

The computed shapely values are used for remediations. For each event being analysed we

provide the Shapely values for each feature as well as its base value. An example response can

be seen in Figure 42. Notice that we provide data about the method, model, and query

interval. This is in order to have a complete overview by SERRANO orchestration and the end

user. Next, for each anomalous instance we provide the timestamp (in two formats) and the

shapely and base values respectively.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 77/158

Figure 42: SAR Response Example

6.1.1 Configuration and REST API

For the sake of brevity, we will not detail the entire configuration of EDE and SAR however,

there is available a complete user manual in the official GitHub repository:

• https://github.com/ict-serrano/service-assurance-ede

We have implemented a REST API for controlling EDE inference settings for ease of integration

and use. It is implemented using OpenAPI. Users are not able to train and validate predictive

models using this API since it is only meant for inference. We did this as training is an

inherently user-driven, iterative workflow.

Figure 43 shows the resources available for configuration. The functionality exposed here

includes Connector setup for data sources, augmentation and analytics, data filtering, and

predictive model selection.

Figure 43: SAR REST Configuration

https://github.com/ict-serrano/service-assurance-ede

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 78/158

Figure 44: SAR REST Control

Figure 44 shows control resources used for detection job definition. Once a valid configuration

has been set (see Figure 43), inference instances can be started using the engine and inference

resources. If users or tools require the analysis of certain datapoints, the data resources can

be used to push data instances directly to EDE.

6.2 Methods for Detection and Analysis

In D5.2 (M15) we detailed some of the experiments utilizing supervised methods specifically

the HPO methods. For this deliverable, we will focus on some additional experimental results

as well as results for unsupervised methods. In order to make this deliverable as self-contained

as possible, we will briefly describe, the dataset used for these experiments.

The dataset used for these experiments was created using an anomaly induction tool created

by UVT. It can induce anomalous events that mimic hardware anomalies. In the current

dataset, we induced four anomalous event types:

• CPU Overload – Detects the number of physical CPU cores and saturates a user

specified number of cores for a number of seconds. This simulates CPU overloading

• Memory Eater/Leak – Writes data into RAM, the amount is specified by the user in KB,

MB, GB along with a multiplier and iteration step. This simulates memory interference

fault and saturation. It is possible to define also how long this memory allocation is to

be maintained.

• DDOT – Reputedly calculates the dot product between two matrices. The size of each

matrix is calculated based on the CPU L2 cache size reported in the OS. This simulates

CPU cache faults. Care should be taken when configuring this type of anomaly as large

matrix sizes can cause unpredictable OS behaviour causing zombie and/or orphan

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 79/158

POSIX processes. Additionally, faulty logging of such events will yield contaminated

labelled data.

• COPY – Generates and moves a large file from one location to another. Users can set

allocation units (KB, MB, GB) and a multiplier. This simulates I/O interference,

saturation and failing hard drives. A side effect of this type of anomaly is that it

resembles the Memory Eater/Leak anomaly. This will help us quantify the ability of ML

predictive models’ capacity in differentiation of the two.

Figure 45: Class distribution

Figure 45 shows the distribution of event types in the dataset used. There is a total of 5400

events comprised of 90 features. Each feature represents a system level metric collected by

Prometheus. We can clearly see that this dataset is extremely unbalanced: 4792 events are

normal, 91 are DDOT, 132 are Memory Eater/Leak, 64 are CPU Overload, and 321 are COPY.

6.2.1 Supervised ML methods

In previous examples, we detailed method performance when dealing with single anomaly

instances in a single node. This type of scenario is completely plausible. However, we also ran

several experiments by inducting several anomalous events simultaneously since overlapping

anomalies can also occur in practice. There are several ways of dealing with this scenario.

The best way in our opinion is to use a method called One-vs-Rest or One-vs-All, where a new

predictive model will be trained for each class present in the training dataset. In our case, this

means that for each training instance, four predictive models will be created.

This method has several advantages. First, we can use all the algorithms already tested for

D5.2. We should point out that some of the methods previously tested support by default this

type of scenario (i.e., XGBoost). However, we choose to implement our own method seeing

that there are several ML methods used which are not fully compatible when it comes to how

they report predictive performance.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 80/158

Second, we can use a One-vs-Rest methodology on datasets that do not have overlapping

anomalous instances. This results in a much-simplified training and validation cycle, where we

can prepare for overlapping anomalous instances without having concrete examples in the

training or validation set. For the sake of brevity, we will refrain from listing a complete list of

all our experimental results. Instead, we will focus on those methods, which are also described

for D5.2.

Figure 46: Learning curve XGBoost overlapping anomalies

Figure 46 shows how each trained XGBoost model handles a different number of training

instances in the case of all 4 main anomaly classes. If we go from left to right, we have figures

for COPY, MEM, CPU, and DDOT anomalies depicted. As before, the experiments were

designed to gauge the performance of XGBoost with differing amounts of training data. All

iterations used Stratified Shuffle split with 5-fold cross-validation.

The overall predictive performance for XGBoost, in particular, and all other ML methods in

general can be seen as similar to the results shared in the past deliverable. Figure 47 shows

the ROC (receiver operating characteristic) curves in the same order as in Figure 46. We can

see that predictive performance is similar for overlapping anomalies and non-overlapping

anomalies.

Regarding inference times, these are not overly affected as they are at most 10% slower than

single model inference. This can be easily explained by the fact that the newly trained models

are much simpler, being in essence binary classifiers. The final inference is obtained by

stacking all model predictions. For ease of validation, we compute the predictive performance

of each model separately.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 81/158

Figure 47: ROC curve for XGBoost

6.2.2 Unsupervised ML methods

Unsupervised ML methods are arguably more useful than supervised ML methods in the

context of anomaly detection. These types of methods do not require labeled datasets for

training. One major downside in our case is that most unsupervised anomaly detection

methods are basically binary classifiers. This method detects whether an event is anomalous

or not. There are some ways to give insight into which features caused a particular instance

to be marked as anomalous. In our experiments, we used Shapely values to accomplish this.

In the initial experimental phase, we selected 17 ML methods for testing. As before, we will

detail the three best models for brevity. These models were selected partially because of their

performance and partially for the different underlying principles they are operating under. We

should also mention that some methods, such as One class SVM, performed extremely poorly.

A complete analysis of ML methods and their suitability for use in the SERRANO will be

performed in the form of a journal paper.

Isolation Forest is an outlier ensemble-based algorithm that is constructed from multiple

isolation trees [87]. It explores random subspaces from the data. In essence, it explores

random local subspaces as each tree uses different splits. Scoring is done by qualifying how

easy it is to find a local subspace of low dimensionality in which a particular event is isolated

[88]. In other words, distance from the leaf to the root is used as the outlier score. Similar to

Random Forest, a supervised method, the final score is obtained by averaging the path length

of any particular data point in different isolation trees. In most scenarios, Isolation Forest

works under the assumption that it is more likely to detect or isolate an outlier in a subspace

of lower dimensionality created by the random splits.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 82/158

Clustering-Based Local Outlier Factor (CBLOF) [89] is a proximity-based algorithm, which is a

combination of Local Outlier Factor (LOF) and a clustering technique. LOF adjusts the anomaly

(or outlier) score based on local density. The density is defined as an inverse of average

distances. This approach results in events in local regions of high density being given higher

anomaly scores even if they are isolated from the other events in their locality. This is mainly

due to the definition of density that does not contain the number of anomalies in a cluster. In

fact, CBLOF is a score in which anomalies are defined as a combination of local distance to

nearby clusters and the size of the clusters to which each event belongs. Thus, events in small

clusters that are at large distances from nearby clusters are flagged as anomalies.

Variational AutoEncoders (VAE) are deep neural network models designed for unsupervised

training, which can be used for AD tasks [90]. They are often mentioned together with

Autoencoders (AE), which are also deep learning models with seemingly similar topological

components: encoder and decoder. The encoder tries to learn a lower-dimensional

representation of the input data (similar to PCA), and a decoder attempts to reproduce the

input data in the original dimension (AEs are usually symmetrical). AEs try to encode the data

in such a way that they reduce the reconstruction error. When used for AD AEs reconstruction

error can be used as a form of anomaly score. Provided the AE has sufficient training data to

provide a minimal reconstruction error for normal data.

Table 12: Unsupervised method scores

Method Class pre rec spe F1 geo iba

Isolation Forest 0 0.90 0.90 0.61 0.90 0.74 0.57

1 0.61 0.61 0.90 0.61 0.74 0.53

Avg/total all 0.84 0.84 0.67 0.84 0.74 0.56

CBLOF 0 0.92 0.92 0.71 0.92 0.81 0.67

1 0.71 0.71 0.92 0.71 0.81 0.64

Avg/total all 0.88 0.88 0.75 0.88 0.81 0.64

VAE 0 0.98 0.98 0.93 0.98 0.95 0.92

1 0.93 0.93 0.98 0.93 0.95 0.91

Avg/total all 0.97 0.97 0.94 0.97 0.95 0.91

Table 12 shows the overall scores obtained by the 3 ML methods. It is split on a per class basis

where 0 is a normal data instance and 1 is an anomalous instance. We should also mention

that for the sake of validation we created a special label for the dataset used during the

previous supervised experiments. Basically, we transformed the problem into a binary

classification problem.

Overall, the VAE is the best performing method, although there are some considerations to

mention. IF consumes the least amount of resources for training and inference while VAE

requires substantially more computational resources and specialized hardware in the form of

GPGPUs. CBLOF is all-around the best performing model.

Figure 48 highlights the differences between the three ML methods. It shows the decision

boundaries as projected in a 2-dimensional space. In order to accomplish this visualization, we

re-projected the original data to a 2D space, using PCA, while at the same time keeping the

anomalous instance markers as returned from the original data.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 83/158

Figure 48: Decision Boundary Comparison

The decision boundaries also show some of the downsides of each method. IF tends to overfit

quite easily, leading to poor out of sample performance. This is clearly seen in the decision

boundary. The data is tightly circumscribed, while in the case of CBLOF, we see that the

decision boundary shows several hotspots or cluster.

Figure 49: Shapley value-based feature importance

In order to derive the maximum amount of information for use in SAR when using

unsupervised methods, we use Shapely values. Figure 49 shows how Shapely values can be

used for calculating which feature from the dataset impacted the detection of anomalous

instances. Based on this ranking, memory-related features are ranked among the highest. This

is a direct result of how the anomaly induction methods work. MEMORY, COPY, and DDOT

anomalies have a significant memory component to them.

Figure 50 shows how Shapely values can be used on a per instance basis, not just globally. We

can see an anomalous instance that has CPU, memory and disk related features. In fact this is

a DDOT anomalous instance. Although inferences are not as clear as in the case of supervised

methods, we can still give insight into what caused each anomaly to occur.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 84/158

Figure 50: Shapley value-based feature importance

6.3 Discussion

In this section, we presented the overall architecture of the SAR, specifically the event

detection component, EDE. We showed how the SAR component can analyse telemetry data

and signal which event is anomalous. We also detailed how SAR can be configured and used

both via configuration file and REST API.

In the case of supervised methods, we extended our initial work by adding support for

detecting overlapping anomalous instances. While the results presented in this deliverable are

relatively few, we aim to finalize a journal paper detailing our results before the end of the

project. Furthermore, we aim to incorporate part of the transprecision work done in WP4 and

was reported in D4.4 (M30). For unsupervised methods, our experimental results show that

we can get meaningful insight into what caused an anomalous instance to occur. While these

are basically binary classification methods, we can still train high-quality models with good

predictive performance. The root cause analysis of detected anomalous events can be

successfully done using Shapely values. Some of the results and experiments have already

been published in a journal article [91], and we aim to have at least one more journal article

by the end of the SERRANO project.

Regarding integration, SAR requires access to only two SERRANO components. The first is the

telemetry services (i.e., Central Telemetry Handler and Persistent Monitoring Data Storage).

Once these integrations are set up SAR can analyse the incoming data. Second, SAR requires

access to a Message broker to send all analytics reports from where other components and

end-users can fetch the data.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 85/158

7 Network and Cloud Telemetry Framework

7.1 SERRANO Telemetry Framework

A heterogeneous and distributed infrastructure, like any system, must be observable before

it can become subject to optimization. Towards this direction, Task 5.3 developed the

SERRANO telemetry framework that includes autonomous and scalable mechanisms to

provide the sense (detect what is happening) and discern (interpret senses) operations in the

envisioned closed-loop control. SERRANO’s hierarchical monitoring infrastructure (Figure 51)

aims to facilitate orchestration decisions, detect problems, and trigger proactive or reactive

adjustments to SERRANO-enhanced resources and deployed applications. The SERRANO

telemetry stack consists of three key building blocks: (a) the Central Telemetry Handler, (b)

Enhanced Telemetry Agents, and (c) Monitoring Probes.

Figure 51: SERRANO hierarchical telemetry architecture

The Central Telemetry Handler is the root element of the SERRANO hierarchical telemetry

infrastructure. The various Enhanced Telemetry Agents are responsible for a specific set of

Monitoring Probes. The collection and exchange of monitored information is performed

periodically, while the granularity can be adapted, and other telemetry operations can be

activated based on detected events or explicitly by entities at upper layers. The telemetry

functionalities are spread into several layers to meet the scalability requirement while

enabling immediate reaction to events that affect the performance of the deployed

applications at individual parts within the SERRANO platform. Deliverable D5.3 (M15) provides

the overall design of the telemetry framework along with the technical details for the initial

implementation of its main components. Next, we present the developments during the

second iteration of the implementation period (M16-M31), the final developments in the

Persistent Monitoring Data Storage (PMDS) service, and the successful integration of the

telemetry framework mechanisms with other services in the SERRANO platform.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 86/158

7.1.1 Central Telemetry Handler and Enhanced Telemetry Agent

The Central Telemetry Handler and Enhanced Telemetry Agents provide the same core

functions at different scales and views of the infrastructure resources and deployed

applications. Hence, they share the same design (Figure 52) and a joint implementation for

their core components. A more detailed description of the individual components is available

in D5.3 (M15). Next, we present the extensions and new developments during the second

iteration of the SERRANO implementation plan (M16-M31).

Figure 52: Central Telemetry Handler and Enhanced Telemetry Agent architecture

The Central Telemetry Handler and Enhanced Telemetry Agent are implemented in Python

using popular frameworks such as Flask 2.0 [77], Pika [93], and PyQt [94]. These components

have been fully containerized and are packaged in separate container images using the

SERRANO CI/CD services. To facilitate easy deployment on Kubernetes platforms, there are

also available corresponding Kubernetes YAML description files, including Deployment,

Service, and ConfigMap. These descriptions enable the automatic deployment and scaling of

the Central Telemetry Handler and Enhanced Telemetry Agent services within Kubernetes

environments.

In the final release, the Central Telemetry Handler and Enhanced Telemetry Agent offer

comprehensive configuration options through their respective REST APIs (PUT methods

/api/v1/telemetry/central & /api/v1/telemetry/agent). The methods enable the on-demand

change of the current operational configuration of the services. More specifically, by passing

a JSON description as a parameter, various operational parameters can be adjusted, as listed

in the following table.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 87/158

Table 13: Central Telemetry Handler and Enhanced Telemetry Agent configuration options

Parameter Name Parameter Type Description

active_monitoring Boolean Defines if the service will or will not query the registered entities.

active_notifications Boolean
Defines if the service will or will not emit notifications related to

the operation of the telemetry framework.

query_interval Integer
Period, in seconds, for retrieving the monitoring information by

each registered entity.

query_timeout Integer
Timeout period, in seconds, for getting the requested monitoring

information from a telemetry service.

data_retain_period Integer

Maximum period, in seconds, for retaining the collected

monitoring data in the operational database prior to their

automatic deletion from the telemetry services.

excluded_entities List
A list of unique identifiers for telemetry framework entities that

will be excluded from automatic collection of monitoring data.

As part of our efforts to enhance system efficiency, we have significantly improved the internal

workflow of the Central Telemetry Handler and Enhanced Telemetry Agent. The updated

workflow facilitates seamless data collection from the SERRANO Enhanced Telemetry Agents

while offering external services access to the collected information. The information includes

comprehensive inventory data about available resources within the SERRANO platform and

real-time monitoring data reflecting their current operational state. We implemented the

required modifications within the Access Interface, Telemetry Controller, and Data Engine

components. These improvements have resulted in a more robust and efficient data flow,

empowering the system to better cater to the needs of our users and external services.

Figure 53: SERRANO telemetry framework – Inventory workflow

Figure 53 illustrates the information workflow among the telemetry components involved in

retrieving inventory information for a specific edge, cloud, or HPC infrastructure within the

SERRANO platform. Each SERRANO Monitoring Probe is automatically registered in a specific

Enhanced Telemetry Agent. During the registration phase, a probe sends the inventory data

for its type of resources, among other parameters. Next, the Enhanced Telemetry Agent

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 88/158

updates its internal services for the new Monitoring Probe and stores the received inventory

data in the corresponding Operational Database.

The Central Telemetry Handler (CTH) offers two distinct methods to provide the requested

inventory information. These methods facilitate data retrieval either by explicitly retrieving

the inventory data from the appropriate Enhanced Telemetry Agent (ETA) or by directly

querying the Operational Database. To this end, the CTH exposes two different methods. The

first method (GET - /api/v1/telemetry/central/clusters/cluster_uuid) directly fetches the

inventory data from the Operational Database. This workflow is represented in the diagram

in blue colour. The second method (GET - /api/v1/telemetry/central/inventory/cluster_uuid)

triggers an internal procedure that notifies the corresponding Enhanced Telemetry Agent to

execute the inventory operation for the specific platform. This workflow is depicted using red

colour. More specifically, the CTH, using the information from the Operational Database, finds

the ETA that manages the specified platform and forwards to it the inventory request (Step

2). Then, the ETA queries the respective Monitoring Probe to get the information data (Steps

3 & 4) and updates the Operational Database with the retrieved information (Step 5). Next,

the ETA returns the requested inventory information to the CTH (Step 6).

Figure 54: SERRANO telemetry framework – Monitoring workflow

Figure 54 shows the information workflow for retrieving monitoring data for a specific edge,

cloud, or HPC infrastructure. The corresponding ETA automatically queries each SERRANO

Monitoring Probe to provide the respective monitoring data. The ETA stores the received

information in the Operational Database and the Persistent Monitoring Data Storage (PMDS).

This workflow is executed over an infinite horizon and is depicted in blue colour in the above

figure. Again, two distinct methods are available that provide the monitoring data either by

explicitly retrieving them from the appropriate ETA or by directly querying the Operational

Database. The first method (GET - /api/v1/telemetry/central/cluster/metrics/cluster_uuid)

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 89/158

directly fetches the monitoring data from the Operational Database and is represented in the

diagram by an orange colour.

The second method (GET - /api/v1/telemetry/central/cluster/monitor/cluster_uuid) provides

the most up-to-date monitoring data by querying the appropriate Monitoring Probe through

the corresponding ETA. In parallel, the framework automatically updates the operational

database with the collected information and also stores it in the PMDS service. This workflow

is illustrated with green colour. In the final release, an ETA stores only a certain number of

monitoring samples in the Operational Database whose actual count is determined by the

selected values in two of the supported configuration variables: the query interval and the

maximum retain period. To this end, an ETA automatically removes the outdated entries, an

operation represented with the red dotted line in the diagram. Furthermore, methods are

available to retrieve detailed monitoring information for deployed applications within the

SERRANO platform. The operation of the involved components is similar.

7.1.2 Monitoring Probes

Monitoring probes are the components of the SERRANO telemetry framework that collect

valuable information about the infrastructure resources, services, and deployed applications

within the SERRANO platform. Given the diverse nature of information sources targeted by

the platform, the SERRANO telemetry framework relies on a collection of specialized probes,

each dedicated to monitoring a specific resource type. As presented in D5.3 (M15), we

adopted a single design for all SERRANO monitoring probes (Figure 55). This design not only

ensures autonomous operation of the telemetry components but also facilitates seamless

integration of these monitoring probes with the Data Collector component of the Enhanced

Telemetry Agents and Central Telemetry Handler. This integration allows the telemetry

framework to dynamically adjust the level of monitoring granularity, supporting both periodic

and on-demand monitoring.

Figure 55: General architecture of SERRANO monitoring probes

During the second iteration of the implementation plan, we finished the implementation of

the three different monitoring probes: Kubernetes Monitoring Probe, HPC Monitoring Probe,

and SERRANO Edge Devices Monitoring Probe.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 90/158

Before describing each developed monitoring probe, we present the operational workflow

that implements every probe within the SERRANO telemetry framework to ensure the

seamless operation of the framework. Each monitoring probe during its start-up procedure

registers to some specific Enhanced Telemetry Agent using the appropriated exposed REST

method (PUT - /api/v1/telemetry/agent/register/{probe_uuid}). The target Enhanced

Telemetry Agent (ETA) is specified in the probe’s configuration file, among several other

operational parameters. Upon successful registration, the ETA can transparently manage and

interact with the monitoring probe through the exposed REST methods (Figure 61) to collect

inventory information and monitoring data. In the registration phase, the probe sends the ETA

all the necessary operational information along with inventory information for the resources

it monitors. Below is an example of the registration message from a SERRANO Edge Devices

Monitoring Probe, along with the exchanged inventory information.

{"cluster_uuid": "7628b895-3a91-4f0c-b0b7-033eab309891", "probe_uuid": "5c781e1
9-344f-436e-b259-8cdf5b5eab97", "url": "https://serrano-edge-storage-probe.serv
ices.cloud.ict-serrano.eu", "type": "Probe.EdgeStorage", "inventory":[{"lat": 4
5.7472357, "lng": 21.2316107, "minio_node_disk_total_bytes": 8333520896, "name"
: "edge-storage-devices-0", "node": "serrano-k8s-worker-02", "timestamp": 16860
52883},{"lat": 45.7472357, "lng": 21.2316107, "minio_node_disk_total_bytes": 83
33520896, "name": "edge-storage-devices-1", "node": "serrano-k8s-worker-02", "t
imestamp":1686052883}]}

7.1.2.1 Kubernetes monitoring probe

In the SERRANO, we consider that the edge and cloud platforms that are unified under the

control of the SERRANO platform are individual clusters managed by Kubernetes instances.

Monitoring a Kubernetes cluster is crucial for maintaining its health and performance along

with the overall stability of the SERRANO platform. To this end, the Kubernetes monitoring

probes are implemented to monitor the clusters effectively.

One instance of the monitoring probe efficiently handles monitoring the resources and

applications within a K8s cluster. However, our implementation also supports the on-demand

deployment of additional monitoring probes, based on the instructions of the Enhanced

Telemetry Agents, to ensure unhindered operation in large Kubernetes clusters. This probe is

a Python-based containerized application that follows the overall architecture and operation

workflow for the monitoring probes within the SERRANO telemetry framework. It also utilizes

and integrates into a single solution several well-established tools to facilitate its operation,

such as kube-state-metrics [97] that generates Kubernetes-specific metrics derived from the

cluster's state, and Prometheus Node Exporter [99] that exposes a wide variety of hardware-

and kernel-related metrics.

The probe is designed to automatically discover and monitor all available worker nodes within

each Kubernetes cluster. This operation uses the Kubernetes APIs to fetch information about

the available resources and Node Exporter to get the hardware metrics. It can monitor and

provide both periodic and on-demand telemetry data for the following key cluster-level

components:

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 91/158

• Nodes: Monitor the health and resource usage of worker nodes (CPU, memory, disk

space, network).

• Deployments and Pods: Keep an eye on the status of pods and their resource

consumption.

• Persistent Volume (PV) and Persistent Volume Claims (PVC): Monitor storage capacity,

utilization, and any error conditions related to storage provisioning.

Beyond cluster-level monitoring, the monitoring probe autonomously monitors the cloud-

native applications deployed across the SERRANO heterogeneous and distributed resources

(Section 9.4.2). The probe also collects application-specific metrics exposed through custom

endpoints. It can also dynamically collect relevant performance metrics on a per-function

invocation basis for the SERRANO-accelerated kernels that are executed as short-lived

applications (Sections 9.4.3 and 10.5). Figure 56 illustrates the interactions among the

SERRANO orchestration mechanisms and the telemetry framework components so as to

autonomously collect the most up-to-date telemetry data for the deployed cloud-native and

short-lived applications, regardless of the individual platforms that host them. This operation

is critical in order to ensure that the envisioned SERRANO continuous control loop

mechanisms will always be able to adjust resources and migrate workload based on feedback

regarding the application’s state.

Figure 56: Autonomous monitoring of deployed cloud-native and short-lived applications

7.1.2.2 HPC monitoring probe

The HPC monitoring probe is a Python-based implementation that adheres to the overall

architecture and design principles established for all SERRANO monitoring probes. This

approach ensures consistency and ease of integration within the telemetry framework. The

HPC monitoring probe implements all the necessary interfaces (Figure 61) to enable seamless

communication with other components of the telemetry framework. Moreover, the HPC

monitoring probe is containerized to ensure portability and scalability, facilitating its

straightforward deployment and management in various environments.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 92/158

The HPC monitoring probe interacts with the SERRANO HPC Gateway, utilizing its exposed

REST methods for data exchange. By leveraging the HPC Gateway REST API, the monitoring

probe efficiently collects inventory information and continuously monitors the status of HPC

resources and the execution progress of deployed jobs. The integration with the HPC Gateway

involves utilizing specific REST methods (Figure 85) that facilitate the retrieval of essential

metrics, performance data, and status updates from the HPC infrastructure and currently

running jobs. This integration empowers the telemetry framework to capture real-time

insights into the HPC system's health, resource utilization, and job execution efficiency.

Figure 57 showcases an example of the collected resource descriptions and performance

monitoring parameters for the SERRANO HPC platform.

Figure 57: Monitoring data collected by SERRANO HPC monitoring probe

7.1.2.3 SERRANO edge storage devices monitoring probe

The SERRANO edge storage devices offer decentralized storage locations at the network edge

while providing an S3 interface for seamless data access. These devices are containerized

applications built upon the MinIO [103], a high-performance, highly customizable object

storage solution. Deployment of these SERRANO edge devices is efficiently managed by

SERRANO's orchestration mechanisms, which integrate smoothly with various Kubernetes

platforms. For detailed information about these SERRANO-enhanced devices, refer to

deliverables D3.2 (M15) and D3.4 (M30).

To this end, the monitoring probe utilizes the MinIO server's capabilities in exposing inventory

and monitoring data over Prometheus-compatible endpoints. The monitoring probe uses

these endpoints to collect information about the current state of the SERRANO edge storage

devices. The probe is designed to automatically discover and monitor all available edge

storage devices within each Kubernetes cluster. One instance of the monitoring probe

efficiently handles monitoring for all SERRANO edge storage instances in a K8s cluster. This is

achieved by querying the available pods within the Kubernetes cluster and scanning for

specific labels associated with SERRANO edge storage device instances. Following this

approach, the monitoring probe dynamically determines the number of SERRANO edge

storage devices in each Kubernetes cluster, allowing it to seamlessly collect inventory and

monitoring information. The probe is a containerized application implemented in Python.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 93/158

7.1.3 Operational Database

The SERRANO telemetry framework also includes a number of operational databases that

store information related to the deployed components of the framework along with their

configuration and relationships. Moreover, it includes the most up-to-date information for the

available infrastructure resources, their current state, and details about the deployed

applications and executed SERRANO-accelerated kernels. These databases are based on

MongoDB [102], an open-source document-oriented database that stores data in flexible

format JSON-like documents. The primary role of the operational databases is to facilitate the

autonomous operation of the SERRANO telemetry framework components and provide the

most up-to-date monitoring data. To this end, to retain historical analytical data to feed the

various AI/ML-based decision mechanisms within the SERRANO platform, the Persistent

Monitoring Data Storage (PMDS) service is also available, described in Section 7.4.

The Central Telemetry Handler stores details for the Enhanced Telemetry Agents it manages

in its operational database, along with high-level details about the available resources in the

overall SERRANO platform and the deployed applications. The information is organized into

four primary documents: entities, infrastructure, serrano_state_metrics, and

serrano_deployments. The first document facilitates the operation of the telemetry

framework and provides details for the deployed Enhanced Telemetry Agents within the

SERRANO platform as well as the Monitoring Probes registered to each Enhanced Telemetry

Agent. Below is an example of the available information for one Monitoring Probe for a

Kubernetes cluster and one Enhanced Telemetry Agent.

The infrastructure document provides a high-level description of the capabilities of the

available computational and storage resources in each edge, cloud, and HPC infrastructure

within the SERRANO platform. The serrano_state_metrics includes high-level monitoring data

for the usage of the available resources, with less granularity and details compared to the

corresponding information available in the operational database for each Enhanced Telemetry

Agent. Finally, the objects in serrano_deployments keep track of the applications’

deployments and their allocation within the SERRANO platform. The Central Telemetry

Handler manages the contents of its operational database exclusively by interacting with the

available Enhanced Telemetry Agents.

Similarly, the information in the operational database of an Enhanced Telemetry Agent is
organized into seven documents: entities, clusters, cluster_deployment_metrics,
cluster_state_metrics, edge_storage, edge_storage_metrics, serrano_kernels_metrics. The
entities document provides details for the available Monitoring Probes, Objects in clusters and
cluster_state_metrics provide details for the inventory and monitoring information of the
edge, cloud, and HPC platforms controlled by the Enhanced Telemetry Agent.
The edge_storage and edge_storage_metrics documents collect information for SERRANO

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 94/158

edge storage devices. The cluster_deployment_metrics and serrano_kernels_metrics
documents store the most up-to-date monitoring information for the applications and
SERRANO-accelerated kernels that are deployed in the part of the SERRANO platform that the
Enhanced Telemetry Agent monitors.

7.1.4 Deployment of telemetry services and data visualization

Figure 58 presents the SERRANO telemetry framework services deployment in the project

integration testbed. During the preparation of the deliverable, the deployment included the

Central Telemetry Handler, two Enhanced Telemetry Agents, one probe for each of the two

available Kubernetes clusters, one probe for the HPC platform, one probe for the SERRANO

edge storage devices, and the Persistent Monitoring Data Storage service. All the SERRANO

telemetry framework services have been deployed using the defined Kubernetes YAML

description files and the corresponding container images.

Figure 58: SERRANO telemetry framework deployment in project integration testbed

Moreover, the telemetry framework has been extended to visualize the collected inventory

and monitoring information from the SERRANO platform through a web-based user interface.

To this end, the final release includes a visualization module based on Grafana [97], an open-

source analytics and interactive visualization web application with charts and graphs. We

created several custom dashboards to visualize inventory and monitoring data retrieved from

the Central Telemetry Handler and the Persistent Monitoring Data Storage service. The

visualization module enables data aggregation and filtering by time range, workload, and

infrastructure. Figure 59 presents an example of the provided information.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 95/158

Figure 59: Memory usage for a selected worker node in the NBFC K8s cluster

7.2 Inventory and telemetry parameters

The SERRANO telemetry framework automatically discovers and monitors heterogeneous

resources and deployed applications in edge/cloud and HPC platforms. Through the

Operational Database, the framework maintains a detailed catalogue (i.e., inventory data)

with the available computational and storage resources along with their capabilities and

characteristics within the individual edge, cloud, and HPC platforms that constitute the

SERRANO platform. Moreover, it constantly monitors the available resources and

automatically gathers performance monitoring data (i.e., telemetry data) for all the deployed

applications and executed SERRANO-accelerated kernels.

The orchestration and service assurance mechanisms leverage the collected inventory and

telemetry data to improve the orchestration, deployment, and re-optimization decisions over

time, depending on the status of the system as well as previous executions of the applications

and kernels. To this end, the appropriate monitoring and telemetry data is collected by five

main categories of resources: (i) computational and storage resources in edge/cloud

platforms, (ii) HPC hardware resources, (iii) SERRANO-enhanced hardware resources (e.g.,

multi-level approximate hardware accelerators), (iv) SERRANO-enhanced software resources

(e.g., SERRANO edge devices, on-premise storage gateway, lightweight virtualization,

hardware acceleration abstractions) and (v) deployed cloud-native and short-lived (serverless)

applications.

Compared to the initial version of the telemetry framework, we extend the monitoring

parameters for the cloud and edge storage locations. Moreover, we updated and restructured

the inventory and monitoring parameters for the edge and cloud computational resources to

facilitate their more efficient handling by the PMDS service. In addition, we expanded the

telemetry parameters that are automatically collected for the deployed applications and

SERRANO-accelerated kernels. Finally, the telemetry framework is now able to collect

application-specific parameters. Figure 60 summarizes the resource description and

monitoring parameters that collect the final version of the SERRANO telemetry framework.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 96/158

Figure 60: Collected inventory and monitoring parameters in the SERRANO platform

7.3 Telemetry interfaces

Regarding the telemetry interfaces, we have made significant enhancements to the

functionality of the Access Interface, as well as the exposed REST API in Central Telemetry

Handler, Enhanced Telemetry Agent, and available Monitoring probes. These new

developments greatly facilitate the control and management of telemetry entities across the

hierarchical infrastructure while enabling automatic monitoring of deployed cloud-native

applications and SERRANO-accelerated kernels throughout the unified SERRANO platform.

The final version of the REST API exposed by the SERRANO telemetry framework includes

several methods organized into two main categories. The first set of methods allows other

SERRANO services (such as the AI-Enhanced Service Orchestrator, Event Detection Engine,

Resource Optimization Toolkit, and Resource Orchestrator), end users, and even third-party

applications to easily interact with the SERRANO telemetry framework via the Central

Telemetry Hander. The second set includes methods exposed by the main components of the

telemetry framework, supporting their operation, configuration, and exchange of inventory

and telemetry data within the hierarchical telemetry architecture. Figure 61 and Figure 62

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 97/158

provide a summary of the final version of the RESTful API for the SERRANO telemetry

framework.

Furthermore, the telemetry framework facilitates the exchange of events about the

framework itself and the status of resources among the various components of the

hierarchical telemetry infrastructure. The SERRANO Data Broker component enables this

functionality by providing a dedicated topic exchange. An exchange serves as a messaging

routing mechanism capable of supporting various routing logics. In this case, messages

published by the Notification Engine component in the Enhanced Telemetry Agents or Central

Telemetry Handler are associated with a routing key adhering to a predefined syntax. These

messages are presented in JavaScript Object Notation (JSON) format. A detailed description

of the specific topic exchange and the structure of all available notification messages is

available in deliverable D5.3 (M15).

Figure 61: Telemetry framework REST interfaces – Control and management methods

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 98/158

Figure 62: Telemetry framework REST interfaces – High-level CTH methods

7.4 Persistent Monitoring Data Storage

A fundamental piece of supporting an effective monitoring and orchestration pipeline is the

availability of a central repository to retain historical telemetry data for the current state of

the heterogeneous resources and deployed applications to feed the various AI/ML-based

decision mechanisms within the SERRANO platform.

To this end, the SERRANO platform includes the Persistent Monitoring Data Storage (PMDS)

service. The PMDS acts as long-term storage for the collected timestamped telemetry data

that provides historical data to the SERRANO orchestration and service assurance

mechanisms. It is based on InfluxDB [101], an open-source time-series database. InfluxDB

provides fast, highly available storage for time-series data and can also be used as a data

source for many other solutions, such as the Grafana, an open-source analytics and interactive

visualization web application.

Figure 63 presents the PMDS architecture. The service is implemented in Python using the

Flask 2.0 and PyQt frameworks. The Access Interface component is a REST controller that

exposes methods that allow end users and external services to retrieve historical telemetry

data. The available REST methods are depicted in Figure 64. The Data Engine implements the

interaction with the InfluxDB by abstracting the required data manipulation for retrieving the

telemetry data according to the requested parameters. It is also responsible for properly

updating the stored information.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 99/158

 Figure 63: Persistent Monitoring Data Storage (PMDS) architecture

Figure 64: Persistent Monitoring Data Storage (PMDS) RESTful interface

We have developed a Python API to enhance the interaction with the PMDS service,

simplifying the utilization of its RESTful interface. This API encapsulates the necessary

functionality to query the PMDS service endpoints, offering a range of filtering parameters. To

clarify the available options, we have compiled a comprehensive summary of the supported

parameters for each Python method in the following table. Additionally, Figure 65 displays

part of the provided telemetry for a specific worker node ("serrano-k8s-worker-02") within

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 100/158

the SERRANO UVT K8s cluster. The figure demonstrates the telemetry data presented in both

formatting options, enabling users to choose the format that suits their needs.

Furthermore, as part of our ongoing development efforts, we plan to seamlessly integrate the

PMDS Python API into the final version of the SERRANO SDK. This integration will further

enhance the capabilities of the SDK, providing users with a comprehensive solution for

interacting with the PMDS service.

Table 14: PMDS Python API – Available input parameters

Category Name Description

Timeframe options

Accepted formats: relative

duration (e.g., -30m, -1h, -1d) or

Unix timestamp in seconds (e.g.,

1644838147).

start
Earliest time to include in results, by default is the

last 24 hours.

stop Latest time to include in results. Default is now().

Required parameters
cluster_uuid Determines the K8s cluster.

namespace Determines the target namespace.

Filtering parameters

node_name
Limits the results only for data related to the

specified node name.

field_measurement Limits results only for the selected parameter.

name Limits results only for the selected service.

group

Valid for querying telemetry data for available

worker nodes within a K8s cluster. Limits results to

parameters from the selected group. Supported

values: “general", "cpu", "memory", "storage",

"network".

If not specified the "general" metrics will be

returned.

Filtering parameters format

Determines the format of the response. Supported

values "raw" and "compact".

­ raw: provides data in a time series way

­ compact: organizes data at a per target

parameter basis.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 101/158

(Raw format)

(Compact format)

Figure 65: PMDS Python API – Historical telemetry data for a specific worker node within a K8s
cluster

The PMDS service and its configuration file are packaged as Python applications using the

SERRANO CI/CD services. We also defined all the required Kubernetes YAML description files

(i.e., ConfigMap, Deployment, Services, Ingress) to facilitate its deployment in Kubernetes.

Figure 66 shows the PMDS deployment in the primary SERRANO Kubernetes cluster, which

the UVT provides in the project.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 102/158

Figure 66: PMDS deployed in main SERRANO Kubernetes cluster

7.5 Identifying Network Congestion Using Knowledge Graphs

and Link Prediction

Data and computation distribution approaches through the use of content distribution

networks and edge computing have alleviated part of the network load in core networks.

However, the growth of Internet of Things (IoT) devices and the diversification of data sources,

significantly affects the efficiency and reliability of communication networks that interconnect

these distributed storage and computing units. As a result, there is an increasing need for

smart, adaptive network management solutions that observe, decide, and act in real-time.

Such solutions would allow for proactive and reactive adjustments in network traffic

management, based on current and predicted link status.

In what follows, we propose a methodology driven by machine learning that enables the

prediction of potential network congestion events (i.e., over-usage of network links). We

implement a graph-based network representation method to encapsulate both topological

and traffic-related information for each node into vector embeddings. Subsequently, we use

link prediction methods on these generated embeddings to identify patterns that may identify

potential network congestion and require preventative measures. The application of

knowledge graphs in the modelling of communication networks has been limited. However,

leveraging a Knowledge Graph (KG) to model network infrastructures is crucial for capturing

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 103/158

the full state of each link in the network. This holistic approach differs significantly from other

Machine Learning (ML) applications, which tend to focus solely on individual node properties

without accounting for their interconnections. Our approach provides a more comprehensive

representation of the network, capturing not just the state of each node, but also the

relationships between nodes. The use of graph embeddings allows us to transform these

network entities (nodes, links) into fixed-length vectors that represent the network in a low-

dimensional space, preserving its topology. This approach facilitates the application of

traditional data-driven ML algorithms for predicting congestion events without neglecting the

topological information of each sample, a common limitation of many ML-based approaches.

7.5.1 Previous Work

Communication networks are highly dynamic, complex systems with intricate dependencies

between their elements, which often make traditional ML models inadequate [53]. Moreover,

these models typically require extensive, annotated data for training, which is not always

available or feasible to obtain in real-world scenarios. Recently, graph-based models,

particularly Graph Neural Networks (GNNs), have emerged as a powerful approach for dealing

with complex, interconnected data like that found in communication networks. GNNs have

been successful in a variety of applications, including recommendation systems, social

network analysis, and bioinformatics [54]. However, their application in the domain of

network management and specifically in the context of routing and traffic optimization, is

relatively new and largely unexplored [55][56].

In particular, the use of GNNs for predicting potential network congestion points, a critical

aspect of traffic management, has shown promising results. Graph-based link prediction

algorithms, can be used to predict potential network congestion points by learning the

underlying patterns of network traffic and predicting when and where link utilization might

exceed a certain threshold [57]. The integration of GNNs with anomaly detection methods to

identify anomalous network events, such as processing and memory failures, is a promising

research direction [58][59][60]. The convergence of graph-based models and ML techniques

provides a robust framework for automated network management. Knowledge Graphs (KG)

can be a natural platform for integrating multi-modal data from heterogeneous sources,

enabling representation and reasoning about their in-between dependencies and

relationships [61]. Despite the adoption of KG approaches, it is worth mentioning that while

most optimal resource allocation problems are typically modelled as graph problems [62][63],

they are usually solved using queuing theory [64], Q-learning [65][66] or via traditional ML

methods [66].

Τo the best of our knowledge, no previous work leverages an end-to-end GNN implementation

by combining graph-based embeddings of network topologies with KG-based event detection

via link prediction. Combining KGs with GNNs can provide a comprehensive and scalable

solution to the complex problem of network management, with the ability to model the

network’s topology and predict potential network congestion points or anomalies.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 104/158

7.5.2 Proposed Methodology

Our approach materializes an ML-driven pipeline that utilizes knowledge graphs and link

prediction, both graph oriented and data-driven, in order to address the traffic management

needs. Recurring inference is a feature provided by the implemented pipeline, hence

continuous control is feasible. Knowledge graphs comprise a powerful combination of

intuitive representation of a network and prompt exploitable information. The former is a

necessity for human operators, while the latter is prerequisite for producing quantifiable

insights that can be leveraged by state-of-the-art data-driven approaches.

Figure 67: Overview of proposed KG-based modelling and event detection methodology

Our methodology comprises four primary steps, as illustrated in Figure 67. Initially, to address

the challenge of limited real-world data availability, we use a simulated network topology and

communication network infrastructure assumptions as inputs. Secondly, we convert this

simulated infrastructure into a knowledge graph representation. This graph encompasses all

the key infrastructure entities (datacentre nodes, routers, network nodes) and their

relationships, encapsulating the network’s overall structure and behaviour in a graph-based

model. In the third step, we extract topological embeddings from this knowledge graph.

Finally, instead of employing traditional unsupervised learning algorithms, we use the link

prediction approach on the extracted embeddings to connect problematic network parts with

relevant event nodes. The final output of our methodology is the predicted links that

represent potential network congestion, effectively enabling proactive traffic management

and optimization.

The network topology consists of four types of vertices: Datacentres, Routers, Subnetwork

Nodes, and Exchange Points. The vertices are connected pairwise with different types of

edges. Specifically, a Datacentre node is connected with a Router node via an edge of type

“data packet”, which also carries two properties: total processing and memory usage. A

Router node is connected to a Subnetwork node via an edge of type “regional connection”

and a Subnetwork node is connected to an Exchange Point node via an edge of type “backbone

connection”.

The assumptions made during the generation of the above infrastructure are listed below:

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 105/158

o A Datacentre node sends many data packets, but each data packet originates from one

Datacentres node.

o Each Router node processes many data packets, but a data packet is processed by a

single Router node. A Subnetwork node connects multiple Router nodes, and similarly

a Router node is associated with a multiple Subnetwork node.

o The Exchange Point nodes are operating in a distributed manner, making it possible

for them to handle traffic from multiple Subnetwork nodes.

o The data packets can traverse multiple paths based on the network’s topology and

current traffic conditions.

To support our experiments, we simulated two types of events within the infrastructure, each

having 40 occurrences. The “Processing Failure” event encompasses cases where the

cumulative processing power demanded by data packets processed at a Router node exceeds

its capacity. Similarly, the “Memory Failure” event incorporates cases where the cumulative

memory demanded by the data packets overflows the Router node’s memory capacity. To this

end, we assumed that the requested processing power and memory could exceed the

provided capacity by up to thirty percent. This reflects a scenario where the network traffic

surges unexpectedly, causing stress on the system and possibly leading to service degradation

or failure.

7.5.2.1 Knowledge Graph Representation

We leveraged the simulated infrastructure of the previous step to populate a Knowledge

Graph (KG) that can be queried using the Cypher query language [29] [30]. Each corresponding

entity of the modelling step is assigned to a different node type, while their in-between

relationships are represented as different edge types in the graph.

Overall, we represented the connection of 3200 Datacentre nodes with 2400 Routers via 9660

“data packet” relationships. These Routers are connected to 120 different Subnetwork Nodes

through 3600 “regional connection” relationships. Finally, the Subnetwork Nodes are

allocated to 80 Exchange Points via 240 “backbone connection” relationships. It is also noted

that each Router includes a total processing usage and a total memory usage property, while

each “data packet” relationship contains a computing demand and data size property,

denoting the upcoming infrastructure needs.

Apart from the infrastructure-type nodes, the KG was enriched with two event-type nodes:

Processing Failure Event node and Memory Failure Event node, corresponding to cases of

processing and memory over usage of Router nodes, respectively. Given that link prediction

relies on training data derived from a subset of edges that have ground-truth labels to predict

similar connections on unseen data, the simulated instance encompassed 80 Router nodes

with over usage properties: 40 of them with processing over usage and 40 of them with

memory over usage. However, only 30 Router nodes of each type were connected to their

corresponding event node, serving as a training set for the link prediction algorithm. The

remaining edges were intentionally excluded in order to be predicted by the link prediction

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 106/158

model. The virtual graph that represents all node labels and relationship-types available in the

above described knowledge graph is shown in Figure 68.

Figure 68: Knowledge graph meta-graph

7.5.2.2 Creation of Graph Embeddings

The graph created in the previous phase offers an insightful way to model our simulated

communication infrastructure without relying on fixed-size representations. We employed a

graph embedding method to transform graph entities (nodes, edges) into vectors in a low-

dimensional space while preserving the graph’s topology.

We used GraphSAGE [69], a neural-based graph embedding method, to generate predictive

representations through unsupervised learning by sampling and aggregating features from a

node’s local neighbourhood using random walks. Instead of training standalone embedding

vectors for each node, it trains a set of aggregator functions that combine feature information

from its closest neighbours. This enables the simultaneous learning of the topological

structure of the node’s neighbourhood and the distribution of the node’s features within it.

For each node v ∈ V of the sub-graph, GraphSAGE creates a tree that has as root the

corresponding node. The depth of the tree equals the defined search depth K inside the graph,

whereas the children of each tree node are its adjacent nodes in the graph. In order to keep

the computational footprint of each batch fixed, instead of using the full immediate

neighbourhood sets, a fixed-size uniform sampling is performed and a sample of the

immediate neighbours is leveraged. Step 1 in Figure 69 depicts the random tree of depth 3

created for a node of the graph. The aforementioned tree is then utilized by the aggregation

functions in order to create the embeddings of the root node. The procedure is described

below.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 107/158

Figure 69: The three-step process of the GraphSAGE inductive representation method.

The algorithm follows an iterative approach, where the initial node representations (i.e.,

original node features) are updated based on the network topology and their neighbours’

features. Specifically, given a target node and a defined range of search depths K, for each k ∈

1, ..., K, the algorithm updates the representations of the nodes based on their immediate

neighbours (i.e., the nodes in the (k − 1)th layer are updated based on the features of the nodes

in the k th layer). As shown in Step 2 of Figure 69, for k = 1, the representation of the red node

will be updated with the aggregated information derived from its green neighbour nodes, for

k = 2 the representation of the green nodes will be updated by that of their turquoise

neighbour nodes, and so on. Finally, the target node (red) representation is derived from the

aggregated updated representations of its immediate neighbours into a single vector (Step 3

of Figure 69). This vector representation forms the final embeddings for the target node; this

operation is repeated for every node in our graph.

It should be noted that the update process comprises the following operations: First, the

neighbourhood representation for each node is calculated by aggregating the previous

representations of its immediate neighbours, using one of the aggregator architectures

described in the following paragraph. Second, this neighbourhood representation is

concatenated with the node’s previous representation, and finally, this concatenated vector

is fed through a fully connected layer with a nonlinear activation function, which transforms

the representation to a fixed size (Figure 69). Hence, as the process iterates through search

depths, nodes incrementally gain more and more information from further reaches of the

graph. For k = 0 the algorithm initializes by setting as representations of each node its input

node features.

During training, a graph-based loss function is used in a fully unsupervised learning setting to

tune the learnable weight matrices Wk via stochastic gradient descent. The loss function

incorporates a negative sampling term, promoting similar vector representations for nearby

nodes while enforcing distinct representations for disparate nodes.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 108/158

At inference time, the trained system generates embeddings for entirely unseen nodes by

applying the learned aggregation functions. GraphSAGE follows an inductive approach, only

exploiting local node attribute information. Thus, it can generalize to unseen data, unlike

transductive embedding frameworks that can only generate embeddings from static graphs.

7.5.2.3 Event Prediction

The embeddings created as described in the previous section were utilized for link prediction,

aiming to anticipate two types of events: processing failure and memory failure events. Each

element of the vector was regarded as a feature for link prediction, with the size of the dataset

derived from the number of nodes in the graph and the length of the vectors.

Link prediction algorithms aim to predict future or missing associations among nodes in a

network. The idea behind link prediction is that the likelihood of an association between two

nodes depends on their individual properties and the network structure. More specifically,

similar pairs of nodes (with similar node properties and neighbourhoods) tend to connect with

the same link type. Figure 70 depicts an example where a Router node (with properties: total

processing usage = 110, total memory usage = 60, 1st embedding element = 8.23, 2nd

embedding element = 0.75) is connected to the Processing Failure node while another Router

node (with similar properties) is considered as candidate for linking. In our study, we

specifically used a Graph Neural Network (GNN) based method to perform the link prediction

task using the PyTorch Geometric (PyG) library [70].

Figure 70: The link prediction process.

A GNN learns to generate node representations incorporating both local graph structures and

node features [71]. By iteratively updating the node embeddings based on its neighbouring

node representations, a GNN can model the dependencies among the nodes in the graph.

Once the node embeddings are obtained, each node pair's similarity measure is calculated to

predict whether a link exists or will form in the future.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 109/158

In our setup, we trained a GNN on the initial graph where each node is associated with the

GraphSAGE embeddings. After the GNN training phase, we obtained a new set of nodes

embeddings, which were used for computing the similarity scores. We used Cosine Similarity

as the similarity measure, where the similarity score for a node pair is computed as the cosine

of the angle between their embedding vectors [72]. The similarity scores were then used to

rank all possible node pairs in descending order, with the highest scores suggesting the most

likely future links.

This approach allowed us to assign potential processing failure or memory failure events to

our Router nodes. A potential processing failure event can be predicted if a high similarity

score is obtained for a pair of a Datacentre node and a Router node, suggesting a likely future

association between the two and potential over usage of processing resources leading to a

network bottleneck. Similarly, a potential memory over usage event can be predicted if a high

similarity score is obtained for a Datacentre node and a Router node, suggesting a potential

demand for memory that exceeds the Router’s capacity. In essence, our link prediction

approach allowed us to anticipate and respond to potential failure events in our

infrastructure, facilitating proactive resource management and performance optimization.

7.5.3 Experiments

We used the NetworkX Python package [73][74] to construct the infrastructure graph and

generate the events. We utilized the Neo4j Python Driver [73] to import the graph into the

Neo4j graph database management system [75], thereby representing it as a knowledge

graph.

To create node embeddings, we relied on Neo4j’s built-in GraphSAGE algorithm. We set up a

3-layer GraphSAGE architecture with a pool aggregation strategy, a random walk search depth

of w = 5, and a sigmoid activation function [76]. The model was trained in batches of size b =

10 for 30 epochs, using a learning rate l = 0.1, to produce node embeddings of dimension d =

16. The training process took approximately 2.5 seconds, and the trained model was used to

derive embeddings for all nodes of the sub-graph. These were then added as additional

properties of type embeddingGraphSage to each node.

Following the embedding process, we utilized the PyTorch Geometric (PyG) library’s link

prediction method to forecast the processing failure and memory failure events. We trained

the link prediction model on the generated node embeddings and used cosine similarity as

the measure to compute similarity scores between node pairs. These scores were used to rank

potential future links, with high scores indicating likely future connections. We trained our

model for 300 epochs using the mean square error loss function on 1800 Router nodes: 1740

with normal usage properties and 60 with processing and memory over usage properties. The

test set comprised of 580 Router nodes with normal usage properties plus the excluded 10

nodes with processing over usage and the 10 nodes with memory over usage properties for

our evaluation. The training process was run on a computer with an Intel Core i7 processor

and 16GB RAM. The computation time for the link prediction model was approximately 3

seconds, and the results obtained are presented next.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 110/158

By using this approach, we successfully applied machine learning methodologies to a graph-

based representation of our infrastructure. This not only allowed us to predict potential traffic

congestion events, but also provided a clear and intuitive understanding of the underlying

infrastructure and its usage patterns.

Next, we present the simulation results for a particular instance of the setting. The evaluation

metrics used to represent the results of the implemented link prediction algorithm are

Confusion Matrix, Accuracy, Precision, Recall, and F1 Score. We composed a summary metrics

table (Table 15) that includes performance metrics for each class of events.

Table 15: Link prediction evaluation metrics

 Precision Recall F1 Score Support

Memory Failure 0.32 0.70 0.44 10

Normal 0.99 0.96 0.98 580

Processing Failure 0.44 0.80 0.57 10

Accuracy 0.95 600

Weighted AVG 0.97 0.95 0.96 600

From Table 15, it can be seen that the accuracy of the link prediction model is quite impressive,

exceeding 95%. Additionally, it is noteworthy that the model performs well in predicting both

the ’Normal’ and the ’Failure’ classes, suggesting that the learned embeddings are robust

enough to capture the complex interdependencies within the infrastructure. The model

exhibits a higher recall score for both ’Memory Failure’ and ’Processing Failure’ cases,

signifying that it can correctly identify a substantial proportion of over usage events. The lower

precision in these classes results from the model predicting more false positives, which might

be an acceptable trade-off in this context as a preventive measure. It is crucial to flag potential

over usage events to prevent them from escalating into more significant issues. The ’Normal’

class shows high precision, recall, and F1 score, indicating the model’s effectiveness in

correctly identifying normal system usage scenarios and reducing false alarms. It is important

to remember that the performance metrics of the model are tied directly to the quality of the

node embeddings created by the GraphSAGE algorithm.

Figure 71: Link prediction confusion matrix

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 111/158

Since the embeddings encode both topological and node feature information, the success of

the link prediction model in identifying possible over usage events speaks to the expressive

power of the embeddings. Despite the imbalanced distribution of classes in the dataset, the

weighted average of precision, recall, and F1 score surpasses the 96% mark, further

reinforcing the efficacy of the link prediction model in this task. These high scores suggest that

the model is able to generalize well across the different classes, exhibiting its ability to handle

both normal and over usage events effectively. For an alternative visualization of model

performance, we provide a confusion matrix for the link prediction model (Figure 71).

7.5.4 Discussion

In this section, we discuss our proposed methodology's potential benefits and implications

from two main perspectives: network service providers and end users.

For network service providers, our approach offers a tangible means of capturing and

understanding the complex, dynamic aspects of network management and orchestration

needs of their clients. By modelling these interactions using a graph-based approach and

learning embeddings, we provide a measurable way to address real-time communication

event detection challenges. This proactive methodology facilitates the discovery of usage

patterns and the prediction of unusual or outlier events, allowing service providers to better

anticipate and manage network incidents. This proactive management leads to a range of

benefits including, but not limited to, reduction of service level agreement (SLA) violations

(such as availability, response time, reliability, and cost limit), and enhanced ability to manage

heterogeneous resources across different domains efficiently, automatically, and in scalable

manner. This translates into maximizing overall network efficiency, facilitating the

implementation of complex billing models, and proactively preparing for future demands and

capacity needs.

From the perspective of the end user, our event detection approach offers enhanced reliability

and trust in the communication network services. Ensuring high quality of service (QoS)

requirements, and proactively informing users about potential outlier events related to

abnormal communication patterns, not only optimizes user experience, but also increases

transparency. These outlier events can be a result of compromised services, malfunctioning

components, configuration anomalies or even adversarial attacks, providing users with

valuable insights into their network status. It is important to note that while individual

resource usage values (e.g., network traffic bandwidth, latency) might not surpass a certain

threshold, adverse or malicious behaviour can be inferred from the combination of these

values, as depicted by the graph-based embeddings of the network structure.

This means our approach adds an additional layer of protection against adversarial attacks or

similar malicious intents that target the integrity of network services, thereby further

fortifying network security. Thus, our approach addresses a dual need: equipping service

providers with the tools to efficiently manage their networks and helping end users

experience a reliable, secure, and well-maintained communication service.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 112/158

8 Energy and Resource Aware Flow Mapping

This section reports on the progress of Task 5.4 "Energy and Resource Aware Flow Mapping",

which focuses on creating a framework to help developers integrate performance and energy

modelling functionality into their digital services, specifically within the SERRANO platform. It

involves considering hardware, operating systems, compilers, and drivers from an HPC

application developer's perspective in relation to SERRANO's digital services. The task includes

selecting energy-aware benchmarks running on HPC systems. The results were used to extend

existing energy and performance models tailored to the specific hardware features, allowing

developers to visualise application execution regarding power consumption.

In the previous deliverable D5.2 (M15), the main focus was on getting the test cluster (EXCESS

cluster) ready. This cluster has a dual purpose: firstly, to evaluate the energy efficiency of HPC

services, and secondly, to function as a testing platform for the SERRANO orchestrator. The

testbed offers numerous opportunities to discover the optimal configuration of HPC services

in terms of performance and energy efficiency. Additionally, it aids in preparation for utilising

the Hawk supercomputer. This preparation encompasses activities such as installing

hardware, developing, and executing tools, and analysing benchmarks. These actions aim to

study the behaviour of the hardware and software employed in the SERRANO project,

particularly concerning HPC Services.

During the second iteration of the implementation plan (M16-M31), the task focused on

developing power measurement utilities and deriving an energy model of the EXCESS cluster

using power measurement hardware and extensive benchmarking. This energy model was

also used to extrapolate the energy consumption of the Hawk supercomputer using linear

regression. This section presents the status of these activities as well.

8.1 Excess Cluster, Hardware, and Tools

One reason for installing the EXCESS cluster is the absence of an interface to measure the

power consumption in Hawk. It is, therefore, impossible to investigate possible configurations

of HPC services concerning energy efficiency. The EXCESS cluster contains the external

hardware on one compute node to measure voltage and current. Therefore, the power

consumption can be accurately derived.

Figure 72 illustrates the primary elements comprising the EXCESS cluster:

• Login node, which serves as a gateway for accessing the compute nodes within the

cluster.

• Node01 node, which functions as a compute node and shares the exact CPU model as

the Hawk supercomputer. It is equipped with six sensors that measure electric power

and voltage from three 12-volt power sources: CPU1, CPU2, and the motherboard

(ATX). This enables recording power consumption details for the main memory (64

GB), CPU, voltage regulators, and InfiniBand Adapter.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 113/158

• Addi server, which is equipped with AC/DC converters and is connected to the sensors

of node01. The measurement process is initiated for each batch job, and the data is

stored in the home directory once the job is completed. The recorded data can be

utilised for subsequent energy profiling and analysis purposes.

Figure 72: Hardware components of the EXCESS cluster

The compute nodes of EXCESS and Hawk are similar but not identical (Table 16). However, the

energy efficiency of these two systems can be compared, given that the configuration of the

operating mode of the processors and main memory is as close to each other as possible. To

address this, BIOS and OS settings were tuned such that the configuration of EXCESS nodes is

similar to the Hawk nodes.

Table 16: Comparison between compute nodes of Excess and Hawk

Hardware EXCESS Compute Node Hawk Compute Node

CPUs 1 x AMD-EPYC-7742 2 x AMD-EPYC-7742

Main memory Samsung SDRAM DDR4 double rank,
3200 MT/s, 8x16GiB

Micron SDRAM DDR4 double
rank, 3200 MT/s, 16x16GiB

The EXCESS cluster is equipped with utilities for interfacing with the power measurement

hardware, obtaining measured data, transforming these data into suitable format, and

visualising the power measurements.

8.2 Power Measurement Utilities

The power measurement utilities automatically start and stop external power measurement

on compute nodes during the lifetime of a batch job. Slurm [105] batch scheduler provides a

configuration for prolog and epilog scripts, which allow to integrate additional functionalities

before and after a batch job execution, respectively. Therefore, power measurement utilities

were integrated into the prolog and epilog.

A user of the EXCESS cluster can enable power measurements in batch jobs by creating empty

files (save_raw_data and copy_raw_data) in a specific user home directory (.pwm/node01/).

At the prolog stage, the existence of these files will trigger the Addi server to start the power

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 114/158

measurement service. At the epilog stage, this service will be stopped, and the raw binary data

of the power measurements will be compressed and saved into a specific location:

/nfs_home/power/pwm/node01/node01_{JOB_ID}.tar.gz, where JOB_ID is the unique

identifier of the batch job. These data contain precise timestamps that can be utilised to

synchronise with the energy-aware benchmark applications, i.e., the applications that also

expose timestamps to signify the change in application phases, such as IO operations (read or

write), enabled optimisation or arbitrary phases defined by the developers of the benchmarks.

8.3 Power Measurement Conversion and Visualization

In order to convert binary data obtained from power measurement sensors (channels) into

the CSV format, a tool (namely the power_calculate) was developed that reads the data from

each channel and converts it into a data format that has the following structure:

Field Description

ID ID of the application phases

Time Execution time of the phase

Number of measures Number of samples to take the measurements

CPU1 Average, Min, Max Power [Watt] Average, minimum and maximum power consumption
of the CPU1

CPU1 Average, Min, Max Energy [Joule] Average, minimum and maximum energy consumption
of the CPU1

CPU2 Average, Min, Max Power [Watt] Average, minimum and maximum power consumption
of the CPU2

CPU2 Average, Min, Max Energy [Joule] Average, minimum and maximum energy consumption
of the CPU2

ATX Average, Min, Max Power [Watt] Average, minimum and maximum power consumption
of the ATX motherboard

ATX Average, Min, Max Energy [Joule] Average, minimum and maximum energy consumption
of the ATX motherboard

Total Average, Min, Max Power [Watt] Total average, minimum and maximum power
consumption of the system

Total Average, Min, Max Energy [Joule] Total average, minimum and maximum energy
consumption of the system

This formatted data can then be analysed and used to determine HPC applications' power and

energy consumption. Deliverables D4.2 (M15) and D4.4 (M30) elaborate more on how this

data is used to determine the power and energy consumption of SERRANO-accelerated

kernels running on HPC systems.

In order to visualise the power metrics, another tool (flow) was developed. It reads the raw

binary data of power measurements and provides graphs for visual analysis, as shown in

Figure 73.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 115/158

Figure 73: Hardware components of the EXCESS cluster

8.4 CPU Frequency Utility

Additionally, a utility for modifying the clock frequency of CPUs was provided, as the CPU’s

frequency plays a significant role in power draw. The utility is located at /opt/power/rome-

freq/bin/set_node01_frequency.sh. This utility is based on cpupower1 and has four

frequency configurations:

• 1.5 GHz: Without the CPU boost, the minimum frequency is 1.5 GHz, maximum

frequency is 1.5 GHz;

• 2.0 GHz: Without the CPU boost, minimum frequency is 2.0 GHz, maximum frequency

is 2.0 GHz; BOOST = 0, MIN_FREQ=2.0 GHz, MAN_FREQ=2.0, GOV = userspace;

• 2.25 GHz: Without the CPU boost, minimum frequency is 2.25 GHz, maximum

frequency is 2.25 GHz;

• Turbo Mode: With the CPU boost2, minimum frequency is 2.25 GHz, maximum

frequency is 2.25 GHz.

8.5 Kernels Benchmarking

Energy measurements of the developed kernels running in HPC leverage the utilities described

earlier. In general, the implementation of kernels is energy benchmark aware. The kernel

execution consists of three phases: reading the data required by the kernel, execution of the

kernel, and writing the results. For each kernel, we executed energy benchmarks (described

in Deliverables D4.2 and D4.4), which iterate over the number of processors, CPU frequencies,

approximation, and precision parameters.

1 die.net: cpupower(1) - Linux man page, https://linux.die.net/man/1/cpupower
2 https://www.kernel.org/doc/Documentation/cpu-freq/boost.txt

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 116/158

As an example, Table 17 presents the measured power consumption of the parallel Kalman

filter in Turbo frequency with different numbers of cores. It has been observed that as the

number of cores increases, power consumption also increases.

Table 17: Power consumption of parallel implementation of Kalman filter in Turbo Mode

Number of Cores Power (Watt)

1 228.97

2 231.97

4 234.97

8 237.87

16 240.49

32 243.65

64 249.53

Figure 74 shows the energy consumption of the Kalman filter, measured with different CPU

frequencies and numbers of cores. The energy consumption decreases when more cores are

employed in parallel applications. The same approach was applied to other kernels, the results

of which can be found in Deliverable D4.4 (M30).

Figure 74: Energy consumption of Kalman filter with different frequencies and different numbers of

cores

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 117/158

9 Resource Orchestration Mechanisms

The seamless orchestration of the available edge, cloud, and HPC resources is key for realizing

SERRANO’s objectives. To this end, SERRANO adopts a hierarchical architecture to enable end-

to-end cognitive resource orchestration and transparent application deployment over

heterogeneous resources. The detailed architecture and the overall design were presented in

D5.3 (M15). For reference, we provide an overview of the selected design, while Figure 75

summarizes the architecture of the SERRANO resource orchestration mechanisms and their

interactions with other SERRANO components.

The SERRANO Resource Orchestrator, developed in the context of the project, acts as the high-

level orchestrator that interacts with multiple Local Orchestrators, where each handles

individual parts of the overall unified infrastructure. During this process, it exploits the

advanced scheduling capabilities of the Resource Orchestration Toolkit (ROT) that provide

cognitive decisions. Then, it delegates the decision for the actual deployment operations to

the corresponding Local Orchestrators at the selected platforms. To this end, the Resource

Orchestrator adopts a declarative approach to describe the workload requirements to the

selected Local Orchestrators instead of an imperative one. The adopted design enables the

SERRANO Resource Orchestrator to manage the underlying heterogeneous infrastructure

more abstractly and disaggregated than the Local Orchestrators.

Figure 75: SERRANO distributed and cognitive resource orchestration mechanisms, unifying

different edge, cloud, and HPC platforms

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 118/158

9.1 SERRANO Resource Orchestrator

The Resource Orchestrator is a cloud-native application implemented in Python that consists

of two primary services: Orchestration API Server and Orchestration Manager. The Datastore,

a critical component for the overall operation and coordination among the Resource

Orchestrator services and SERRANO Orchestration Drivers, completes the architecture. These

services and configuration files are packaged as Python applications using the SERRANO CI/CD

services. The SERRANO image registry [96] includes a separate container image for each

service. We also defined all the required Kubernetes YAML description files (i.e., ConfigMap,

Deployment, Services) to facilitate deploying the developed services in Kubernetes. Figure 76

illustrates the SERRANO Resource Orchestrator architecture and its main components.

The Datastore is based on etcd [102], an open-source distributed key-value store, and stores

the SERRANO API objects that include configuration and state data for the available platforms,

deployed applications, and SERRANO hardware and software accelerated kernels. One of the

essential features of etcd is the “watch” function that, through the Watch API, provides an

event-based interface for asynchronously monitoring changes to keys in the etcd. An etcd

watch waits for changes to keys by continuously watching from a revision and streams the key

updates back to the registered client. We leverage this feature to facilitate communication

among the Orchestration API Server, Orchestration Manager, and Orchestration Drivers.

Hence, the Resource Orchestrator services can keep track of the actual and desired state of

the deployed workloads across the unified infrastructure. The Orchestration API Server,

Orchestration Manager, Orchestration Drivers, Resource Optimization Toolkit, and Datastore

constitute the control plane of the SERRANO orchestration and deployment framework.

Figure 76: SERRANO Resource Orchestrator architecture and services

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 119/158

Regarding the Orchestration API Service, we significantly extend the functionality of the

Access Interface and Dispatcher components to facilitate (i) the transparent application

deployment, (ii) execution of SERRANO hardware and software accelerated kernels, and (iii)

the intent-based creation of secure storage policies. The Access Interface provides loose

coupling with the other components within the SERRANO platform, mainly with AI-enhanced

Service Orchestrator and Service Assurance mechanisms. It exposes the appropriate interfaces

to enable bidirectional communication for exchanging commands, information, and

notifications. The Access Interface also validates all the requests before forwarding them to

the Dispatcher that exclusively handles the interaction with the Datastore. The exposed

RESTful API final version includes several methods organized into two main categories. The

first set of methods (Figure 77) enables the deployment and management of cloud-native

applications, execution of SERRANO accelerated kernels, and the cognitive creation of secure

storage policies. The second set (Figure 78) abstracts the interaction of the Orchestration

Manager and Orchestration Driver services with the Datastore by enabling them to create,

update, and query relevant information along with their subscription for watching specific

topics in the Datastore.

Figure 77: Resource Orchestrator RESTful interface

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 120/158

Figure 78: Resource Orchestrator RESTful interface – Methods related to inter-component

communication

The Orchestration Manager implements the main part of the application logic and coordinates

the resource allocation and application deployment, kernel execution, and secure storage

policy management operations. In the original design, some of these tasks were handled by

the Dispatcher component of the Orchestration API Server. However, in the revised design

and final implementation, the Orchestration Manager, through its controllers, is exclusively

responsible for all the coordination and management actions. The Orchestration Manager

performs operations based on the SERRANO Orchestration API objects that are created

through the API Server. To achieve its objectives, the Orchestration Manager incorporates

various controllers, which watch SERRANO Orchestration objects in the Datastore. These

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 121/158

controllers execute the necessary operations to serve the requests and then communicate

with the Orchestration Drivers on the underlying platforms.

More specifically, the Scheduler Controller interacts with the ROT to retrieve the instructions

for the cognitive application deployment and definition of secure storage policies. The Cluster

Controller attaches Kubernetes clusters and HPC platforms to Resource Orchestrator and

oversees their operational state. The Execution Controller prepares the required application

deployment instructions (declarative approach) with the assistance of the Scheduler

controller, coordinates the required data movement by interacting with the SERRANO Secure

Storage service, and finally triggers the actual deployment by interacting with the

Orchestration Drivers at the selected edge/cloud and HPC platforms.

Figure 79: SERRANO Orchestration API objects

As previously stated, the Datastore, through the etcd service, offers reactive capabilities to

the Resource Orchestrator services, enabling them to effectively orchestrate and manage the

complete lifecycle of operations associated with service requests. By leveraging the Datastore,

the Resource Orchestrator services can efficiently handle and respond to various requests.

Service requests within the orchestration and deployment mechanisms are expressed as

SERRANO Orchestration API objects (Figure 79). These objects serve as the primary means of

communication between the different components of the system. They encapsulate the

necessary information to serve, manage, and monitor the progress of service requests. To

facilitate the interaction between the Resource Orchestrator services, specific pairs of services

are responsible for creating, updating, deleting, and watching these SERRANO Orchestration

API objects. This distributed responsibility ensures efficient handling of requests and enables

the system to operate seamlessly.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 122/158

The main SERRANO Orchestration API objects are the following:

• Cluster: It provides an overview of the available individual platforms (edge, cloud,

HPC). These objects are created and updated based on the information from the

Orchestration Drivers while watched and used by the Orchestration Manager.

• Deployment: It corresponds to the high-level description for deploying a cloud-native

application in the SERRANO platform. It includes the application description along with

the user intent for the deployment objectives. It is created and deleted by the

Orchestration API server, while it is watched and used by Orchestration Manager.

These entities are not changed during the orchestration and deployment phase since

the high-level orchestration decisions and the infrastructure-specific instructions for

the low-level orchestration mechanisms are expressed through the Assignment and

Bundle objects.

• Kernel: It corresponds to the description for the deployment of a SERRANO accelerated

kernel in the SERRANO platform. It is created and deleted by the Orchestration API

Server and watched and used by the Orchestration Manager. More details are

provided in Section 9.4.3.

• Storage Policy: It is the high-level description from the intent-based creation of a

secure storage policy. It is created and deleted by the Orchestration API Service and

watched and used by the Orchestration Manager that will execute all the required

operations. More details are provided in Section 9.4.1.

• Assignment: It is an internal object that captures the assignment of application

microservices to a specific SERRANO cluster (i.e., edge/cloud or HPC platform). These

entities are created, updated, and deleted by the Orchestration Manager according to

the decisions from the ROT component while they are watched and used by the

Orchestration Drivers. The unique identifier of the selected platform (i.e.,

CLUSTER_UUID) is part of the respective topic’s description in the Datastore (Table 18).

More details are available in Section 9.2.

• Bundle: It includes the application description along with parameters and platform-

specific deployment objectives based on the ROT decisions that will guide the low-level

orchestration mechanisms at the selected platforms (declarative approach). These

entities are created, updated, and deleted by the Orchestration Manager and they are

watched and used by the Orchestration Drivers.

Figure 80: Relationship among main SERRANO Orchestration API objects

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 123/158

To provide a visual representation of the relationships and interactions between the SERRANO

Orchestration API objects, Figure 80 illustrates their associations. Furthermore, Table 18

complements the previous description by listing the relevant topics for each SERRANO

Orchestration API object stored and managed within the Datastore. It highlights the specific

information and data points associated with the SERRANO Orchestration API objects that are

crucial for the system's overall functioning.

Table 18: Datastore topics (keys) for the main SERRANO Orchestration API objects

API Object Topic

Cluster /serrano/orchestrator/clusters/cluster/CLUSTER_UUID

Deployment /serrano/orchestrator/deployments/deployment/DEPLOYMENT_UUID

Kernel /serrano/orchestrator/kernels/kernel/REQUEST_UUID

Storage Policy /serrano/orchestrator/storage_policies/policy/POLICY_UUID

Assignment /serrano/orchestrator/assignments/CLUSTER_UUID/assignment/ASSIGNMENT_UUID

Bundle /serrano/orchestrator/bundles/bundle/BUNDLE_UUID

To elaborate more on the usage of the SERRANO Orchestration API objects from the SERRANO

orchestration mechanisms, we present an example of how one of the SERRANO use cases is

handled by the SERRANO Resource Orchestration services. Specifically, we considered the

Position Service from the Anomaly Detection in Manufacturing Settings use case, which

includes three microservices. Deliverable D6.5 (M27) provides a more comprehensive

technical description of this application, and Section 9.4.2 describes the detailed deployment

workflow. Next, we focus on the internal SERRANO API objects that the Orchestration

Manager creates to serve the requested deployment within the SERRANO platform.

Figure 81: SERRANO Orchestration API objects and federated application deployment

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 124/158

We consider that the overall application is assigned to two different platforms. Two

microservices are assigned in an edge cluster (UUID: "db56f00b") and the third in a cloud

cluster (UUID: "f393522a"). In this case, the Orchestration Manager will create two

Assignment objects (UUIDs “2727894e” and “b2658495”), one for each selected platform.

These Assignments will be linked with the initial Deployment object (UUID “e12c1884”).

Moreover, the Orchestration Manager will create three Bundle objects (UUIDs “c33a6b34”,

“0d8cb8fc”, and “40a3295d”), one for each microservice, and will map them with the

appropriate Assignment objects. Each Bundle object includes the required deployment

descriptions. In our example, the Bundle objects include K8s API objects, such as Deployment,

ConfigMap, PersistentVolume, and PersistentVolumeClaim. The Bundles also include

additional parameters added by the Orchestration Manager that will guide the platform-level

scheduling of the microservices. Figure 81 summarizes this process.

9.2 Orchestration Drivers

The Orchestration Drivers complete the implementation of the hierarchical resource

orchestration. An Orchestration Driver provides an abstraction layer for interacting with the

specific edge, cloud, and HPC orchestration mechanisms, dealing with the low-level details of

the heterogeneous Local Orchestrators at the individual platforms. SERRANO considers that

Local Orchestrators are based on existing and well-established solutions. According to the final

implementation, Kubernetes (K8s) is the orchestration platform for the edge and cloud

resources, whereas HPC resource managers and batch jobs schedulers are considered for the

HPC platforms.

Figure 82: SERRANO Orchestration Drivers

Since SERRANO unifies platforms with different local orchestration mechanisms, two types of

Orchestration Drivers are available. Figure 82 shows the final design of the Orchestration

Drivers. The Orchestration Drivers are implemented in Python as plug-ins that share the same

implementation for the Orchestration Interface. This component leverages the exposed REST

API from the Orchestration API Server to provide an infrastructure-agnostic interface between

the Resource Orchestrator (i.e., Orchestration Manager) and the Local Orchestrators. It

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 125/158

facilitates the generic description of the deployment preferences and constraints. On the

other hand, the Orchestration Plug-in component differs for each Orchestration Driver type

since it interfaces with a specific Local Orchestrator based on its specific exposed APIs. More

specifically, the Orchestration Plug-in for the Kubernetes platforms uses the exposed API by

the Kubernetes API Server (i.e., kube-apiserver), while the Orchestration Plug-in for the HPC

platforms uses the exposed interface by the SERRANO HPC Gateway (Figure 85).

The implementation of the Orchestration Driver includes a configuration file that utilizes JSON

format. This file consists of multiple configuration parameters that allow for precise

customization of Orchestration Driver operation and seamless integration with other

SERRANO orchestration and deployment services. It is possible to designate the specific type

of Orchestration Plug-in to be loaded for a particular instance of the Orchestration Driver using

one of the available configuration parameters. In addition, each Orchestration Driver is

associated with a unique identifier that determines the specific edge/cloud or HPC platform

that manages. This identifier corresponds to the CLUSTER_UUID parameter in the Datastore

topics presented in the previous section.

The Orchestration Driver and its configuration file are packaged as a Python application using

the SERRANO CI/CD services, ensuring a smooth and efficient development workflow. The

resulting container image is made accessible through the SERRANO image registry. There is a

common image for both Orchestration Drivers. To facilitate effortless deployment on

Kubernetes platforms, corresponding Kubernetes YAML description files are also available.

These files enable the automatic deployment of the Orchestration Drivers within Kubernetes.

The following workflow (Figure 83) summarizes the operation of SERRANO Orchestration

Drivers. During its initialization phase, a driver is registered through the Orchestration API

Server to watch for any changes related to assignments in its dedicated topic

(/serrano/orchestrator/assignments/CLUSTER_UUID) in the Datastore. Moreover, it sends the

Orchestration API Server a summary of the available resources in the platform it manages. The

Orchestration API Server uses this information to update the respective contents in Datastore.

It also sends heartbeat messages periodically to the Orchestration API Server. These steps are

common for both Orchestration Driver types and are handled by the Orchestration Interface

using a set of methods that all Orchestration Plug-ins must implement.

Figure 83: Orchestration Driver workflow

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 126/158

Next, the Orchestration Driver is notified of any change in the topic that watches, and based

on the event type, it triggers the appropriate actions to serve the request from the

Orchestration Manager. To this end, it formats the appropriate instructions to the Local

Orchestrator and forwards them using their exposed interfaces. More details for the

interaction with the SERRANO-enhanced and infrastructure-specific low-level mechanisms in

K8s and HPC platforms are also provided in Sections 9.3, 9.4, and 10.

9.3 SERRANO HPC Gateway

The SERRANO HPC Gateway is the intermediate component between SERRANO's HPC services

(WP4), the Intelligent Service and Resource Orchestration Layer (WP5), and the HPC

infrastructure. The HPC Gateway supports popular batch job schedulers, such as Slurm [105]

and the PBS-based OpenPBS [106].

Due to security restrictions and isolation imposed on the compute nodes of HPC clusters, only

the front-end (or login) nodes of the clusters are usually used as the access point, where a

user or automation tool can login via SSH, prepare software environments and workspaces,

build applications and submit HPC jobs. The job submission commands are specific to the

resource manager. For example, Slurm uses sbatch commands for job submission, whereas

for PBS-based resource managers, the qsub command is used. Additionally, the job status can

be monitored via scontrol and qstat commands of Slurm and PBS, respectively.

Similarly, the information about the partitions of the HPC system can be obtained via

scheduler specific commands. For Slurm, sinfo and squeue commands are common to

determine the state of the partitions, whereas pbsnodes and qstat -Q commands are used in

PBS.

Figure 84: Interaction between HPC Gateway and HPC infrastructure

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 127/158

Therefore, SERRANO HPC Gateway communicates with the front-end (login) nodes via SSH

and uses commands specific to the resource managers under use in order to prepare a batch

job script for submission (i.e., to select the appropriate header), submit the job, and monitor

the status of the job and the partitions, as shown in Figure 84. Moreover, SERRANO HPC

Gateway provides endpoints for remote (HTTP, S3) file transfers into HPC infrastructure, as

well as transferring results from HPC into S3.

The HPC System Hardware Interface (HPC Gateway) is integrated with the SERRANO platform.

It exposes REST API endpoints (Figure 85) needed for the Resource Orchestrator and

Telemetry Framework for the execution of HPC services/kernels (/job) and monitoring the

state of the HPC infrastructure (/infrastructure/infrastructure_name/telemetry). Moreover,

users can utilise data endpoints (/data, /s3_data, and /s3_result) of the HPC Gateway to

transfer data from HTTP and S3 endpoints, such as the SERRANO Secure Storage service

(WP3), into HPC and move resulting data to S3. The HPC Gateway is implemented as a service3

and interacts with the target HPC infrastructure using SSH protocol (as shown in Figure 84).

The administrator maintains SSH keys that will be used for authentication with the

infrastructure.

Figure 85: REST API endpoints exposed by HPC Gateway

A user can perform the complete workflow using HPC Gateway, i.e. injection of the initial data,

processing the data in HPC, and retrieving the results. For example, one can use /s3_data

endpoint to send the initial data from S3 into the target HPC infrastructure, then run signal

processing kernels (e.g., Kalman and FFT filters) via /job endpoint and move the results back

to the S3 storage via /s3_result endpoint. The requests chain is outlined below (the responses

are omitted).

3 https://hpc-interface.services.cloud.ict-serrano.eu

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 128/158

POST /s3_data
Body:
{
 "infrastructure": "cluster_name",
 "endpoint": "https://on-premise-storage-gateway.services.cloud.ict-serrano.eu
/s3",
 "bucket": "initial-data-bucket",
 "object": "initial-data",
 "region": "local",
 "access_key": "access_key",
 "secret_key": "secret_key",
 "dst": "/path/to/initial/data",
}

POST /job
Body:
{
 "infrastructure": "cluster_name",
 "services": ["kalman", "fft"],
 "params": {
 "read_input_data": "/path/to/initial/data",
 "input_data_double": "/path/to/double-precision/data",
 "input_data_float": "/path/to/single-precision/data",
 "num_mpi_procs": 64
 }
}

POST /s3_result
Body:
{
 "endpoint": "https://on-premise-storage-gateway.services.cloud.ict-serrano.eu
/s3",
 "bucket": "results-bucket",
 "object": "results.csv",
 "region": "local",
 "access_key": "access_key",
 "secret_key": "secret_key",
 "src": "/path/to/results",
 "infrastructure": "cluster_name"
}

9.4 Integration with SERRANO Services

9.4.1 Secure storage policies cognitive creation

The SERRANO platform supports creating automated secure storage policies based on

significantly varying storage task requirements. In addition, SERRANO provides the intent-

based definition of secure storage policies and their cognitive orchestration to abstract the

infrastructure-specific requirements and operations from the end users regarding the choice

of storage locations and redundancy, encryption, and compression parameters. This

functionality is closely related to the developments in WP3 regarding the Secure Storage

service and the respective use case. It also integrates the functionality of many platform

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 129/158

components, such as the Secure Storage service, the AI-Enhanced Service Orchestrator, the

SERRANO Telemetry Framework, the Resource Optimization Toolkit, and the SERRANO

Resource Orchestrator services.

From the SERRANO orchestration mechanisms perspective, the overall procedure is divided

into three phases: (1) description of user intent and translation to infrastructure-specific

objectives, (2) storage request orchestration, and (3) secure storage policy creation.

The initial phase is presented in Section 4.4. Next, the AI-Enhanced Service Orchestrator (AISO)

triggers the execution of the second phase by passing to the SERRANO orchestration

mechanisms the mapping of the user intent to infrastructure-specific parameters and high-

level orchestration objections. To this end, the AISO uses the respective methods

(/api/v1/orchestrator/storage_policies) (Figure 77) from the updated REST API of the

SERRANO Orchestration API Server. The POST request supports the following parameters:

• name: Optional[str] = None

• description: Optional[str] = ""

• policy_parameters: dict

The Orchestration API Server validates the request parameters and creates the corresponding

Storage Policy object in the Datastore. The Orchestration Manager that watches the related

topic (i.e., /serrano/orchestrator/storage_policies/policy) for updates is triggered and,

through its controllers, will initially handle the orchestration of the secure storage policy

request (Steps 1-3 in the following workflow).

Next, the Orchestration Manager, through its Scheduler Controller, will request from the ROT

the orchestration decision in order to create the secure storage policy based on the provided

parameters (Step 4). The ROT Controller (Step 5) queries the Central Telemetry Handler (CTH)

to get the available cloud and edge storage locations and creates the appropriate execution

request (Step 6) that is assigned to one of the available Execution Engines. Next, the

Orchestration Manager receives from the ROT the decision that includes parameters that will

guide the storage policy creation (Step 7). Through the Orchestration API Server methods, the

Orchestration Manager updates the decision field in the corresponding Storage Policy object

(Step 8).

In the subsequent phase, the Orchestration Manager initiates the policy creation process by

requesting it from the Secure Storage Service. In order to accomplish this, the Orchestration

Manager formats the appropriate request based on the provided orchestration decision and

triggers the creation process by executing the exposed REST method (POST /storage_policy)

provided by the Secure Storage Service (Step 9). Regarding the request parameters, the users

directly specify the name and description parameters. The remaining parameters, which

determine the storage policy configuration, are compiled by the Orchestration Manager

according to the ROT decision, considering the user intent, the deployment objectives, and

the availability and characteristics of cloud and edge storage locations. Figure 86 summarizes

the orchestration workflow for creating secure storage policies.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 130/158

Figure 86: Secure storage policy cognitive creation – Orchestration workflow

Moreover, the SERRANO SDK provides the appropriate methods that abstract the overall

workflow for defining, orchestrating, and creating secure storage policies. Figure 87 shows the

corresponding code snippet. Users can use the provided Python methods to describe their

intent (line 8) and request the creation of a storage policy (line 10). Then, they can check (line

12) and use the defined policy (line 36). The SERRANO-enhanced storage service exposes the

Secure Storage API that allows SERRANO users to manage buckets and store and retrieve files.

It is based on what can be considered the industry standard for object storage: Amazon Web

Services S3. Deliverable D3.4 (M34) provides more technical details. Users can use the

provided functionality using any S3 client library. In the example, we use the boto3 Python

library to create a bucket based on the created storage policy (line 26).

Figure 87: Code snippet for creating and using a SERRANO secure storage policy

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 131/158

9.4.2 Cloud-native applications deployment

The SERRANO Resource Orchestrator implements essential functionalities to ensure efficient

application deployment and resource orchestration in the disaggregated and heterogeneous

SERRANO infrastructure. From a SERRANO orchestration perspective, the overall procedure is

divided into three phases: (1) preparatory handling of deployment requests, (2) high-level

cognitive resource orchestration, and (3) transparent application deployment. These phases

are fully aligned with the workflows “Cognitive resource orchestration operation within the

SERRANO platform” and “Transparent application deployment operation within the SERRANO

platform” as outlined in the final SERRANO architecture specification in D2.5 (M18).

The initial phase is presented in Section 4.4. Next, the AI-Enhanced Service Orchestrator (AISO)

triggers the execution of the second phase by passing to the SERRANO orchestration

mechanisms the mapping of the user intent to infrastructure-specific parameters and high-

level orchestration objectives. To this end, the AISO uses the appropriate REST methods

(/api/v1/orchestrator/deployments) (Figure 77) exposed by the SERRANO Orchestration API

Server. More specifically, the POST request supports the following parameters, while the PUT

request requires the additional parameter “deployment_uuid: str”.

• name: Optional[str] = None

• user_token: Optional[str] = ""

• deployment_description: str

• deployment_objectives: Optional[List[dict]] = None

The Orchestration API Server validates the request parameters and creates the corresponding

Deployment object in the Datastore. If the name is not defined, then the Orchestrator API

service automatically sets as name the deployment_uuid, a parameter defined automatically

by the Orchestrator API Server. Moreover, the schema includes two additional parameters

corresponding to the two categories of input data that the Resource Orchestrator expects for

handling the deployment requests. The deployment_description is mandatory and provides

the YAML description of the application’s microservices. The deployment_objective is optional

and provides the objectives from the AISO for the orchestration algorithms. The Orchestration

Manager that watches the related topic

(i.e., /serrano/orchestrator/deployments/deployment) for updates is triggered and, through

its controllers, will initially handle the orchestration of the deployment request. In the

following workflow, the initial phase corresponds to Steps 1-3, which trigger the ROT to

provide the necessary orchestration decision for the application deployment.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 132/158

Figure 88: Application deployment – High-level cognitive orchestration workflow

Next, through its Scheduler Controller, the Orchestration Manager will request from the ROT

the orchestration decision to guide the deployment of the requested cloud-native application

in the SERRANO platform based on the user intent (Step 4). The request description to the

ROT Controller includes the deployment objectives (i.e., deployment_objectives parameter),

as provided by the AISO, and the application graph. The latter comes from analysing the

provided application description (i.e., deployment_description parameter). This is required

since the application description typically also includes objects such as ConfigMaps, Services,

and Storage Volumes that are not required during the high-level orchestration. The ROT

Controller (Step 5) queries the Central Telemetry Handler (CTH) to get the high-level

description of the edge/cloud and HPC platforms that are under the management of the

SERRANO platform and creates the appropriate execution request (Step 6) that is assigned to

one of the available Engines. Next, the Orchestration Manager receives from the ROT the

decision that includes parameters that will guide the application deployment (Step 7).

Then, the Orchestration Manager, through its Execution Controller, creates and stores in the

Datastore the appropriate number of Assignment and Bundle objects (Step 8) according to the

assignment of the application microservices into the individual edge, cloud, and HPC platforms

as described in the ROT response. It also updates the corresponding Deployment object

accordingly. The SERRANO orchestration mechanisms require all YAML descriptions

corresponding to the same microservice to share common labelling (Figure 81). This is

required when the ROT splits the application deployment in multiple SERRANO platforms

since, in these cases, it is also required to include the respective supplementary descriptions,

such as ConfigMaps, and Persistent Volumes, to the Bundles. To this end, we adopted a simple

design approach in which all the related YAML descriptions share the same Label with the

name “group_id”. The mechanisms that provide the graphical-based definition and

submission of applications (Section 4.5) also automatically support the definition of the

required labelling.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 133/158

The ROT orchestration decisions assign the applications’ microservices to specific SERRANO

platforms. These assignments are used to generate the Assignment objects in the Datastore.

In addition to the assignments, ROT provides appropriate resource configurations to guide the

platform-level orchestration mechanisms, such as the K8s scheduler, in making the final

deployment decisions. The SERRANO Resource Orchestrator follows a declarative approach to

describing the workload requirements to the Local Orchestrators. When creating Bundle

objects corresponding to K8s Deployment descriptions, the Orchestration Manager

automatically compiles the provided resource configurations to specific deployment

requirements. The created description also includes a set of affinity and anti-affinity rules to

be used by the Kubernetes scheduler to find out the most suitable nodes for the Pods

deployment. These deployment requirements are added to the user-defined application

description, resulting in cognitive-enhanced and platform-specific deployment requirements.

Figure 89: Kubernetes application deployment description enhanced by the SERRANO Resource

Orchestrator

Figure 89 depicts a Kubernetes deployment description4 that the SERRANO Resource

Orchestrator has automatically enhanced for the position-service-classifier-training

microservice from the application example in Figure 81. In the example, we consider a

deployment intent that requested an advanced security layer for the microservice, while the

orchestration mechanisms decided the deployment in nodes that provide maximum security,

trust, and isolation (Tier-4). SERRANO builds on the confidential computing paradigm to

provide different end-to-end secure tiers. Additional technical details for this topic are

available in deliverable D3.4 (M30). The selected security level requires the existence of secure

boot and trusted execution extensions in the worker node and the microservice deployment

as a container sandboxed in microVM (Section 10.2). The YAML deployment description of the

microservice is consequently enhanced with the appropriate labels and annotations to guide

the platform-level scheduling mechanisms.

4 For clarity, the deployment description includes only the parameters relevant to the provided example.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 134/158

Finally, the Orchestration Manager creates the Monitoring object that will be updated with

information about the deployed services in each platform during the deployment phase. The

Orchestration API Server uses this information to configure the SERRANO telemetry services

when a deployment request is served successfully.

The successful execution of the final step (Step 8) in the previous workflow triggers the third

phase that handles the transparent application deployment across the SERRANO platform. In

this phase, the Orchestration Drivers at the selected platforms receive the deployment

instructions. Then, by interacting with the local orchestrator and the SERRANO-enhanced

resources (Section 10), they trigger the actual deployment of the application’s workloads with

the selected runtime configurations. Figure 90 summarizes the workflow for deploying the

application’s workload in a selected cluster.

Figure 90: Cloud-native application deployment – Transparent deployment workflow

More specifically, the Orchestration Driver that manages a specific cluster detects a new

assignment for its cluster (Step 9). The Assignment object that receives through the

corresponding Datastore notification includes the list of all Bundles' unique identifiers related

to the specific assignment. Next, for each Bundle's unique identifier in the list, the

Orchestration Driver executes the following actions:

• It retrieves the Bundle description through the exposed GET method by the

Orchestration API Server (Step 10).

• It uses the provided API by each local orchestration platform, such as the K8s API for

the Kubernetes platforms, to apply the deployment actions that include the Bundle

description (Step 11).

Next, the Orchestration Driver updates, through the Orchestration API Server, the status of

the corresponding Assignment object (Step 12). The Orchestration API Server uses this

information to determine if a deployment request has been served successfully.

Finally, the Orchestration Manager performs two additional actions when all the Assignments

of a deployment request have been executed successfully. It informs, through the Central

Telemetry Handler, the SERRANO telemetry framework to start the automatic monitoring of

the deployed application and also registers the deployed application to the Service Assurance

mechanisms.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 135/158

9.4.2.1 Terminating application deployment

The SERRANO Resource Orchestrator also supports the deletion of a deployed application. The

procedure involves all the Resource Orchestrator services (i.e., Orchestration API,

Orchestration Manager, Orchestration Driver), while Figure 91 summarizes the workflow.

Figure 91: Terminating cloud-native application deployment

The Orchestration API Server receives the termination request through its exposed REST API

(Step 1). It gets the list of Assignments that are related to the target deployment. For each

Assignment, the Orchestration API Server gets the unique identifier for the Assignment's

Bundles and uses them to delete the corresponding entries from the Datastore (Step 3). After

deleting each Assignment's Bundles, the Orchestrator API Server deletes from the Datastore

the Assignment itself (Step 4). This will trigger the involvement of the corresponding

Orchestration Driver for that specific Assignment that, through the provided API by the local

orchestration mechanisms, will terminate all the running instances in the specific platform

(Step 5). Then, the Orchestrator API Server deletes the Deployment from the Datastore (Step

6). Finally, the Orchestration API service informs the SERRANO telemetry service (Step 7) and

the Service Assurance mechanisms to update their operation accordingly (Step 8).

9.4.3 SERRANO HW/SW accelerated kernels execution

One of the innovations that SERRANO provides is the development of a library of accelerated

kernels. These kernels harness both hardware and software acceleration techniques to

enhance applications’ performance and energy efficiency on cloud and edge devices, such as

GPUs, FPGAs, and HPC platforms. The development of these kernels took place in WP4, and

the associated deliverables (i.e., D4.1 (M15), D4.2 (M15), D4.3 (M15), and D4.4 (M30)) offer

comprehensive technical information and extensive evaluation results for the kernels

featured in SERRANO's use case applications. This section describes how the SERRANO

orchestration mechanisms enable the seamless execution of these accelerated kernels across

the heterogeneous SERRANO platform.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 136/158

The SERRANO platform supports two deployment methods for the seamless execution of

SERRANO-accelerated kernels across the heterogeneous edge, cloud, and HPC resources.

These deployment methods are aligned with the serverless computing execution model,

where users focus solely on developing their application’s functions while the platform

abstracts away the underlying servers and infrastructure, making it easier to deploy and

manage applications.

The first method involves deploying the kernels alongside the application services. This

method is suitable when the application services have a specific set of kernels that need to be

executed repeatedly. The second method is based on the Functional as a Service (FaaS)

execution model and allows on-demand deployment of accelerated kernels. FaaS is a specific

serverless computing implementation that allows developers to trigger functions in response

to events. These functions are stateless, meaning they do not maintain persistent connections

or store data between executions. In this case, an application service running in the SERRANO

platform through the SERRANO SDK can request the orchestration mechanisms to execute a

specific kernel. The SERRANO orchestration and deployment mechanisms handle all the

required operations and return the results to the application service.

The SERRANO platform ensures for both deployment methods that users receive seamless

access to accelerated kernels without the need to manage the deployment and execution

process. This approach also optimizes the use of resources, allowing kernels to be executed

on the most appropriate resources. The SERRANO use cases use both deployment methods.

Figure 92: Kernel execution and data handling from the end user’s perspective, common approach
for all supported modes and platforms

To use either deployment method, data provisioning must be automated and abstracted into

kernels, and results must be handled back transparently to users. From an end-user

perspective, the overall process includes the following steps (as shown in Figure 92):

1. Move input data to SERRANO storage services (i.e., Data Broker, Secure Storage

Service) and retrieve the corresponding description to pass to the execution request

(Step 2). This description contains a set of identifiers for the SERRANO deployment

mechanisms (e.g., Orchestration Drivers, HPC Gateway, Lightweight Virtualization

Mechanisms) to download the data and prepare them for use by the kernels.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 137/158

2. Submit the request to the SERRANO platform, specifying the kernel, input data

description from Step 1, and any other options necessary for configuring the kernel

execution.

3. Retrieve the results using the SERRANO Python API method provided.

The SERRANO SDK provides suitable APIs that abstract the interaction with the various

SERRANO platform services to facilitate these operations. Deliverable D6.5 (M27) provides a

complete example regarding the execution of a SERRANO-accelerated kernel through the

provided Python API.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 138/158

10 Lightweight Virtualization Mechanisms

Running applications in the cloud has changed the way users develop and ship their code.

During the past decade, applications were deployed in the cloud using conventional Virtual

Machines (VMs) following the Infrastructure-as-a-Service (IaaS) model. Users choose the

setup of their virtual hardware, install their preferred OS, and deploy their application / service

on top of that VM.

However, quite recently, the community has given rise to other approaches [105][108], which

were quickly adopted by cloud vendors, towards solutions that follow the paradigm of

Platform-, Software-, and Function-as-a-Service (PaaS, SaaS, and FaaS respectively). These

approaches offer performance and flexibility improvements over IaaS by decoupling the

application from the infrastructure. Providing a common OS stack, maintained by the provider

and optimized for the specific hardware it is running on, is much more efficient than exposing

a generic virtual hardware interface. Additionally, users seek to maximize the number of

requests handled while minimizing request/response latency. Apart from the cloud paradigm,

Edge computing is slowly adopting these modes of operation, especially in the context of IoT

and 5G [109].

In the IaaS case, the burden of orchestrating and optimizing the systems software stack

running on top of virtual hardware is passed to the user, while in the other cases, the vendor

exposes a customized interface tailored to the application / service offered. The cloud-native

[110] concept emerged from this trend as a need to reduce bloated interfaces and

abstractions that introduced significant overhead for application deployment and execution.

Containers played an important role towards cloud-native embracement; they have

revolutionized deployment by facilitating application packing and dependency tracking, and

reducing the overheads of execution; however, this comes at the cost of security and isolation

[111]. As a result, cloud vendors fall back to generic virtualization techniques: Microservice

offerings are essentially VMs running the vendor's custom systems stack, exposing a language

runtime, a specific service such as a Database Management System (DBMS), a LAMP stack or

just container host-side systems software. For instance, to provide a secure Serverless

environment where users deploy their functions at will, cloud providers either: (a) spawn a

VM per tenant, install their Serverless backends there, and keep it hot while the user submits

functions to be executed; (b) spawn VMs which host containers per tenant, with the necessary

software installed, and execute the user function there; or (c) spawn microVMs [112] per

tenant where isolation is provided by the microVM monitor [113].

Figure 93 captures a snapshot of the traditional mode of execution for a generic VM on

Linux/KVM using a standard user-space Virtual Machine Monitor (VMM). The Kernel-based

Virtual Machine (KVM) module in the Linux kernel interfaces with the VMM, which essentially

handles privileged operations (VMExits). So, when a privileged operation needs to be executed

in the guest, the system traps it in the host's kernel-space (KVM), which, in turn, delivers this

event to the monitor in user-space. Upon completion, the execution returns to the kernel,

which, in turn, kicks the vCPU of the guest via a VMEnter. This process is a design choice: for

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 139/158

instance, QEMU supports a full operating system stack, emulates several architectures /

features, and makes perfect sense for this code to be in user-space.

Figure 93: A Virtual Machine running on a generic user-space VMM on top of KVM

On the other hand, in the context of Serverless Computing [114], cloud-native applications,

and lightweight execution, this process seems too complicated. Why should the system hand

over the event to user-space since the only operation needed to be performed will probably

be in the kernel (network, storage I/O, etc.)? This is the vhost approach [115] taken to

decouple the control path from the data path when performing high-performance I/O.

Apart from optimizing the data path, researchers have done considerable work to minimize

the overhead of VM spawn and execution. Several minimalistic approaches have been

proposed regarding the systems software stack to facilitate fast and secure application

execution in the cloud. For instance, Unikernel as Processes [116] describes a specialized VMM

with a number of backends (e.g., seccomp, KVM, muen, etc.) that minimizes the attack surface

by limiting the interface with the underlying layers. NEMU [117] is a stripped down QEMU,

specifically built and designed to run modern cloud workloads on x86_64 and ARM CPUs.

Amazon's Firecracker [113] is a fork of [118], a lightweight VMM, built to deploy microVMs,

which feature enhanced security and workload isolation over traditional VMs.

Most of these approaches use the Linux kernel as the guest OS. This implies that although the

user just needs to execute a function, the cloud provider must spawn a Linux kernel guest, or

a container, from scratch and then run the function in this environment. More importantly, in

all of the above cases, when a VMexit happens, the mode of execution still needs to be passed

on to the monitor (first mode-switch) to service the exit and then back to KVM to resume the

guest (second mode-switch).

Simplicity is key when designing an application execution stack: users want to run their code

fast and get a result back. They do not care where the code will run as long as there is

reproducible, fast, and secure execution. To this end, lightweight virtualization appears

mutually beneficial to cloud vendors and users: the former increase resource utilization by

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 140/158

consolidating more tasks to nodes; the latter enjoy fast service response times and

(potentially) lower-cost services.

We adopt a hybrid approach in the SERRANO platform to balance the trade-offs between

lightweight application execution and workload isolation/security. To this end, we enable the

deployment of workloads in various execution modes, such as generic containers, sandboxed

containers, and unikernels, using the necessary virtualization mechanisms for each mode. The

following sections detail the technologies involved in the SERRANO workload deployment

mechanisms.

10.1 Efficient Sandboxing of Containers on Edge Nodes

Containers and their benefits

Containers are lightweight, self-contained execution environments that encapsulate

applications and their dependencies, providing a consistent and reproducible runtime

environment. They enable the packaging of software in a manner that allows it to run reliably

and consistently across different computing environments, including any computer hardware,

infrastructure, or cloud environment. Achieving this versatility is made possible through a

combination of operating system-level virtualization and resource isolation techniques. By

leveraging kernel features, containers create isolated environments with their file systems,

network interfaces, and process trees, ensuring application isolation from other containers

and the host system. Moreover, containers abstract away the underlying infrastructure,

allowing applications to be developed and deployed with minimal concern for specific

hardware or software configurations. Unlike virtual machines, containers do not require a

guest OS in each instance, resulting in smaller, faster, and highly portable units that can be

executed on desktops, traditional IT systems, or in the cloud. By utilizing the features and

resources of the host operating system, containers provide an efficient and platform-

independent execution environment, making software deployment portable, scalable, and

manageable across various environments, from development to production, on-premises, or

in the cloud. Figure 94 shows a high-level overview of the node-level flow for a container

spawn.

Figure 94: High-level overview of generic container spawning in a k8s environment

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 141/158

Limitations of containers

Despite their numerous advantages, containers have certain limitations, particularly in terms

of security and isolation. Although containers provide a level of isolation by leveraging

operating system features, they still share the underlying operating system kernel. This shared

kernel introduces potential security risks, as a compromise within the kernel could impact the

security and integrity of all containers running on the same host. Additionally, containers may

not provide sufficient isolation for certain sensitive workloads or applications with strict

security requirements. Furthermore, containers may face challenges when handling specific

types of workloads, such as those with strict real-time requirements or resource-intensive

applications that demand fine-grained control over hardware resources.

Sandboxing and its importance

To address the limitations of containers in terms of security, isolation and resource control,

container sandboxing comes into play. By encapsulating containers within microVMs, each

with its dedicated kernel instance, stronger isolation and security are achieved. The use of

microVMs ensures that any compromise within a specific microVM remains contained,

mitigating potential security risks from the shared underlying kernel. Moreover, container

sandboxing resolves the insufficient isolation for sensitive workloads by providing a secure

and isolated execution environment for individual containers within each microVM. With

container sandboxing, containers can overcome their limitations in terms of security, isolation,

and handling diverse workloads, making them more robust and suitable for a wide range of

applications across various domains.

Figure 95 presents the high-level concept of container sandboxing using kata-containers.

Figure 95: Container sandboxing

Sandboxing in Edge Devices

Edge devices are computing devices positioned in proximity to where data is generated or

consumed. Edge computing offers multiple advantages. Firstly, it reduces the need for data

transfer to centralized locations, resulting in reduced network congestion and latency. Local

data processing on edge devices enables faster response times, crucial for real-time. Secondly,

edge devices enhance privacy and data security. Processing data locally minimizes the risk of

data breaches during transmission, ensuring compliance with stringent privacy regulations.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 142/158

Lastly, edge devices improve reliability and availability. By distributing computing resources

across multiple devices, the system becomes less reliant on centralized infrastructure, making

it more resilient to network outages or connectivity issues.

Edge devices pose significant challenges in terms of limited computing resources and their

heterogeneous nature. Firstly, edge devices often have constrained processing power,

memory, and storage capacity, which can impact the performance and scalability of

applications deployed on them. Secondly, the heterogeneous nature of edge devices

introduces complexities. Different devices may have varying hardware capabilities, operating

systems, and available hardware accelerators. This requires developing specialized software

that can seamlessly run across diverse edge devices, accommodating their unique

characteristics. Developers must account for compatibility issues, adaptability, and the need

for device-specific optimizations. In addition to these challenges, multitenancy adds another

layer of complexity. When multiple deployments share the same edge devices, isolation

becomes crucial to ensure the security and integrity of each application and its data.

Sandboxing techniques, such as microVMs, can be employed to provide isolated execution

environments for individual deployments, mitigating the risk of interference or unauthorized

access.

Deploying multiple sandboxed containers in a single edge device can be challenging due to

resource limitations and potential application conflicts. Edge devices often have constrained

processing power, memory, and storage capacity, making it difficult to allocate sufficient

resources to each container without impacting performance. Concurrently running multiple

containers on the same device can lead to resource contention and interference, jeopardizing

isolation and security.

Container orchestration platforms, like Kubernetes, provide advanced management

capabilities for scaling and load balancing containers, ensuring efficient resource distribution.

Lightweight virtualization technologies, such as specialized container runtimes and microVMs,

enable isolation between containers and enhance security. By encapsulating each container's

execution environment, sandboxing techniques mitigate interference and unauthorized

access risks.

10.2 Sandboxed Containers

In the cloud environments and microservices age, containers have become very prominent,

which is why we need to safeguard their execution while keeping their speed and portability

intact. Kata Containers [125] is an open-source project that aims to provide a secure and

lightweight runtime environment for containerized applications. It leverages hardware

virtualization technologies to offer strong separation between containers while maintaining

the performance advantages of lightweight containers. Launching a container in a micro VM,

managed by a hypervisor, with its own kernel and root file system, ensures enhanced security

and isolation, defending the application from remote execution, memory leaks, or

unprivileged access, as well as protecting the host in case of untrusted or untested programs.

Table 19 summarizes the properties of various environments where processes run.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 143/158

Table 19: Process execution environment

Type Name Virtualized Containerized rootfs Rootfs
Device Type

Mount
Type

Host Host No No Host specific Host specific
Host
specific

VM root
Guest
(VM)

Yes No
rootfs inside
the guest
image

Hypervisor
specific

ext4

VM
container
root

Container Yes Yes
rootfs type
requested
by user

kataShared
virtioFS/
snapshotter

Kata Containers has a list of design requirements that its runtimes always guarantee to fulfil:

• OCI compatibility

• runc CLI compatibility

• CRI and Kubernetes support

• Multiple hardware architectures support

• Multiple hypervisor support

• Virtualization overhead reduction

• Networking & Storage compatibility

• I/O acceleration & scalability

• CI and structured logging

To address these requirements, the container runtime has been designed as a modular

system, using various components, each with a unique task to actualize an end-to-end

container spawn. The most prominent components are:

• Shim: containerd shimv2 implementation

o handles the shim process

o runs the ttRPC service in the shim side

• Service: services for containers

o implements the ctr shim protocol and interacts with runtimes through

messages.

• Runtimes: container runtimes

o addresses messages from task services to manage containers.

o contains the sandbox and the container manager.

• Resource: abstractions for resources

o sandbox resources: network, share-fs

o container resources: rootfs, volume, cgroup

• Hypervisor: manager for the VM

• Agent: used to communicate with the guest OS from the shim side

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 144/158

The runtime is compatible with the containerd runtime shimv2 architecture and complies with

the Open Container Initiative (OCI) runtime specification, making it Kubernetes-compatible

with either CRI-O or the equivalent containerd implementation. A single runtime shim is also

sufficient to manage all the OCI containers of an entire pod. Kata utilizes its agent, a daemon

process, to establish robust communication between the guest and the host through a vshock

socket operating on a ttRPC-based protocol. This approach enables the exchange of container

management commands as well as carry the standard I/O streams between a container and

its manager, eliminating also the need for multiple runtime calls. Such a structure ensures that

Kata remains agnostic to the sandbox mechanisms, allowing a plethora of different

hypervisors and different types of containers such as WebAssembly (Wasm) or Linux, not just

virt ones, suiting different demands and preferences.

Our job is to provide the container images and the VM resources (kernel and image) while

Kata handles the rest. After loading the kata configuration file, a set of shimv2 API functions

are called to commence the runtime instance, which starts the hypervisor. Inside the VM

rootfs resides the kata agent, which is also initiated as part of the VM boot, and after the

sandbox is ready, it gives the signal for the container spawn that uses the OCI bundle from the

container image and has been passed from the host to the guest beforehand, to be used as its

root file system. The container init process and all ensuing ones, as well as the I/O go through

the VMM interface, and the desired isolation has been achieved.

There are currently two different runtimes. The runtime is the default one, written in Golang,

while the runtime-rs, which utilizes Rust, is under development and was created by a need for

better container startup speed, resource consumption, stability, and security. In the context

of the SERRANO project, we ported AWS Firecracker to the Rust runtime. While the Go

runtime features plenty of different hypervisors (ACRN, Cloud Hypervisor, Firecracker, and

QEMU), the Rust runtime has the built-in option of Dragonball, the default hypervisor

explicitly implemented for it. In contrast, the rest of the hypervisor options, like QEMU and

Cloud Hypervisor, are not yet integrated.

Our implementation provides the ability to generate a working Firecracker hypervisor instance

that can spawn a VM and subsequently containers with all the needed features of a VMM

together with full networking functionality, the option to jail the sandbox and its resources

along with the capability to hot plug block devices, by patching them to pre-inserted dummy

drives, as Firecracker does not support filesystem sharing.

Additionally, we have integrated the vaccel-agent as a part of kata containers, both embedded

in the runtime and also as standalone execution, providing the option for extra computational

power if the workload requires it, through hardware acceleration, without involving direct

hardware/device access.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 145/158

10.3 Unikernels as Containers

To bridge the gap between containerized environments and unikernels, enabling seamless

integration with cloud-native architectures, we introduce urunc. Designed to fully leverage

the container semantics and benefit from the OCI tools and methodology, urunc aims to

become “runc for unikernels”, while offering compatibility with the Container Runtime

Interface (CRI). By relying on underlying hypervisors, urunc launches unikernels provided by

OCI-compatible images, allowing developers and administrators to package, deliver, deploy,

and manage their software using familiar cloud-native practices.

10.3.1 bima: unikernel container images

The first step to enable this functionality is to pack a unikernel into an OCI-compatible

container image. To achieve this, we build bima, a software tool that embeds a unikernel

image, metadata and its dependencies into a layered OCI container image.

Figure 96 shows how to pack a unikernel image into an OCI-compatible container image, using

bima.

Figure 96: Packing a unikernel as an OCI-compatible container image

bima builds an OCI-compatible Container Image from a special type of Containerfile that

supports a minimal set of instructions: FROM, COPY, and LABEL. The images built by bima are

intended to be run by urunc, so there is no compatibility with other container runtimes.

However, they can be pushed and pulled from generic container image registries, such as

Docker Hub and on-premise Harbor installations.

• FROM: It is not taken into account in the current implementation, but we plan to add

support for it.

• COPY: It works as in Dockerfiles. The current implementation supports only one copy

operation per "instruction" (think one copy per line).

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 146/158

• LABEL: All LABEL "instructions" are added as annotations to the Container image. They

are also added to a special urunc.json inside the container's rootfs.

Due to the tight coupling between bima and urunc, the few annotations required for urunc to

work are also required by bima.

The required annotations are the following:

• com.urunc.unikernel.unikernelType: The type of the unikernel (can be rumprun,

unikraft, etc)

• com.urunc.unikernel.hypervisor: The desired hypervisor to run the unikernel (e.g.

qemu, hedge, hvt)

• com.urunc.unikernel.binary: The unikernel binary to run

• com.urunc.unikernel.cmdline: The cmdline used to run the unikernel

The produced image's platform OS is always Linux, while the platform architecture is

automatically extracted from the ELF headers of the file defined

in com.urunc.unikernel.binary annotation.

A sample Containerfile should look like the following:

the FROM instruction will not be parsed
FROM scratch

COPY test-redis.hvt /unikernel/test-redis.hvt
COPY redis.conf /conf/redis.conf

LABEL com.urunc.unikernel.binary=/unikernel/test-redis.hvt
LABEL "com.urunc.unikernel.cmdline"='{"cmdline":"redis-server /data/conf/redis.conf",\
"net":{"if":"ukvmif0","cloner":"True","type":"inet","method":"static","addr":"10.0.66.

2","mask":"24","gw":"10.0.66.1"},\
"blk":{"source":"etfs","path":"/dev/ld0a","fstype":"blk","mountpoint":"/data"}}'
LABEL "com.urunc.unikernel.unikernelType"="rumprun"
LABEL "com.urunc.unikernel.hypervisor"="qemu"

10.3.2 urunc: a unikernel container runtime

Figure 97 presents a high-level architecture diagram of urunc and its interaction with the rest

of the components in a generic container environment.

To delve into the inner workings of urunc, the process of starting a new unikernel "container"

via containerd involves the following steps:

1. Containerd unpacks the image onto a devmapper block device and invokes urunc.

2. Urunc parses the image's rootfs and annotations, initiating the required setup

procedures. These include creating essential pipes for stdio and verifying the

availability of the specified vmm.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 147/158

3. Subsequently, urunc spawns a new process within a distinct network namespace and

awaits the completion of the setup phase.

4. Once the setup is finished, urunc executes the vmm process, replacing the container's

init process with the vmm process. The parameters for the vmm process are derived

from the unikernel binary and options provided within the "unikernel" image.

5. Finally, urunc returns the process ID (PID) of the vmm process to containerd, effectively

enabling it to handle the container's lifecycle management.

Figure 97: Running an unpacked container image as a unikernel

Unikernels hold great potential for utilization in serverless deployments. With their

lightweight nature, ultra-fast boot times, and singular purpose, unikernels align perfectly with

the requirements of short-lived, single-purpose serverless functions. By leveraging urunc,

developers can seamlessly deploy and manage unikernel-based serverless applications in a

cloud-native manner. Combining unikernels and serverless computing enables efficient

resource utilization, rapid scaling, and optimal performance, opening up possibilities for

building highly efficient and responsive cloud-native applications.

Incorporating unikernels into the container ecosystem through urunc unlocks the benefits of

both technologies. Unikernels provide better performance, security, and resource efficiency,

while urunc enables seamless integration into cloud-native environments by embracing

container semantics and OCI compatibility. This powerful combination empowers developers

to leverage the advantages of unikernels while utilizing the robust orchestration capabilities,

scalability, and ecosystem of cloud-native architectures.

10.4 microVM Optimizations

The virtualization layer is a vital component of the software system stack in edge computing.

Virtualization allows the abstraction of the underlying resources and enables the concurrent

execution of workloads from various tenants in an isolated environment. Nonetheless, this

comes at the cost of consuming more resources and adding overhead to the overall execution

of a workload. Consequently, the virtualization layer must be as lightweight as possible while

not compromising the isolation and fair execution among the different tenants.

Containers have dominated the cloud. Instead of virtualizing the entire system, containers use

Operating System mechanisms to provide the necessary isolation. Such a design requires

fewer resources than traditional virtualization since the virtualized environment is much

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 148/158

smaller. Furthermore, containers can achieve better performance, especially in the case of I/O

and boot times, since the applications can directly communicate with the host Operating

System without the mediation of any other software (e.g., hypervisor). On the other hand,

relying on pure software solutions by sharing the Operating System among different tenants

raises concerns regarding the level of isolation that containers provide. To this end, several

recent studies have proved that container isolation is much weaker than traditional

virtualization techniques. As a result, container deployment usually occurs inside virtual

machines, increasing the overall system software stack.

Under these circumstances, traditional system-level virtualization is the only feasible solution

in order to provide strong isolation. In system-level virtualization, a virtual machine monitor

(VMM) creates an entire virtual machine, and a different Operating System runs inside. In

most cases, the virtual machine monitor is a user-space application that interacts with the

host Operating System to create and manage the virtual machines. As a result, researchers

and engineers focus on reducing the overhead that the virtual machine monitor induces and

optimizing the I/O performance.

In this context, microVMs have emerged. Instead of using an entire Operating System inside a

virtual machine, microVMs use a minimal kernel and only the necessary components to

execute applications. The lightweight virtual machines are much more scalable since they can

quickly boot and shut down while reducing resource consumption. Such virtual machines also

require fewer functionalities from the underlying hypervisor. As a result, new hypervisors can

only support the necessary functionalities, specifically for microVMs, reducing their codebase

and the overhead of setting up the environment for the virtual machine.

VMM constant mode switching between the host OS kernel and user-space can be expensive

and redundant, but in some VMM designs, emulation of I/O devices makes it necessary.

However, especially in the cloud, the VMM and the VMs mostly use virtual devices for I/O. In

this context, the I/O request could be handled directly by the host OS without VMM

mediation. Vhost follows such an approach and allows VMM to offload the data plane to

another component, which could run inside the host OS. Vhost manages to improve the

overall I/O performance significantly. Nonetheless, with vhost, the guest-host communication

operates asynchronously, requiring a thread to poll for the latest data. Using threads for

polling might be fine on high-end servers with multicore CPUs, but it can create issues for edge

devices with limited cores. Thus, despite the benefits of vhost, such technology only applies

to some edge devices.

Virtual Machine Monitor

A hypervisor can be simple and minimal; the example of the solo5 unikernel showcases an

interesting aspect of I/O in hardware virtualization. When a privileged operation (like a

network I/O request) occurs in the guest, the system traps (VMExit) in the host kernel (KVM),

and then it is delivered back to the user space monitor. In turn, the monitor handles the

request from the guest and asks KVM to resume the guest execution. While this path seems

appropriate in the typical case (such as with general-purpose hypervisors, where different

architectures or devices are emulated), in the case of lightweight virtualization, an additional

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 149/158

and unnecessary switch from kernel space to user space incurs significant overhead. For

instance, during a network I/O request, the host kernel will return the control to the user

space monitor in order to handle the guest’s request, and the user space monitor will

eventually make a system call to transmit or receive the network packet, returning the control

to the host kernel. We want to explore how significant the overhead of these mode switches

is and find solutions that can substantially reduce the overhead.

To entirely remove this overhead, we designed and implemented HEDGE, a minimal and

simplistic VMM that resides inside the Linux kernel interacting directly with KVM without any

intervention from the user space. HEDGE is a simple dispatch handler in the kernel that

services a guest's needs. It provides an interface to the KVM API, a Virtual Machine execution

environment for each of the VMs spawned, generic device handling (network & block), and a

management layer to perform basic VM operations (create, destroy, dump console, etc.).

Figure 98: A unikernel running as a VM on HEDGE

A major challenge in this approach is that KVM targets user space processes, providing an API

through file descriptors. Moreover, using KVM's API from inside the kernel is impossible

because most needed functions are only used inside KVM. A way around this is to create a

glue code, which is some wrappers of KVM functions, between HEDGE and KVM to expose all

the needed functionality. For that reason, two small patches are required to be able to use

HEDGE. In all other cases, HEDGE works similarly to most user space VMMs. As in the case of

QEMU/KVM each VM is associated with one kernel thread, which implements the vCPU. The

thread's life cycle begins when the HEDGE receives a request to spawn a new VM and handles

all privileged operations (VMExits). A worth noting design choice that we made is that the new

kernel thread will have its own memory mappings (mm struct). Moreover, HEDGE allocates a

virtual memory, which will serve as the guest's memory, and maps it to a virtual address of

the newly created kernel thread's memory area. Thereby, the kernel thread mimics a user

space process, tricking KVM that it gets used from user space.

An important aspect of HEDGE's design is reducing the noise VMMs enforce to handle I/O

requests. Performance is one of this project's primary goals; to achieve that, the guest needs

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 150/158

to run uninterrupted as much as possible. Besides removing the mode switch overhead,

HEDGE handles I/O requests with the minimum possible overhead. The simple and minimal

hypercall Application Binary Interface (ABI) from Solo5 helps in that direction. Network

packages are formed from the guest, and when the I/O request occurs, the job of HEDGE is as

simple as forwarding the frame to the appropriate network interface. Receiving packages

follow the opposite route. Every guest is associated with a virtual interface (TAP), and we use

raw ethernet sockets to receive and send network packets on behalf of the guest. Regarding

block device support, HEDGE leverages the device mapper (DM) functionality to create a

virtual block device mapped to a physical device. Using the block read/write hypercalls from

Solo5 ABI, the guest makes I/O requests, which are translated to read/write calls in the kernel

to the DM block device. However, the plan is to add support for VirtIO in an effort to host

more unikernel frameworks and even basic functionality of a Linux guest.

As with every VMM, HEDGE provides its management interface. For the time being, it is

minimal and can handle basic VM operations such as start, stop, etc. One can easily manage

HEDGE both locally (user space) or remotely. In that manner, HEDGE can be easily managed

in cases where user space access is impossible, such as edge nodes. In both cases, HEDGE can

be managed by the following commands:

• Load: Loads a module (VM image) and prepares its deployment.

• Start: Executes the selected module.

• Stop: Stops the execution of a VM.

Moreover, a user can select which block or net device will be used, specify the command line

arguments for the guest, and dump the guest's console output. Furthermore, a user can access

statistics such as boot and setup times, I/O operations (both disk and network), and generic

stats regarding HEDGE, such as the number of VMs, memory consumption, and more.

Someone can interact with the management interface locally via a specialized filesystem in

the Linux kernel, procfs. When HEDGE is loaded, two new files and one directory are created

under /proc directory:

• /proc/monitor: I/O file that can be used to control the hypervisor and its virtual

machines.

• /proc/vmcons/VMID: I/O file which keeps the output of the virtual machine.

• /proc/vmstats/VMID: A directory which keeps stats for hypervisor, and virtual

machines

On the other hand, one can interact with the network management interface. In that case, the

commands are sent over UDP, while the files can be transmitted over tftp.

In the context of the SERRANO platform, we have enhanced HEDGE to support generic Linux

distributions as well. However, as our focus is on Unikernels, we have ported and successfully

executed unikraft [123], rumprun [124], solo5, and OSv unikernels. Additionally, we are in the

process of integrating HEDGE with urunc to support the secure and efficient end-to-end

deployment of workloads through the SERRANO orchestrator to edge devices.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 151/158

10.5 Hardware Acceleration

In the context of edge devices, utilizing specialized hardware components or accelerators to

offload and enhance specific computing tasks plays a vital role in boosting performance and

efficiency. By leveraging hardware accelerators like GPUs or FPGAs, sandboxed containers can

delegate computationally intensive tasks, leading to swifter and more efficient execution. This

approach not only improves the overall application performance but also optimizes the

utilization of resources on edge devices. Hardware acceleration empowers edge nodes to

effectively handle challenging workloads, such as real-time data processing, AI inferencing, or

video transcoding. The result is improved responsiveness, decreased latency, and increased

energy efficiency, ultimately enhancing the capabilities of edge computing.

In SERRANO, we build and enhance the vAccel framework to enable interoperable hardware

acceleration to workloads deployed as container images in various modes of execution:

containers, sandboxed containers (in microVMs), and unikernels. More details on the vAccel

framework can be found in D4.4 (M30).

The integration of the vAccel framework with the custom container runtimes we build in the

context of T5.5 is twofold:

• First, we integrate vAccel to the container runtimes we build and enhance (kata-

containers) to support hardware acceleration functionality in instances that do not

have direct access to hardware accelerator devices.

• Second, we enable vAccel in a multi-tenant Serverless environment using OpenFaaS,

K8s, and our custom container runtimes.

The integration of vAccel to kata-containers has been implemented in both runtimes (Go and

Rust), as mentioned in Section 10.2. In the Go runtime, we only support AWS Firecracker as

the sandboxing mechanism, whereas in the Rust runtime we enable support for all available

hypervisors.

Working towards the final version of the SERRANO integration platform, we will showcase the

end-to-end serverless instantiation of hardware-accelerated kernels, as well as the

containerized mode of deployment with and without vAccel.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 152/158

11 Conclusions

In this deliverable, we present the work of all tasks in WP5, with a particular focus on the

second phase of the work package implementation (M16-31). Specifically, we elaborate on

the final design and developments for: (i) the ARDIA (A Resource reference model for Data-

Intensive Applications) modelling framework, (ii) AI-Enhanced Service Orchestrator, (iii) multi-

objective resource allocation and service orchestration optimization algorithms, (iv) AI/ML-

driven service assurance and re-optimization mechanisms, (v) energy and resource-aware

flow mappings, (vi) novel network and cloud telemetry framework, (vii) hierarchical resource

orchestration, and (viii) lightweight virtualization mechanisms.

The provided developments are integral parts of the cognitive orchestration and transparent

deployment mechanisms of the SERRANO complete platform prototype that will be used for

the final performance evaluations.

Overall, this document presents the research and development activities of WP5 and builds

upon the initial developments reported in M15 at deliverables D5.1, D5.2, and D5.3 to provide

the remaining functionality and implement the complete interfaces for inter-component

communication.

The above developments will be further enhanced as we move towards the final integration

of the related components into the final release of the SERRANO integrated platform.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 153/158

12 References

[1] Cao, Keyan, et al. "An overview on edge computing research." IEEE access 8 (2020): 85714-85728

[2] Qasaimeh, Murad, et al. "Comparing energy efficiency of CPU, GPU and FPGA implementations for vision

kernels." 2019 IEEE international conference on embedded software and systems (ICESS). IEEE, 2019

[3] Alveo U50 Data Center Accelerator Card: https://www.xilinx.com/products/boards-and-

kits/alveo/u50.html

[4] García-Martín, Eva, et al. "Estimation of energy consumption in machine learning." Journal of Parallel

and Distributed Computing 134 (2019): 75-88

[5] Kubernetes YAML Generator: https://k8syaml.com/

[6] Alien4Cloud: https://alien4cloud.github.io/index.html

[7] TOSCA: https://www.oasis-open.org/committees/tosca/

[8] Pallewatta, S., Kostakos, V., & Buyya, R. (2019). Microservices-based IoT application placement within

heterogeneous and resource constrained fog computing environments. UCC 2019 - Proceedings of the

12th IEEE/ACM International Conference on Utility and Cloud Computing, 71–81.

https://doi.org/10.1145/3344341.3368800

[9] Santoro, D., Zozin, D., Pizzolli, D., de Pellegrini, F., & Cretti, S. (2018). Foggy: A Platform for Workload

Orchestration in a Fog Computing Environment. https://doi.org/10.1109/CloudCom.2017.62

[10] Mutlag, A. A., Ghani, M. K. A., Mohammed, M. A., Lakhan, A., Mohd, O., Abdulkareem, K. H., & Garcia-

Zapirain, B. (2021). Multi-agent systems in fog–cloud computing for critical healthcare task management

model (CHTM) used for ECG monitoring. Sensors, 21(20). https://doi.org/10.3390/s21206923

[11] Alfakih, T., Hassan, M. M., Gumaei, A., Savaglio, C., & Fortino, G. (2020). Task offloading and resource

allocation for mobile edge computing by deep reinforcement learning based on SARSA. IEEE Access, 8,

54074–54084. https://doi.org/10.1109/ACCESS.2020.2981434

[12] Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., & Shen, X. (2021). Delay-Aware Microservice

Coordination in Mobile Edge Computing: A Reinforcement Learning Approach. IEEE Transactions on

Mobile Computing, 20(3), 939–951. https://doi.org/10.1109/TMC.2019.2957804

[13] Chen, L., Xu, Y., Lu, Z., Wu, J., Gai, K., Hung, P. C. K., & Qiu, M. (2021). IoT Microservice Deployment in

Edge-Cloud Hybrid Environment Using Reinforcement Learning. IEEE Internet of Things Journal, 8(16),

12610–12622. https://doi.org/10.1109/JIOT.2020.3014970

[14] Bertsekas, D. P. (2010). Rollout Algorithms for Discrete Optimization: A Survey.

[15] Bertsekas, D. P., Tsitsiklis, J. N., Wu, C., Bertsekas, D. P., Tsitsiklis, J. N., & Wu, C. (1997). Rollout Algorithm

For Combinatorial Optimization ROLLOUT ALGORITHMS FOR COMBINATORIAL OPTIMIZATION

[16] Sallam, G., & Ji, B. (2019). Joint Placement and Allocation of VNF Nodes with Budget and Capacity

Constraints. http://arxiv.org/abs/1901.03931

[17] J. Singh, J. Powles, T. Pasquier, and J. Bacon, “Data flow management and compliance in cloud

computing,” IEEE Cloud Computing, vol. 2, no. 4, pp. 24–32, Jul. 2015.

[18] Kata Containers, “The speed of containers, the security of VMs,” Available online:

https://katacontainers.io/

[19] A. Madhavapeddy et al., “Unikernels,” ACM SIGARCH Computer Architecture News, vol. 41, no. 1, pp.

461–472, 2013.

[20] Xiong and H. Chen, “Challenges for Building a Cloud Native Scalable and Trustable Multi-tenant AIoT

Platform,” in IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical

Papers, ICCAD, Nov. 2020.

[21] S. Meng et al., “Security-Aware Dynamic Scheduling for Real-Time Optimization in Cloud-Based

Industrial Applications,” IEEE Trans Industr Inform, vol. 17, no. 6, pp. 4219–4228, Jun. 2021.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 154/158

[22] Y. Wang, W. Zhang, H. Deng, and X. Li, “Efficient Resource Allocation for Security-Aware Task Offloading

in MEC System Using DVS,” Electronics (Switzerland), vol. 11, no. 19, Oct. 2022.

[23] Z. Li, V. Chang, H. Hu, D. Yu, J. Ge, and B. Huang, “Profit maximization for security-aware task offloading

in edge-cloud environment,” J Parallel Distrib Comput, vol. 157, pp. 43–55, Nov. 2021.

[24] M. Sabt, M. Achemlal and A. Bouabdallah, "Trusted Execution Environment: What It is, and What It is

Not," 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015, pp. 57-64

[25] S. Kuenzer et al., “Unikraft: Fast, Specialized Unikernels the Easy Way,” arXiv.org, Apr. 21, 2021.

[26] A. Alexandru, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, D. M. Popa. "Firecracker:

Lightweight Virtualization for Serverless Applications." In NSDI, vol. 20, pp. 419-434. 2020.

[27] Kretsis, A., et al.: SERRANO: transparent application deployment in a secure, accelerated and cognitive

cloud continuum. In: 2021 IEEE International Mediterranean Conference on Communications and

Networking (MeditCom). pp. 55–60. IEEE, Athens, Greece (2021).

[28] Kokkinos, P., Margaris, D., Spiliotopoulos, D.: A Quality of Experience Illustrator User Interface for Cloud

Provider Recommendations. In: HCI International 2022 Posters. HCII 2022. Communications in

Computer and Information Science, vol 1580. Springer, Cham. (2022).

[29] Clemm, A., Ciavaglia, L., Granville, L. Z., Tantsura, J. (2020). Intent-based networking-concepts and

definitions. IRTF draft work-in-progress.: "Intent-based networking-concepts and definitions." IRTF draft

work-in-progress (2020).

[30] Hong, C. H., Varghese, B.: Resource management in fog/edge computing: a survey on architectures,

infrastructure, and algorithms, ACM Computing Surveys (CSUR), 52(5), 1-37, (2019).

[31] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction 2nd edn. The MIT Press Cambridge,

Massachusetts, USA (2018).

[32] Aihara,N., Adachi, K., Takyu, O., Ohta, M., Fujii, T.: Q-Learning Aided Resource Allocation and

Environment Recognition in LoRaWAN With CSMA/CA, in IEEE Access, vol. 7, pp. 152126-152137, (2019).

doi: 10.1109/ACCESS.2019.2948111

[33] Rezwan, S., Choi, W.: Priority-Based Joint Resource Allocation With Deep Q-Learning for Heterogeneous

NOMA Systems, in IEEE Access, vol. 9, pp. 41468-41481, (2021). doi: 10.1109/ACCESS.2021.3065314

[34] Dab, B., Aitsaadi, N.,Langar, R.: Q-Learning Algorithm for Joint Computation Offloading and Resource

Allocation in Edge Cloud, IFIP/IEEE Symposium on Integrated Network and Service Management (IM),

Arlington, VA, USA, pp. 45-52, (2019).

[35] Ning, Z., Wang, X., Rodrigues, J. J. P. C., Xia, F.: Joint computation offloading power allocation and

channel assignment for 5G-enabled traffic management systems, IEEE Trans. Ind. Informat., vol. 15, no.

5, pp. 3058-3067, (May 2019).

[36] J. Kong, J., Wu, Z. -Y., Ismail, M., Serpedin, E., Qaraqe, K. A.: Q-Learning Based Two-Timescale Power

Allocation for Multi-Homing Hybrid RF/VLC Networks, in IEEE Wireless Communications Letters, vol. 9,

no. 4, pp. 443-447, (April 2020), doi: 10.1109/LWC.2019.2958121

[37] Qiu,C., Yao, H., Yu, F. R., Xu, F., Zhao, C.: Deep Q-Learning Aided Networking, Caching, and Computing

Resources Allocation in Software-Defined Satellite-Terrestrial Networks in IEEE Transactions on

Vehicular Technology, vol. 68, no. 6, pp. 5871-5883, (June 2019), doi: 10.1109/TVT.2019.2907682

[38] Valkanis, A., Beletsioti, G. A., Nicopolitidis, P., Papadimitriou, G., Varvarigos, E.: Reinforcement learning

in traffic prediction of core optical networks using learning automata, IEEE International Conference on

Communications, Computing, Cybersecurity, and Informatics (CCCI) (pp. 1-6), (2020).

[39] AlQerm, I., Pan, J.: Enhanced Online Q-Learning Scheme for Resource Allocation with Maximum Utility

and Fairness in Edge-IoT Networks, in IEEE Transactions on Network Science and Engineering, vol. 7, no.

4, pp. 3074-3086, (1 Oct.-Dec. 2020), \doi: 10.1109/TNSE.2020.3015689

[40] Eshratifar, A. E., Pedram, M.: Energy and performance efficient computation offloading for deep neural

networks in a mobile cloud computing environment. In: Proceedings on Great Lakes Symp. VLSI

(GLSVLSI), pp. 111-116. Chicago, IL, USA (2018), https://doi.org/10.1145/3194554.3194565

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 155/158

[41] Zheng, T., Wan, J., Zhang, J., Jiang, C.: Deep reinforcement learning-based workload scheduling for edge

computing. Journal of Cloud Computing, 11(1), 3. (2022).

[42] Zeng, D.,Gu, L.,Pan, S.,Cai., J, Guo, S,: Resource Management at the Network Edge: A Deep

Reinforcement Learning Approach, in IEEE Network, vol. 33, no. 3, pp. 26-33, May/June (2019), doi:

10.1109/MNET.2019.1800386.

[43] Pang, L., Yang, C., Chen, D., Song, Y., Guizani, M.:A survey on intent-driven networks, IEEE Access, 8,

22862-22873, (2020).

[44] Abbas, K., Afaq, M., Ahmed Khan, T., Rafiq, A., Song, W. C.: Slicing the core network and radio access

network domains through intent-based networking for 5g networks. Electronics, 9(10), 1710. (2020).

[45] Mehmood, K., Kralevska, K., Palma, D.: Intent-driven Autonomous Network and Service Management

in Future Networks: A Structured Literature Review", (2021).

[46] Chao, W., Horiuchi, S. Intent-based cloud service management. In 2018 21st Conference on Innovation

in Clouds, Internet and Networks and Workshops (ICIN) (pp. 1-5). IEEE. (February 2018).

[47] Kang, J. M., Lee, J., Nagendra, V., Banerjee, S. LMS: Label management service for intent-driven cloud

management. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM) (pp.

177-185). IEEE (May 2017).

[48] Liao, H., Zhou, Z., Kong, W., Chen, Y., Wang, X., Wang, Z.,Al Otaibi, S.:Learning-based intent-aware task

offloading for air-ground integrated vehicular edge computing. IEEE Transactions on Intelligent

Transportation Systems, 22(8), 5127-5139, (2020).

[49] Wu, C., Horiuchi, S., Murase, K., Kikushima, H. and Tayama, K. Intent-driven cloud resource design

framework to meet cloud performance requirements and its application to a cloud-sensor system.

Journal of Cloud Computing, 10(1), 1-22, (2021).

[50] He, L., Qian, Z.: Intent-based resource matching strategy in cloud. Information Sciences, 538, 1-

18,(2020).

[51] Leivadeas, A.,Falkner, M.: VNF placement problem: a multi-tenant intent-based networking approach.

In 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN) (pp.

143-150). IEEE. (March 2021).

[52] Amazon Instance Types, https://aws.amazon.com/ec2/instance-types/

[53] M. Barika, S. Garg, A. Y. Zomaya, L. Wang, A. V. Moorsel, and R. Ranjan, “Orchestrating big data analysis

workflows in the cloud: research challenges, survey, and future directions,” ACM Computing Surveys

(CSUR), vol. 52, no. 5, pp. 1–41, 2019.

[54] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Advances in

neural information processing systems, vol. 30, 2017.

[55] M. Eisen and A. Ribeiro, “Optimal wireless resource allocation with random edge graph neural

networks,” ieee transactions on signal processing, vol. 68, pp. 2977–2991, 2020.

[56] W. Li, H. Wang, X. Zhang, D. Li, L. Yan, Q. Fan, Y. Jiang, and R. Yao, “Security service function chain based

on graph neural network,” Information, vol. 13, no. 2, p. 78, 2022.

[57] X. Deng, J. Sun, and J. Lu, “Graph neural network-based efficient subgraph embedding method for link

prediction in mobile edge computing,” Sensors, vol. 23, no. 10, 2023.

[58] K. Yang, H. Ma, and S. Dou, “Fog intelligence for network anomaly detection,” IEEE Network, vol. 34, no.

2, pp. 78–82, 2020.

[59] O. Ibidunmoye, F. Hernandez-Rodriguez, and E. Elmroth, “Performance anomaly detection and

bottleneck identification,” ACM Comput. Surv., vol. 48, no. 1, jul 2015.

[60] C. Sauvanaud, M. Kaaniche, K. Kanoun, K. Lazri, and G. Da Silva Silvestre, “Anomaly detection and

diagnosis for cloud services: Practical experiments and lessons learned,” Journal of Systems and

Software, vol. 139, pp. 84–106, 2018.

[61] [A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. d. Melo, C. Gutierrez, S. Kirrane, J. E. L. Gayo, R.

Navigli, S. Neumaier et al., “Knowledge graphs,” Synthesis Lectures on Data, Semantics, and Knowledge,

vol. 12, no. 2, pp. 1–257, 2021.

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 156/158

[62] M. Barshan, H. Moens, S. Latre, B. Volckaert, and F. De Turck, “Algorithms for network-aware application

component placement for cloud resource allocation,” Journal of Communications and Networks, vol.

19, no. 5, pp. 493–508, 2017.

[63] W. Tarneberg, A. Mehta, E. Wadbro, J. Tordsson, J. Eker, M. Kihl, and E. Elmroth, “Dynamic application

placement in the mobile cloud network,” Future Generation Computer Systems, vol. 70, pp. 163–177,

2017.

[64] G. Sun, D. Liao, V. Anand, D. Zhao, and H. Yu, “A new technique for efficient live migration of multiple

virtual machines,” Future Generation Computer Systems, vol. 55, pp. 74–86, 2016.

[65] T. Miyazawa, V. P. Kafle, and H. Harai, “Reinforcement learning based dynamic resource migration for

virtual networks,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),

2017, pp. 428–434.

[66] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba, “Topology-aware prediction of virtual

network function resource requirements,” IEEE Transactions on Network and Service Management, vol.

14, no. 1, pp. 106–120, 2017.

[67] I. Robinson, J. Webber, and E. Eifrem, Graph databases: new opportunities for connected data. ” O’Reilly

Media, Inc.”, 2015.

[68] “Cypher query language - developer guides.” [Online]. Available: https://neo4j.com/developer/cypher/

[69] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Advances in

neural information processing systems, vol. 30, 2017.

[70] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,” ArXiv, vol.

abs/1903.02428, 2019.

[71] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” Advances in neural

information processing systems, vol. 31, 2018.

[72] K. Yang, Y. Liu, Z. Zhao, X. Zhou, and P. Ding, “Graph attention network via node similarity for link

prediction,” The European Physical Journal B, vol. 96, no. 3, p. 27, Mar 2023.

[73] “Networkx documentation.” [Online]. Available: https://networkx.org/

[74] “Neo4j python driver documentation.” [Online]. Available: https://neo4j.com/docs/api/python-

driver/current/

[75] “Neo4j documentation.” [Online]. Available: https://neo4j.com/

[76] S. Narayan, “The generalized sigmoid activation function: Competitive supervised learning,” Inf. Sci., vol.

99, no. 1–2, p. 69–82, jun 1997.

[77] Dask Python parallel computing: https://www.dask.org

[78] Prometheus - Monitoring system & time series database: https://prometheus.io

[79] Elasticsearch Platform: https://www.elastic.co

[80] pandas - Python Data Analysis Library: https://pandas.pydata.org/

[81] scikit-learn - machine learning in Python: https://scikit-learn.org/stable/

[82] Joblib: joblib.readthedocs.io

[83] Open Neural Network Exchange: https://onnx.ai/

[84] Apache Kafka: kafka.apache.org/

[85] L. Shapley, A Value for n-Person Games, Princeton University Press, 2016

[86] N. Takeishi, Y. Kawahara, On Anomaly Interpretation via Shapley Values, 2020

[87] F. T. Liu, Isolation fores. Eighth IEEE International Conference on Data Mining, (pp. 413-422), 2008

[88] F. T. Liu, Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data, 2012

[89] Z. X. He, Discovering cluster-based local outliers. Pattern Recognition Letters, 24(9), 1641-1650, 2003

[90] R. L. Yeo, Unsupervised anomaly detection using variational auto- encoder based feature extraction.

IEEE International Conference on Prognostics and Health Management (ICPHM), 2019

[91] Cerdà-Alabern Llorenç, Gabriel Iuhasz, Gabriele Gemmi, Anomaly detection for fault detection in

wireless community networks using machine learning. Computer Communications, 202, 191-203, 2023

[92] Flask 2.0: https://flask.palletsprojects.com/en/2.0.x/

https://neo4j.com/developer/cypher/

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 157/158

[93] Pika: https://pika.readthedocs.io/en/stable/

[94] PyQt: https://riverbankcomputing.com/software/pyqt/intro

[95] SERRANO GitHub repository: https://github.com/ict-serrano

[96] SERRANO Harbor container registry: https://serrano-harbor.rid-intrasoft.eu

[97] Kubernetes kube-state-metrics: https://github.com/kubernetes/kube-state-metrics

[98] Kubernetes metrics-server: https://github.com/kubernetes-sigs/metrics-server

[99] Prometheus node exporter: https://github.com/prometheus/node_exporter

[100] Grafana: The open observability platform: https://grafana.com

[101] InfluxDB: Open Source Time Series Database: https://www.influxdata.com/developers/

[102] MongoDB: https://docs.mongodb.com

[103] Minio - High Performance Object Storage: https://min.io

[104] etcd: https://etcd.io

[105] Slurm workload manager: https://slurm.schedmd.com/

[106] OpenPBS: https://www.openpbs.org/

[107] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina.

Microservices: Yesterday, Today, and Tomorrow, pages 195–216. Springer International Publishing,

Cham, 2017

[108] J. Thönes. Microservices. IEEE Software, 32(1):116–116, Jan 2015.

[109] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust. Mobile-edge computing

architecture: The role of mec in the in- ternet of things. IEEE Consumer Electronics Magazine, 5:84–91,

10 2016

[110] Cloud Native Computing Foundation, “Frequently Asked Questions”,

https://www.cncf.io/about/faq

[111] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou. A measurement study on linux container

security: Attacks and countermeasures. In Proceedings of the 34th Annual Computer Security

Applications Conference, ACSAC ’18, pages 418–429, New York, NY, USA, 2018. ACM

[112] AWS Lambda. https://aws.amazon.com/lambda. Accessed: 2022-02-01

[113] Firecracker: Lightweight Virtualization for Serverless Computing.

https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing

[114] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar, J. Menezes

Carreira, K. Krauth, N. Yadwadkar, J. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson. Cloud

programming simplified: A berkeley view on serverless computing. Technical Report UCB/EECS-2019-3,

EECS Department, University of California, Berkeley, Feb 2019

[115] http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html

[116] D. Williams, R. Koller, M. Lucina, and N. Prakash. Unikernels as processes. In Proceedings of the

ACM Symposium on Cloud Computing, SoCC ’18, pages 199–211, New York, NY, USA, 2018. ACM

[117] Modern Hypervisor for the Cloud. https://github.com/intel/nemu

[118] crosvm VMM: https://google.github.io/crosvm/

[119] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith, S. Hand, J.

Crowcroft, Unikernels: Library Operating Systems for the Cloud, ASPLOS, 2013

[120] The Solo5 Unikernel: https://github.com/solo5/solo5

[121] F. Bellar, QEMU a Fast and Portable Dynamic Translator, Conference: Proceedings of the

FREENIX Track: 2005 USENIX Annual Technical Conference, April 10-15, Anaheim, CA, USA, 2005

[122] A. Agache, M. Brooker, A. Florescu; A Iordache, A. Liguori, R. Neugebauer, P. Piwonka, D. Popa,

Firecracker: Lightweight Virtualization for Serverless Applications, 17th USENIX Symposium on

Networked Systems Design and Implementation, 2020

D5.4 - Intelligent Service and Resource Orchestration Mechanisms

ict-serrano.eu 158/158

[123] S. Kuenzer, V. Bădoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain, F. Huici, Unikraft: fast,

specialized unikernels the easy way. Sixteenth European Conference on Computer Systems EuroSys '21.

New York, NY, USA: Association for Computing Machinery.

doi:https://doi.org/10.1145/3447786.3456248

[124] A. Kantee, A., J. Cormack, Rump Kernels: No OS? No Problem! login Usenix Mag, 2014

[125] Kata Containers, an open source container runtime: https://katacontainers.io

