
https://ict-serrano.eu/ 1/123

TRANSPARENT APPLICATION DEPLOYMENT IN A SECURE,

ACCELERATED AND COGNITIVE CLOUD CONTINUUM

Grant Agreement no. 101017168

Deliverable D6.8

Final version of business, end user and technical

evaluation

Programme: H2020-ICT-2020-2

Project number: 101017168

Project acronym: SERRANO

Start/End date: 01/01/2021 – 31/12/2023

Deliverable type: Report

Related WP: WP6

Responsible Editor: INB

Due date: 31/12/2023

Actual submission date: 14/01/2024

Dissemination level: Public

Revision: Final

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 2/123

Revision History

Date Editor Status Version Changes

09.06.2023 INB Draft 0.1 Initial version with Table of Contents

28.11.2023 INB Draft 0.2 Update in contents

06.12.2023 UVT Draft 0.2 Contribution to Section 3.4

12.12.2023 ICCS Draft 0.2 Contribution to Section 3 and Section 3.3

14.12.2023 NBFC Draft 0.2 Contribution to Section 4.3

19.12.2023 INB Draft 0.3 Integrate and edit provided contributions

20.12.2023 ICCS Draft 0.4 Contribution to Section 3.1, 3.2 and 3.4

20.12.2023 AUTH Draft 0.4 Contribution to deliverable

20.12.2023 CC Draft 0.4 Contribution to Section 4

22.12.2023 INB Draft 0.5 Integrate the contributions from the partners

22.12.2023 INTRA Draft 0.5 Contribution to Section 7.7

22.12.2023 IDEKO Draft 0.5

27.12.2023 INB Draft 0.6 Updated summary

28.12.2023 INB Draft 0.7 Updated Section 5.2

02.01.2024 INB Draft 0.8 Update input from UVT and AUTH.

03.01.2024 ICCS Draft 0.9 Updated Section 3 and 7

07.01.2024 INB Draft 1.0 Update Section 5. Fix internal refences to figures,
tables and sections.

10.01.2024 INB Draft 1.1 Fix formatting.

12.01.2024 INB Final 1.2 Address review comments.

Author List

Organisation Author

INB Maria Oikonomidou, Ferad Zyulkyarov

UVT Gabriel Iuhasz, Adrian Spataru

ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Emmanouel Varvarigos, P.

Makris, K. Steriotis, V. Zagorakis

NBFC Anastasios Nanos

INNOV Efstathios Karanastasis, Efthymios Chondrogiannis, Andreas Litke,

Filia Filippou

AUTH Dimosthenis Masouros, Argyris Kokkinis, Kostas Siozios

CC Marton Sipos, Marcell Fehér, Daniel E. Lucani

INTRA Makis Karadimas, Paraskevas Bourgos

IDEKO Julen Aperribay, Javier Martín, Aitor Fernández

Internal Reviewers

Aitor Fernández, Javier Martín (IDEKO)

Kassie Papasotiriou, Stelios Pantelopoulos (INNOV)

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 3/123

Abstract: This deliverable (D6.8) is the second of two reports that are scheduled to present

the business, end user and technical evaluation outcomes of the tasks 6.3, 6.4 and 6.5. It

presents the final integration, deployment and the evaluation of the three SERRANO use cases

(i.e., Secure Storage, FinTech Analysis, and Anomaly Detection in Manufacturing Settings) into

the SERRANO platform, which we refer to as platform and use cases demo. The activities

related to demonstrating the use case applications started with their adaptation for the

SERRANO platform. These adaptation and preliminary integration and deployment activities

were reported in D6.4. This report continues with the final integration, deployment,

evaluation and fine tuning of the use case applications running on the SERRANO platform. It

includes the final results obtained from the production-ready demos deployed and executed

on the cloud cluster running the SERRANO platform.

Keywords: SERRANO platform, integrated components, development environment,

integration environment, software deployment, verification, validation

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 4/123

Disclaimer: The information, documentation and figures available in this deliverable are written by the

SERRANO Consortium partners under EC co-financing (project H2020-ICT-101017168) and do not

necessarily reflect the view of the European Commission. The information in this document is provided

“as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The

reader uses the information at his/her sole risk and liability.

Copyright © 2023 the SERRANO Consortium. All rights reserved. This document may not be copied,

reproduced or modified in whole or in part for any purpose without written permission from the

SERRANO Consortium. In addition to such written permission to copy, reproduce or modify this

document in whole or part, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 5/123

Table of Contents

1 Executive Summary ... 14

2 Introduction ... 15

2.1 Purpose of this document ... 15

2.2 Document structure .. 15

2.3 Audience .. 16

3 SERRANO Platform Demo .. 17

3.1 Demo-1: Intent-driven operation and transparent application deployment 18

3.2 Demo-2: On-demand seamless execution of SERRANO-accelerated kernels 29

3.3 Demo-3: Intent-driven operation and automatic storage policy creation 34

3.4 Demo-4: Service Assurance and Remediation .. 41

4 Secure Storage Use Case ... 51

4.1 Use case description .. 51

4.2 Demo ... 52

4.2.1 Mid-project Secure Storage Demonstrator .. 52

4.2.2 Developer web portal and cloud performance .. 53

4.2.3 TLS offloading ... 56

4.3 Evaluation .. 57

5 FinTech Use Case ... 70

5.1 Use case description .. 70

5.2 Demo ... 71

5.2.1 Simulating Financial Portfolio Analysis: Exploring DPO Application on SERRANO

platform. 72

5.2.2 Optimizing Investment Portfolios: Balancing Risk and Reward 75

5.2.3 Local vs Accelerated DPO Performance Analysis Across Diverse Datasets 77

5.3 Evaluation .. 78

6 Anomaly Detection in Manufacturing Settings Use Case .. 81

6.1 Use case description .. 81

6.2 Demo ... 83

6.2.1 D1 - Application deployment into SERRANO platform using Alien4Cloud 83

6.2.2 D2. Acceleration Mechanisms .. 85

6.3 Evaluation .. 86

7 SERRANO Project KPIs ... 99

7.1 KPIs related to general project requirements ... 99

7.2 KPIs related to edge, cloud and HPC acceleration requirements 101

7.3 KPIs related to secure infrastructure requirements .. 105

7.4 KPIs related to network and cloud telemetry framework requirements 107

7.5 KPIs related to resource orchestration and service assurance 110

7.6 KPIs related to the ARDIA Framework and service orchestration requirements.... 115

7.7 KPIs related to integration and platform development requirements 118

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 6/123

8 Summary .. 121

9 References ... 122

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 7/123

List of Figures

Figure 1: SERRANO testbed setup for platform evaluation Demo-1. 19

Figure 2: Grafana dashboard for Demo-1. ... 21

Figure 3: Position Service defined visualised in Alien4Cloud Topology Editor. 22

Figure 4: Intent configuration in Alien4Cloud Topology Editor. .. 22

Figure 5: Location selection, abstract service matching and deploy button. 23

Figure 6: Runtime View for the deployed application in Alien4Cloud. 24

Figure 7: Runtime properties inspection for SERRANO deployed components. 24

Figure 8: SERRANO Deployment objects and orchestration mechanisms logs. 26

Figure 9: Deployment of position service microservices for the first deployment scenario

(DI1.1). .. 27

Figure 10: Memory usage of application microservices. ... 28

Figure 11: Data exchange through the MQTT among the microservices of the Position Service

application. ... 28

Figure 12: SERRANO testbed setup for platform evaluation demo-2...................................... 30

Figure 13: Grafana dashboard for Demo-2. ... 31

Figure 14: Demo-3 web-based application. ... 31

Figure 15: Kernel executions and orchestration mechanisms logs: (a) the first execution

request, (b) the second request. .. 33

Figure 16: Available kernel execution requests. .. 33

Figure 17: Progress of kernel execution requests. ... 33

Figure 18: End-to-end kernel execution time as reported by the telemetry services. 34

Figure 19: SERRANO testbed setup for platform evaluation demo-3...................................... 35

Figure 20: Cloud storage locations benchmarking. .. 36

Figure 21: Grafana dashboard for Demo-3. ... 37

Figure 22: Demo-3 web-based application. ... 37

Figure 23: Storage policies description for Demo-3. .. 38

Figure 24: Created secure storage policies and orchestration mechanisms logs. 38

Figure 25: Upload data to bucket in SERRANO Secure Storage service. 39

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 8/123

Figure 26: Progress of download and upload operations. ... 39

Figure 27: Grafana dashboard - Real-time telemetry data from SERRANO edge storage devices.

 .. 40

Figure 28: Download data from bucket in SERRANO Secure Storage service. 40

Figure 29: Performance evaluation of the two secure storage policies. 41

Figure 30: SERRANO testbed setup for platform evaluation Demo-4. 42

Figure 31: Example EDE configuration file. .. 44

Figure 32: Event Detection Engine REST API Interface. ... 45

Figure 33: Example job status response... 46

Figure 34: EDE Grafana Dashboard and annotations. .. 46

Figure 35: Root cause analysis - Feature Ranking .. 47

Figure 36: Orchestration mechanisms logs and analysis of detected anomalous event

detection. ... 48

Figure 37: SERRANO Deployment objects and orchestration mechanisms logs. 49

Figure 38: Grafana dashboard – Position service microservices before and after the automatic

redeployment. .. 50

Figure 39: Secure Storage UC components. ... 51

Figure 40: M20 Secure storage demonstrator: overview of sharing files using s3fs and FUSE

and the SERRANO-enhanced Storage Service. ... 53

Figure 41: Developer portal – second step of the new storage policy creation wizard. 54

Figure 42: Cloud performance website showing map of EU cloud storage locations and their

relative performances. ... 55

Figure 43: Cloud performance website showing detailed information of OVH Strasbourg and

Frankfurt locations for the month of December 2023... 56

Figure 44: TLS offloading demo showing the outputs of the two instances of the Gateway (top

left: no TLS, bottom left: kernel TLS) client application (top right) and the CPU utilisation

on the machine hosting the instances (bottom right). .. 57

Figure 45: Measurement setup for evaluating read and write performance of different storage

policies. ... 59

Figure 46: Time taken to upload a file, comparing a cloud-only an edge-only and a hybrid

storage policy. .. 60

Figure 47: Time taken to download a file, comparing a cloud-only an edge-only and a hybrid

storage policy ... 60

file:///C:/Users/akretsis/Dropbox/Serrano/WP6/D6.8/D6.8%20-Final%20version%20of%20business,%20end%20user%20and%20technical%20evaluation%201.2_Final.docx%23_Toc156067341
file:///C:/Users/akretsis/Dropbox/Serrano/WP6/D6.8/D6.8%20-Final%20version%20of%20business,%20end%20user%20and%20technical%20evaluation%201.2_Final.docx%23_Toc156067341

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 9/123

Figure 48: Impact of caching on the time needed to download a file. 61

Figure 49: Comparing multipart uploads to regular uploads. .. 62

Figure 50: FPGA acceleration test UC1. ... 63

Figure 51: end-to-end execution of UC1 with FPGA-accelerated erasure coding. 64

Figure 52: Overview of measurement setup for evaluating TLS-offloading in the context of the

Secure Storage use case. .. 65

Figure 53: Total CPU time used by Nginx worker processes while serving storage requests. 66

Figure 54: Kernel CPU time used by Nginx worker processes while serving storage requests.

 .. 66

Figure 55: Read throughput of the SERRANO-enhanced Storage Service using TLS offloading.

 .. 67

Figure 56: Portfolio optimisation workflow. .. 70

Figure 57: Interactions between the fintech use case DPO service and SERRANO platform core

components. ... 71

Figure 58: DPO publicly available API. .. 73

Figure 59: DPO API and input. .. 74

Figure 60: Completion of DPO execution, useful information and link to access produced files.

 .. 74

Figure 61: Efficient Frontier: InbestMe Portfolios vs. SERRANO DPO Portfolios 76

Figure 62: Data Processing Application to analyses real-time signals from ball-screw sensors.

 .. 82

Figure 63: Interactions between the use case developed services and core components of the

SERRANO platform. .. 83

Figure 64: Alien4Cloud user interface. ... 84

Figure 65: Grafana dashboard monitoring the inference execution times. 85

Figure 66: Summary of 2021 results. ... 88

Figure 67: Results of January 2021... 89

Figure 68: Some results from 2023-04-21. ... 89

Figure 69: Inference time with SERRANO acceleration mechanisms for different range of ML

models (Y axis - prediction time in seconds and X axis - observations of the generated

model). ... 90

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 10/123

Figure 70: Inference time with SERRANO acceleration mechanisms and IDEKO’s edge device (Y

axis - prediction time in seconds and X axis - observations of the generated model). ... 90

Figure 71: Results from 2022-01, where a vertical line locates the breakage. 92

Figure 72: Hypothetical results utilizing SERRANO platform. .. 92

Figure 73: Test bed ball screw. ... 93

Figure 74: Different anomaly detection set up on demand vs continuous data. 94

Figure 75: No anomalies are captured. .. 95

Figure 76: Anomalies are captured using SERRANO platform. .. 95

Figure 77: Benchmarking in position service comparing the accuracy of the model training. 96

Figure 78: Architecture of the scenario setup. .. 97

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 11/123

List of Tables

Table 1: Platform evaluation demonstrators and SERRANO architecture control phases. 17

Table 2: K8s clusters within the SERRANO platform for Demo-1. ... 19

Table 3: Deployment intents for Demo-1. ... 20

Table 4: Deployment intent parameters and output objectives for Demo 1. 25

Table 5: SERRANO-accelerated kernels and their supported execution platforms for Demo-2.

 .. 30

Table 6: Demo-3 predefined datasets. ... 40

Table 7: Total time for uploading and downloading the available datasets using two different

storage policies. .. 40

Table 8: UC1 technical success criteria .. 57

Table 9: Throughput measured technical success criteria ... 67

Table 10: Execution Information for DPO execution on Accelerated and Local set up. 77

Table 11: UC2 business success criteria ... 78

Table 12: UC2 technical success criteria .. 79

Table 13: UC3 business success criteria. .. 87

Table 14: Execution times for the SERRANO-accelerated KMEANS kernel (acceleration

services) for classifier retraining model on HPC with different batches of machine data

 .. 91

Table 15: UC3 technical success criteria. ... 96

Table 16: Effective availability of the test bench compared to a simulated scenario with

continuous monitoring. .. 98

Table 17: KPIs related to general project requirements .. 99

Table 18: KPIs related to edge, cloud and HPC acceleration requirements 102

Table 19: KPIs related to secure infrastructure requirements. ... 105

Table 20: KPIs related to network and cloud telemetry framework requirements 107

Table 21: KPIs related to resource orchestration and service assurance 111

Table 22: KPIs related to service orchestration requirements .. 116

Table 23: KPIs related to integration and platform development requirements. 119

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 12/123

 Abbreviations

A4C Alien4Cloud

AES Advanced Encryption Standard

AI Artificial Intelligence

AISO AI-enhanced Service Orchestrator

API Abstract Programming Interface

ARDIA A Resource reference model for Data-Intensive Applications

AWS Amazon Web Service

BOM Bill of Materials

CI/CD Continuous Integration / Continuous Development

CPU Central Processing Unit

CTH Central Telemetry Handler

D Deliverable

DevSecOps Development, Security, and Operations

DI Deployment Intent

DL Deep Learning

DPO Dynamic Portfolio Optimisation

DPU Data Processing Unit

DTW Dynamic Time Warping

EDE Event Detection Engine

EFT Electronic Funds Transfer

EOL End of Life

ETA Enhanced Telemetry Agent

ETF Exchange-Traded Fund

ETL Extract, Transform, Load

FFT Fast Fourier transform

FLOPS Floating-point Operations per Second

FPGA Field-Programmable Gate Array

FUSE Filesystem in USErspace

GB Gigabyte

GCM Galois/Counter Mode

GDPR General Data Protection Regulation

GF Galois Fields

GPU Graphics Processing Unit

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HW Hardware

ID Identifier

IO Input Output

IoT Internet of Things

JSON JavaScript Object Notation

K8s Kubernetes

KNN K-Nearest Neighbours algorithm

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 13/123

KPI Key Performance Indicator

kTLS Kernel Transport Layer Security

LAN Local Area Network

MB Megabyte

ML Machine Learning

MQTT MQ (IBM MQ) Telemetry Transport

ms Millisecond

NIC Network Interface Controller

OS Operating system

PCIe Peripheral Component Interconnect express

PMDS Persistent Monitoring Data Storage

RAM Random Access Memory

REST Representational State Transfer

RO Resource Orchestrator

ROT Resource Orchestration Toolkit

SaaS Software as a Service

SAR Service Assurance and Remediation

SDK Service Development Kit

SOP SERRANO Orchestrator Plugin

SSL Secure Sockets Layer

TLS Transport Layer Security

TOSCA Topology and Orchestration Specification for Cloud Applications

UC Use Case

UI User Interface

URL Uniform Resource Locator

UID Universally Unique Identifier

VM Virtual Machine

XRT Xilinx Runtime Environment

YAML YAML Ain't Markup Language

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 14/123

1 Executive Summary

Deliverable D6.8 “Final version of business, end user and technical evaluation” reports on the

final integrations and the evaluation of the three SERRANO use cases. This deliverable is a

follow up from D6.4, which reported about the integration of the platform that was in progress

and contained preliminary results. D6.8 presents demos of the SERRANO platform as well as

use cases demos. It evaluates 1) the Secure Storage Use Case that aims at demonstrating the

envisioned capabilities of the SERRANO platform in the context of secure file sharing and

storage, 2) the Fintech Use Case that leverage the cloud continuum capabilities of the

SERRANO project within the context of investment portfolio management, representing

automated management of investment portfolios, and 3) the Anomaly Detection in

Manufacturing Settings Use Case that aims to diagnosis critical machine elements by

proposing an approach where data analysis is performed continuously on the SERRANO

platform.

The deliverable elaborates about activities related to fine tuning and optimisation of the use

case applications to run at scale. It presents the results from the evaluation of the final version

of the SERRANO platform in KPI tables. The production or final version of the SERRANO

platform integrates all the components and subsystems from the second development

iteration (M20-M36). Technical details about the final version of the SERRANO platform are

reported on D6.7 (M36).

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 15/123

2 Introduction

2.1 Purpose of this document

The purpose of this deliverable is to report on the final integration and evaluation of the

SERRANO use cases Secure Storage (Task 6.3), FinTech (Task 6.4), and Anomaly Detection

(Task 6.5) into the SERRANO platform. Since the first report D6.4 (M20), the use case partners

worked closely with the integration partners to optimise and fine tune the use case

applications for the SERRANO platform. The document reports about their integration and

optimisation experience as well as the detailed technical and business evaluation of the use

case applications. It includes the description of SERRANO platforms demos which represent

the final integration of all components in a production ready system. The evaluation results

obtained from the demo are presented in dedicated KPI tables. The document elaborates the

benefits and the challenges of developing applications for the SERRANO platform, and

provides feedback about the business implications.

2.2 Document structure

The present deliverable is split into eight major sections:

• Section 1 is an executive summary.

• Section 2 serves as an introduction and describes the main goals of the deliverable.

• Section 3 describes the SERRANO platform demos.

• Section 4 is dedicated to Secure Storage Use Case (CC) and describes the Secure

Storage demo and the evaluation results.

• Section 5 is dedicated to FinTech Use Case (INB) and describes the FinTech demo and

the evaluation results.

• Section 6 is dedicated to Anomaly Detection in Manufacturing Settings Use Case

(IDEKO) and describes the use case demo and evaluation results.

• Section 7 presents the evaluation results for the SERRANO platform.

• Section 8 briefly summarises the evaluation of all Use Cases.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 16/123

2.3 Audience

The deliverable is public and available to anyone interested in the final release of the SERRANO

integrated platform and the SERRANO use cases. Moreover, this document can also be useful

to the general public for a better understanding of the framework and scope of the SERRANO

project.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 17/123

3 SERRANO Platform Demo

SERRANO adopts a lifecycle methodology to facilitate the seamless application deployment

and cognitive resource orchestration across the distributed and heterogeneous edge, cloud,

and HPC continuum. Initially, users provide their applications along with a high-level

infrastructure agnostic (application intent) description of their requirements (step a). Next,

SERRANO performs the application profiling and decompose the high-level requirements into

specific service goals (step b). Then, the SERRANO cognitive orchestration mechanisms

allocate and deploy the application’s microservices into the available resources (step c).

Finally, the service assurance mechanisms based on real-time telemetry and appropriate

machine reasoning techniques ensure that applications perform as intended (step d) while

triggering any required re-optimisation.

According to the SERRANO architecture [1], these steps are organised into three main control

flow phases:

• Application description and high-level requirements translation (step a and b)

• Cognitive resource orchestration and transparent deployment (step c)

• Service assurance and dynamic adjustments (step d)

This section complements the comprehensive evaluation of the SERRANO platform conducted

via project use cases (Sections 4, 5, 6). It includes a series of compelling demonstrators that

showcase the project's technological developments, emphasizing key components and

services of the SERRANO platform. The evaluation demonstrators, namely Demo-1, Demo-2,

Demo-3, Demo-4, within this section focus both on the component-to-component

interactions and application-to-system ones. Table 1 summarises the platform evaluation

demonstrators and outlines the corresponding SERRANO architecture control phases and

lifecycle steps that encompass.

Table 1: Platform evaluation demonstrators and SERRANO architecture control phases.

Phase Demo-1 Demo-2 Demo-3 Demo-4

Application description and high-level

requirements translation.
✓ ✓

Cognitive resource orchestration and

transparent deployment.
✓ ✓ ✓ ✓

Service assurance and dynamic

adjustments.
 ✓

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 18/123

3.1 Demo-1: Intent-driven operation and transparent

application deployment

Description: The demonstration evaluates the ability of the SERRANO platform to support the

transparent deployment of cloud-native applications across the heterogeneous edge and

cloud platforms that it unifies. We aim to showcase the provision of an abstraction layer that

automates the operation and fully exploits the available diverse resources, supporting a

develop once, deploy everywhere approach. The users describe their applications through a

neat web-based user interface as well as provide an infrastructure-agnostic description (i.e.,

the deployment intent) for their deployment objectives. SERRANO orchestration mechanisms

initially map the intent to infrastructure-specific parameters and cognitively assign the

application workload to available edge and cloud resources. Then, through the developed

deployment and telemetry mechanisms, the SERRANO platform coordinates the seamless

application deployment and the automatic monitoring of the deployed microservices across

the SERRANO platform. For all these operations, the demonstrator utilises the SERRANO SDK.

SERRANO services and components:

• AIien4Cloud UI (A4C) and SERRANO Orchestration Plugin (SOP)

• AI-enhanced Service Orchestrator (AISO) and ARDIA Framework Abstraction Models

• Resource Orchestrator (RO) and Orchestration Drivers

• Resource Optimisation Toolkit (ROT)

• Data Broker

• Telemetry Service:

o Central Telemetry Handler (CTH)

o Enhanced Telemetry Agent (ETA)

o Edge Storage Probe and K8s Probe

o Persistent Monitoring Data Storage (PMDS)

• SERRANO lightweight virtualisation mechanisms

KPIs measured/evaluated: GEN.1, GEN.2, GEN.3, TEL.1, TEL.4, TEL.6, RES.1, RES.2, RES.7,

SRV.1, SRV.2, SRV.3, SRV.4, SRV.5, SRV.7, SRV.8, INT.1, INT.6

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 19/123

Figure 1: SERRANO testbed setup for platform evaluation Demo-1.

Scenario Description:

The demonstration scenario encompasses three Kubernetes (K8s) clusters, each characterized

by distinct features, all seamlessly integrated through the SERRANO Resource Orchestrator

(GEN.1). Table 2 summarises their main characteristics. Additionally, the setup includes four

(4) edge storage locations, leveraging SERRANO edge storage devices deployed in the UVT K8s

cluster. Moreover, the SERRANO telemetry mechanisms automatically capture performance

metrics from both the available infrastructure resources and deployed applications (TEL.1,

TEL.6). These metrics are subsequently processed and stored (TEL.4), facilitating orchestration

decisions (SRV.3, SRV8). The telemetry data are used by many services within the SERRANO

platform, including the AI-enhanced Service Orchestrator, Resource Orchestrator, Resource

Optimisation Toolkit, and Visualisation component.

Table 2: K8s clusters within the SERRANO platform for Demo-1.

Name Location Characteristics

K8s - UVT
UVT premises

(Timisoara, Romania)

3 x worker nodes, total CPU cores: 48,

total RAM: 202 GB, total disk space: 624 GB

K8s - NBFC
NBFC premises

 (Athens, Greece)

5 x worker nodes, total CPU cores: 30,

total RAM: 100 GB, total disk space: 1470 GB,

availability of hardware acceleration (GPUs)

K8s – IDEKO
IDEKO premises

(Elgoibar, Spain)

3 x worker nodes, total CPU cores: 12,

total RAM: 14 GB, total disk space: 610 GB

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 20/123

In this demonstration scenario, we focus on Position Service from the Anomaly Detection in

Manufacturing Settings use case (Section 6), which includes three microservices (GEN.2,

GEN.3, INT.1). Two different Deployment Intents (DI) are defined (SRV.1) to showcase the

intent-driven operation (SRV.7) and transparent application deployment within the SERRANO

platform (Table 3). The deployment objectives, within these intents, provide high-level

descriptions for the deployment scopes that guide their automatic mapping (SRV.3, SRV.4,

SRV.5) to actual infrastructure-specific deployment scenarios/objectives (SRV.2) from the

AISO (SRV.8). The provided deployment scenarios are then used for the actual orchestration

and deployment of the application microservices (RES.1, RES.2, RES.7). For all these

operations, we utilise the SERRANO SDK (INT.6).

To this end, this demonstration scenario includes the following phases:

1. Application and Deployment Objectives Description: Users interact with the A4C’s

web-based interface to provide the application description and deployment

objectives.

2. Translation of Deployment Objectives: The AI-enhanced Service Orchestrator

translates the provided deployment objectives into infrastructure-specific deployment

scenarios.

3. High-level Resource Orchestration: The Resource Orchestrator assigns application

microservices to available platforms through the Resource Optimisation Toolkit (ROT).

4. Transparent Application Deployment: The Resource Orchestrator, supported by its

Orchestration Drivers, ensures the transparent deployment of applications.

Table 3: Deployment intents for Demo-1.

ID Description

DI1.1
The total execution time and the response latency of the "position-service-classifier-

training" service should be as low as possible

DI1.2 The total energy consumption of the three micro-services should be as low as possible

In addition, a Grafana dashboard (Figure 2) dynamically displays real-time data sourced from

the SERRANO telemetry services (TEL.1, TEL.4). It also presents relevant events and logs from

the SERRANO orchestration mechanisms (RES.1, RES.2, RES.7). These events and logs are

related to the orchestration decisions and actual deployment of user applications within the

individual edge and cloud K8s clusters.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 21/123

Figure 2: Grafana dashboard for Demo-1.

Application and deployment objectives description

The Alien4Cloud (A4C) platform has been configured to use the SERRANO Orchestrator Plugin

(SOP) and SERRANO-TOSCA extension. The TOSCA extension allows for the definition of

applications using components that are packaged as container images (INT.1) to which an

intent can be attached (SRV.1). The Orchestrator Plugin is used to deploy an application on

the SERRANO platform and achieves this using the following steps:

1. It generates the Kubernetes descriptors for the components based on the parameters

defined in the corresponding config map fields. This includes the generation and

attachment of volumes defined using the TOSCA extension in Alien4Cloud.

2. It translates the intent from the TOSCA specification to the AISO model. It includes the

Kubernetes descriptors generated at the previous step in the request for the AISO.

3. Contacts the AISO, which creates deployment objectives based on the intent, and

contacts in turn the Resource Orchestrator to handle the execution. The deployment

unique identifier (UUID) is passed back to the A4C Orchestrator plugin.

4. The deployment UUID is used to inspect the status of the application components and

logs related to their deployment.

The A4C Topology Editor interface has been used to generate the application presented in

Figure 3. When generating the Kubernetes descriptors, the Config Maps of the components

are updated to use the correct IP and port of the SERRANO core components (i.e., Secure

Storage and Data Broker).

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 22/123

Figure 3: Position Service defined visualised in Alien4Cloud Topology Editor.

Figure 4: Intent configuration in Alien4Cloud Topology Editor.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 23/123

The user can click on one of the components and select the intent field to open the intent

configuration dialogue. Figure 4 presents how to find and open this dialogue for the Classifier

Training component of the application, which is the most computationally intensive. In this

case, the user selects a ‘LOW’ value for the Total Execution Time parameter under the

Application Performance category (ID1.1). The user can see the different categories for intent

configuration on the left side of the dialogue.

There are several small steps that the user needs to get through before final deployment.

These are presented in Figure 5. The first step is matching the dependencies, more specifically,

the Secure Storage and Data Broker services. These are registered in the Alien4Cloud platform

and are automatically selected when choosing the SERRANO location. The Config Maps of the

three containers will be generated with the endpoints of the services registered in

Alien4Cloud. The final action is to click the Deploy Button.

Figure 5: Location selection, abstract service matching and deploy button.

Once the deploy button has been clicked the Orchestrator Plugin generates the Kubernetes

deployment descriptors (YAML) for each component, updating all fields related to the Secure

Storage and Data Broker components. After this, the plugin generates the intent request,

adding to it the generated Kubernetes descriptors. Finally, this request is sent to the AISO (via

a JSON message), which returns the deployment ID after successfully contacting the Resource

Orchestrator.

The deployment ID is used to retrieve the status of the deployment. The user can inspect the

status of the components in the Runtime View of the current deployment, as presented in

Figure 6. Each component will be coloured based on its status: red if failed, orange if

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 24/123

processing, and green if deployed. Moreover, the right sidebar presents the events related to

these components from the status point of view.

Figure 6: Runtime View for the deployed application in Alien4Cloud.

Finally, the user can check the SERRANO-related logs by selecting a specific component and

exploring its runtime properties. An example is presented in Figure 7, focusing on the classifier

training component. The “events” field provides a comprehensive view of the request’s

journey within the SERRANO platform, tracking its path until it reaches the designated

Orchestrator Driver determined by ROT. This Orchestrator Driver then executes the

deployment using the Kubernetes descriptors generated by the A4C Orchestrator Plugin.

Figure 7: Runtime properties inspection for SERRANO deployed components.

High-level requirements translation

The AI-enhanced Service Orchestrator (AISO) receives as input the JSON description produced

by the SERRANO Orchestrator Plugin (SOP) through the Alien4Cloud platform. The description

follows the predefined format (as specified in the AISO Open API) that has been developed

based on the elements of the Application Model (part of the ARDIA framework). It includes

the deployment descriptor (i.e., application YAML), and the parameters expressing the

particular application and/or user requirements (i.e., goals/intents) (SRV.1).

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 25/123

The AISO then processes the data provided to suggest suitable resources (from the available

ones) for deploying the application micro-services so that the application requirements and

user’s goals or intents are satisfied. For this purpose, the AISO uses the relevant Mapping Rules

from the pool of available ones (examples provided in the deliverables D5.4 and D6.7, M31

and M36 respectively), and the collected telemetry data from the available resources and

deployed applications (SRV.4, SRV.5, and SRV.8).

Table 4: Deployment intent parameters and output objectives for Demo 1.

ID Deployment Intent Parameters Deployment Objectives

DI1.1

{

 "deployment_descriptor_yaml":"application-YAML-as-a-String",

 "application_constraints":[{

 "component_id": position-service-classifier-training",

 "Application_Performance_Response_Latency":"LOW",

 "Application_Performance_Total_Execution_Time":"LOW"}],

 "application_workflow" :[

 { "component_id": "position-service-data-manager" },

 { "component_id": "position-service-classifier-training" },

 { "component_id": "position-service-model-inference" }]

}

{

 "deployment_description": "application-YAML-as-a-String",

 "deployment_objectives": [

 {

 "component_id": "position-service-model-inference",

 "node_type": ["EDGE"], “accelerator_type": [“GPU”] },

 { "component_id": " position-service-classifier-training",

 "node_type": ["CLOUD"], “accelerator_type": [“GPU”] }

],

 "name": "AISO"

}

DI1.2

{

 "deployment_descriptor_yaml":"application-YAML-as-a-String",

 "application_constraints": [{

 "Energy_Consumption":"LOW"}],

 "application_workflow": [

 { "component_id": "position-service-data-manager" },

 { "component_id": "position-service-classifier-training" },

 { "component_id": "position-service-model-inference" }]

}

{

 "deployment_description": "application-YAML-as-a-String",

 "deployment_objectives": [

 {

 "component_id": "position-service-classifier-training",

 "node_type": ["EDGE"], "accelerator_type": [“GPU”, “FPGA”]} ,

 {

 "component_id": "position-service-model-inference",

 "node_type": ["EDGE"], "accelerator_type": [“GPU”, “FPGA”]}],

 "name": "AISO"

}

The translation of high-level objectives into deployment objectives for the two deployment

scenarios is summarised in Table 4. For example, nodes with high-profile acceleration devices

are favoured in the first case since the training process should be completed in a limited

amount of time (i.e., execution time should be low). Moreover, the two microservices that

handle data are split among edge and cloud resources to achieve the low response latency

requirement. The "position-service-model-inference" that constantly analyses data from

sensors is mapped to edge resources while the most computationally-intensive "position-

service-classifier-training" service to cloud resources with more advanced acceleration

capabilities.

The AISO also interacts with the Central Telemetry Handler (CTH) to retrieve the available

resources and their characteristics within the SERRANO platform (SRV.3) and accordingly

selects the ones which satisfy the specific need (SRV.7). The previous decisions are driven by

the telemetry data, which indicate that the average execution time of the training process is

much lower when GPU accelerators on cloud nodes are used in comparison to the usage of

GPUs in edge.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 26/123

The output of the AISO is a JSON description with a predefined format (as also specified in the

AISO Open API) created based on the elements of the Resource Model of the ARDIA

Framework. It includes the given deployment descriptor (application YAML) and the particular

objectives for the RO regarding the deployment of the microservices (SRV.2). The input and

output of the AISO are presented in Table 4. The generated JSON description is provided to

the Resource Orchestrator, which returns the deployment unique identifier (i.e., UUID)

through which the deployed application microservices can be managed (i.e., check the current

status of the deployment or un-deploy the micro-services of the given application, if

necessary) using either the AISO or RO services, as already described in the deliverable D6.7

(M36).

Resource orchestration and transparent application deployment

The SERRANO Resource Orchestrator receives the request for the application deployment

from the AISO and creates the appropriate SERRANO Deployment object that guides SERRANO

orchestration mechanisms in making information decisions based on the provided application

description and deployment objectives.

During the orchestration phase, the Resource Orchestrator requests the ROT (RES.1) to

provide the necessary orchestration decision for the application deployment. The request

description to the ROT Controller includes the deployment objectives, as provided by the

AISO, and the application graph. The ROT aims to match the provided requirements with the

most suitable cloud and edge platforms and resource configurations. Figure 8 shows details

from the SERRANO orchestration mechanisms for the two deployment scenarios.

Figure 8: SERRANO Deployment objects and orchestration mechanisms logs.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 27/123

The Clusters column in the “SERRANO Application Deployments” table (Figure 8) presents the

ROT’s decision for the assignment of the application microservices to the available K8s clusters

(RES.2). As can be noticed for the first deployment intent, the orchestration mechanisms

selected to split the microservices into two K8s clusters (“7628b895-3a91-4f0c-b0b7-

033eab309891”, “5a075716-7d7d-4b40-9566-bc1a33ee70c2”). In contrast, in the second

scenario, all microservices were assigned to the same K8s cluster (“e65c33ac-3109-4a15-9cc2-

9f4e90f82c2d”).

Next, the Resource Orchestrator initiates the final phase that handles the transparent

application deployment across the SERRANO platform without any other user intervention. It

provides to the Orchestration Drivers a declarative description of the workload requirements

that will be used by the platform-level orchestration mechanisms for the final deployment

decisions (RES.7). The Orchestration Drivers at the selected platforms receive the deployment

instructions and coordinate the seamless workload deployment.

Next, we provide more details focused on in the first of the two deployment scenarios. Figure

9 shows details from the Grafana dashboard regarding the number of applications

microservices each in K8s cluster before and after the deployment (Figure 9a) as well as details

about the specific deployment microservices (Figure 9b).

(a)

(b)

Figure 9: Deployment of position service microservices for the first deployment scenario (DI1.1).

In addition, the orchestration mechanisms automatically configure (TEL.6) the SERRANO

telemetry mechanisms to start the automatic monitoring of the deployed application across

the selected platforms (TEL.1) and also register the deployed application to the Service

Assurance mechanisms (Section 3.4). The collected telemetry data are also stored in the PMDS

service (TEL.4). Figure 10 shows the memory usage by the application microservices as

reported by the custom Grafana dashboard.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 28/123

Figure 10: Memory usage of application microservices.

In order to verify the successful application deployment, we enable the corresponding

machine ball screw simulator. The simulator service provides streaming data that triggers the

execution of the SERRANO-accelerated kernels. More information for the simulator, the

kernels, and the overall data workflow within the Position Service are available in deliverable

D6.7 (M36). The following Figure 11 presents the data exchange through the MQTT interface

between the three microservices of the service.

Figure 11: Data exchange through the MQTT among the microservices of the Position Service application.

Finally, a video for this demonstration is available in the project’s YouTube channel in the

following link: https://www.youtube.com/@serranoproject7470

https://www.youtube.com/@serranoproject7470

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 29/123

3.2 Demo-2: On-demand seamless execution of SERRANO-

accelerated kernels

Description: This demonstration validates the on-demand seamless execution of SERRANO

hardware- and software-accelerated kernels within heterogeneous hardware resources (i.e.,

FPGA, GPU, HPC) across the federated edge, cloud, and HPC SERRANO platform. We aim to

showcase the overall integration to seamlessly deploy SERRANO-accelerated kernels across

heterogeneous hardware resources. The users describe their execution requests through a

web-based user interface, select the input data from predefined datasets, and provide

deployment objectives. SERRANO orchestration mechanisms decide the execution platform,

while the SERRANO deployment mechanisms coordinate the automatic data movement and

kernel execution. The demonstrator shows that different input requirements led to different

deployment configurations along with the performance evaluation for their end-to-end

execution. For all these operations, we utilise the SERRANO SDK (INT.6).

SERRANO services and components:

• SERRANO accelerated kernels

• vAccel and SERRANO lightweight virtualisation mechanisms

• SERRANO HPC Gateway

• Data Broker & Secure storage service

• Resource Orchestrator (RO) & Orchestration Drivers

• Resource Optimisation Toolkit (ROT)

• Telemetry Service:

o Central Telemetry Handler (CTH)

o Enhanced Telemetry Agent (ETA)

o K8S Probe and HPC Probe

o Persistent Monitoring Data Storage (PMDS)

KPI measured/evaluated: GEN.1, GEN.2, GEN.4, ACC.4, ACC.5, TEL.1, TEL.4, RES.1, RES.2,

RES.7, INT.1, INT.6

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 30/123

Figure 12: SERRANO testbed setup for platform evaluation demo-2.

Scenario Description:

The demonstration scenario includes the two Kubernetes clusters in the SERRANO testbed

that provide hardware acceleration capabilities. SERRANO partners NBFC and AUTH offer

these testbeds, including GPU and FPGA devices. The clusters also encompass SERRANO

technological developments such as the vAccel and lightweight virtualisation mechanisms that

enable flexible and interoperable hardware acceleration by abstracting the hardware-specific

implementation and integration details (GEN.4, INT.6). In addition, there is available the HPC

platform, provided in SERRANO by HLRS, that provides enormous capacity for computationally

intensive and data analysis tasks. This exceptional unification of highly diverse resources

allows the SERRANO platform to cater to application constraints and deployment objectives

while calibrating the configuration of available resources (GEN.1, GEN.2).

The demonstration scenario uses the library of SERRANO-accelerated kernels (Table 5). They

leverage both hardware and software acceleration techniques to enhance applications’

performance and energy efficiency on cloud and edge devices, such as GPUs, FPGAs and HPC

platforms (ACC.4, ACC.5).

Table 5: SERRANO-accelerated kernels and their supported execution platforms for Demo-2.

Kernel Name GPU Acceleration FPGA Acceleration HPC Acceleration

KNN ✓

KMEANS ✓ ✓

FFT ✓

KALMAN ✓ ✓

SAVGOL ✓ ✓

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 31/123

In addition, a Grafana dashboard (Figure 13) dynamically displays real-time data sourced from

the SERRANO telemetry services (TEL.1, TEL.4). It also presents relevant events and logs from

the SERRANO orchestration mechanisms. These events and logs are related to orchestration

and deployment actions by the SERRANO services for the on-demand execution of the

SERRANO-accelerated kernels. Moreover, the dashboard shows the collected metric from the

kernels’ executions and various statistics.

Figure 13: Grafana dashboard for Demo-2.

A web-based application written in Python that facilitates the demonstration is also available

(Figure 14). The application is deployed within the UVT K8s cluster. It utilises the SERRANO

SDK (INT.6) to request the on-demand execution of the SERRANO-accelerated kernels. The

application also provides charts to visualize the detailed monitoring of the performance of the

executed kernels that are automatically collected and stored by the SERRANO telemetry

mechanisms (TEL.1, TEL.4).

Figure 14: Demo-3 web-based application.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 32/123

We requested the execution of several kernels with different input data and deployment

objects using our web-based application. Next, we detail the end-to-end execution for two of

them. The first request is about the execution of the SERRANO-accelerated implementation

of the KALMAN kernel, providing a large input dataset from the second project use case

(Section 5). The input data include 2000 entries with 200 values for each entry and is of total

size of 88.5 MB. The execution objective was the minimization of the energy consumption

along with the accelerated execution. The second corresponds to the execution of the

SERRANO accelerated implementation of the KMEANS kernel, providing a large input dataset

from the third project use case (Section 6). The input data has 16384 entries with 520 values

per entry and a total size of 81 MB, whereas the execution objective was the minimization of

the execution time.

The Resource Orchestrator (RES.4) allocates each kernel execution request to available

platforms with accelerated resources based on decisions made by the ROT (RES.1). The ROT

also defines the type of acceleration hardware, GPU or FPGA, for edge and cloud platforms.

Then, the SERRANO orchestration mechanisms seamlessly coordinate the required data

movement and request to low-level mechanisms, such as vAccel and lightweight virtualisation

mechanisms or the HPC Gateway, to execute the kernel (RES.7). Figure 15 provides details

from the operation of the SERRANO orchestration mechanisms.

(a)

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 33/123

Figure 15: Kernel executions and orchestration mechanisms logs: (a) the first execution request, (b) the

second request.

We can notice that for the first execution request the orchestration mechanisms selected the

FPGA-based accelerated kernel and the execution assigned to the AUTH K8s cluster (UUID

“3984f92a-21a0-4ce5-85a4-7febd261b794”) that provides that acceleration platform. The

second policy assigned to the HPC platform (UUID “b7143497-a168-4c8d-a899-

8c56dccda8ad”) since the HPC-based accelerated kernel was selected.

The web-based application shows the available kernel execution requests (Figure 16) and

presents the real-time progress for each kernel execution request (Figure 17). Moreover, the

SERRANO telemetry mechanisms monitor the infrastructure resources and kernel executions

(TEL.1). They store the collected telemetry data in the PMDS service (TEL.4).

Figure 16: Available kernel execution requests.

Figure 17: Progress of kernel execution requests.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 34/123

For each successfully executed kernel, the users can download the results. In addition, the

application automatically provides a graphical representation of the end-to-end execution

time as provided by the SERRANO telemetry mechanisms. Figure 18 shows the relevant

information for the first request, i.e. the execution of the KALMAN kernel. The y-axis is the

time in milliseconds (ms). The left chart illustrates the required time for each of the three main

phases that are involved in the execution of an accelerated kernel in SERRANO. The other

chart on the right provides a more detailed breakdown of the total execution time. A video

for this demonstration is available on the project’s YouTube channel at the following link:

https://www.youtube.com/@serranoproject7470

Figure 18: End-to-end kernel execution time as reported by the telemetry services.

3.3 Demo-3: Intent-driven operation and automatic storage

policy creation

Description: This demonstration evaluates the capability of SERRANO’s orchestration

mechanisms to interact with the SERRANO-enhanced Secure Storage Service to create secure

storage policies cognitively. We aim to showcase that storage is a core, well-integrated, and

easy to use component of the SERRANO platform. The users provide a high-level description

of the requested storage policy, the storage policy intent. SERRANO, facilitated by the

Resource Optimisation Toolkit’s developed algorithms, then translates this intent into

resource-specific parameters. Subsequently, the Resource Orchestrator creates the specified

secure storage policy through the On-premise Storage Gateway component of the SERRANO

Secure Storage service.

To evaluate the performance implications associated with diverse combinations of edge and

cloud storage locations, two different storage policies are created. These policies guide the

creation of storage buckets that are used for uploading and downloading data. For all these

operations, the demonstrator utilises the SERRANO SDK. Section 4 details the storage policies

and presents an in-depth performance evaluation of the related SERRANO-provided

technological advancements.

https://www.youtube.com/@serranoproject7470

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 35/123

SERRANO services and components:

• Secure Storage Service:

o On-premise storage gateway

o SERRANO edge storage devices

• Resource orchestrator

• Resource Optimisation Toolkit (ROT)

• Telemetry Service:

o Central Telemetry Handler (CTH)

o Enhanced Telemetry Agent (ETA)

o Edge Storage Probe

o Persistent Monitoring Data Storage (PMDS)

KPIs measured/evaluated: UC1.1, UC1.7, SIR.1, SIR.2, SIR.3, TEL.1, TEL.4, RES.1, RES.4, INT.6

Figure 19: SERRANO testbed setup for platform evaluation demo-3.

Scenario Description:

The demonstration scenario includes a large number (59) of cloud storage locations worldwide

accessible through the Chocolate Cloud (CC) SkyFlok service [2]. There are 24 GDPR-compliant

cloud storage locations (SIR.3). It also includes four (4) edge storage locations based on the

SERRANO edge storage devices, which are deployed in the UVT K8s cluster of the SERRANO

testbed. Chocolate Cloud (CC) has also developed a solution that measures the download and

upload speed as well as latency (time to first byte) of each storage location available for

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 36/123

SkyFlok customers (Figure 20) once every 24 hours. This information is also made available to

ROT through the SERRANO telemetry mechanisms.

Figure 20: Cloud storage locations benchmarking1.

In addition, a Grafana dashboard (Figure 21) dynamically displays real-time data sourced from

the SERRANO telemetry services (TEL.1, TEL.4). It also presents relevant events and logs from

the SERRANO orchestration mechanisms. These events and logs are related to the translation

of the user intent to specific infrastructure parameters. Furthermore, the dashboard captures

the automatic requests made by the orchestration mechanisms the On-premise Storage

Gateway within the Secure Storage service, marking the initiation of the actual setup for the

specified storage policy.

1 https://www.skyflok.com/backend-performance/

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 37/123

Figure 21: Grafana dashboard for Demo-3.

Moreover, we developed a web-based application written in Python that facilitates the

demonstration (Figure 22). The application is deployed within the UVT K8s cluster. It utilises

the SERRANO SDK (INT.6) to request the creation of storage policies, create buckets associated

with a storage policy, upload data to the buckets, and download from them. The application

also provides charts to visualize the results from the various upload and download operations.

Figure 22: Demo-3 web-based application.

We created two distinct secure storage policies using our web-based application. The first

policy is tailored for the exclusive utilisation of cloud storage locations, whereas the second

favours the exclusive use of edge storage locations that are based on the SERRANO edge

storage devices. Each storage policy is characterised by a set of parameters that describe the

user intent of the requested policy. These parameters include: (i) size, integer values within

the range [0,10], where larger values indicate a preference for storing substantial data,

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 38/123

favouring cloud resources over edge resources, (ii) cost, integer values within range [0,10], a

higher value favours cloud resources, as they are generally considered to have lower costs

compared to edge resources, (iii) volatility, integer values [0,10], higher values indicate a

preference to resources with lower download costs, (iv) latency, integer values [0,10], higher

values indicate a greater tolerance for latency, and (v) availability, integer values [0,4], the

value determines the corresponding number of replica resources, with options including

[1,2,4,8,12].

Figure 23 shows the two secure storage policy intents and their associated parameters for the

SERRANO orchestration mechanisms. This representation provides a clear overview of how

each policy aligns with specific storage objectives, guiding SERRANO orchestration

mechanisms in making informed decisions based on their unique requirements.

Figure 23: Storage policies description for Demo-3.

The provision is managed by the Resource Orchestrator (RES.4) according to the ROT's

decisions (RES.1). The SERRANO orchestration mechanisms aim to match the requirements of

these storage policies with the most suitable cloud and edge storage locations, erasure coding

configuration, and encryption scheme. They also automatically create the new secure storage

policies without any other intervention from the users (UC1.7). Figure 24 shows details from

the SERRANO orchestration mechanisms for the two defined secure storage policies.

Figure 24: Created secure storage policies and orchestration mechanisms logs.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 39/123

The Orchestration Decision column in the first table presents the ROT’s decision for each

requested secure storage policy. We can notice that for the first policy the orchestration

mechanisms selected four cloud storage locations ({"backends":[78,79,81,125],

"edge_devices":[],"redundant_packets":1}), whereas for the second polity two edge storage

locations ({"backends":[], "edge_devices":[1,2], "redundant_packets":1}).

The web-based application displays the policy UUID and name for each successfully created

storage policy. This information is then used to create buckets linked to a specific storage

policy. For this demonstration, we created the “cloud-data” bucket, based on the “cloud-

storage” policy, and the “edge-data” bucket, corresponding to the “edge-storage” policy.

These actions are executed through the SERRANO SDK, capitalizing on S3-compatible storage

interfaces provided by the SERRANO Secure Storage service (SIR.2). The storage policy of a

bucket is specified through the “LocationConstraint” setting, a feature of the S3 API.

Subsequently, these buckets are used to upload data (Figure 25). To this end, the application

offers three predefined datasets summarised in Table 6.

The application presents the real-time progress for both upload and download operations

(Figure 26). These operations are seamlessly executed through the SERRANO SDK, employing

its S3-compatible methods (SIR.2). The SERRANO telemetry mechanisms monitor the

performance of the SERRANO edge storage devices (TEL.1) and store the collected telemetry

data in the PMDS service (TEL.4). Figure 27 shows the increase in the number of stored objects

in the selected edge devices during the upload operations.

Figure 25: Upload data to bucket in SERRANO Secure Storage service.

Figure 26: Progress of download and upload operations.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 40/123

Table 6: Demo-3 predefined datasets.

Dataset Name Number of Files Total Size (MB)

set_1 7 44.75

set_2 3 11.41

set_3 3 25.68

Figure 27: Grafana dashboard - Real-time telemetry data from SERRANO edge storage devices.

In order to evaluate the performance of the two storage policies, we requested the upload of

all available datasets in the two buckets. Moreover, we downloaded (Figure 28) all the

uploaded data from both buckets. Table 7 provides the total completion time for uploading

and downloading the available datasets in the created buckets associated with the two

defined secure storage policies. Moreover, Figure 29 provides a graphical representation of

the same performance evaluation results as provided automatically by the web-based

application.

Figure 28: Download data from bucket in SERRANO Secure Storage service.

Table 7: Total time for uploading and downloading the available datasets using two different storage

policies.

Dataset Name
Total Upload (sec) Total Download (sec)

cloud-storage edge-storage cloud-storage edge-storage

set_1 30 10 36 5

set_2 10 5 7 6

set_3 12 5 7 2

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 41/123

Figure 29: Performance evaluation of the two secure storage policies.

As expected, the storage policy that uses edge storage locations reduces data access latency

for upload and download operations for all different datasets. Cloud storage performs

noticeably slower than edge storage. Moreover, the demonstration shows the successful

integration of edge devices into the SkyFlok and SERRANO ecosystem as a primary means to

reduce latency for data storage and retrieval (UC1.1, SIR.1). Finally, a video for this

demonstration is available in the project’s YouTube channel in the following link:

https://www.youtube.com/@serranoproject7470

3.4 Demo-4: Service Assurance and Remediation

Description: This demonstration evaluates the capability of Service Assurance and

Remediation (SAR) component to ensure that applications are executed within normal

boundaries as defined by the users and of the SERRANO orchestration mechanisms to react

accordingly. This definition of “normal behaviour” is given by the datasets used for training

and validating Machine Learning (ML) predictive models.

Once normal operation is defined and detection begins, any anomalous event is used to trigger

proactive or reactive dynamic adjustment of the application deployment via the Resource

Orchestrator. In essence, the SAR component can be viewed as a passive component as it

requires access to other SERRANO services to make the necessary adjustments. For example,

SAR is integrated with the Telemetry System, from which it fetches monitoring data, and with

the Resource Orchestrator, which defines the current deployment to be monitored (via query

construction and namespaces). The Resource Orchestrator also processes the analysis results

sent by SAR via the SERRANO Message Broker through a dedicated Kafka topic.

In order to showcase a typical use case of the SAR, we devised a demonstration scenario that

includes the following phases:

1. Querying the SERRANO telemetry system and using the data to train a predictive

model on historical data.

https://www.youtube.com/@serranoproject7470

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 42/123

2. Instantiating the predictive model and analysing near real-time monitoring data from

a running application.

3. Showcasing anomaly detection and reporting on Grafana, including the creation of a

custom dashboard.

4. Publishing analysis results via the SERRANO Message Broker to inform Resource

Orchestrator remediation actions.

5. Performing remediation actions through the dynamic redeployment of affected

microservices by leveraging the SERRANO orchestration and deployment mechanisms.

SERRANO services and components:

• Event Detection Engine

• Resource Orchestrator and Resource Optimisation Toolkit (ROT)

• Message Broker

• Telemetry Service:

o Central Telemetry Handler (CTH)

o Enhanced Telemetry Agent (ETA)

o K8s Probe

o Persistent Monitoring Data Storage (PMDS)

KPIs measured/evaluated: GEN.1, GEN.2, GEN.4, TEL.1, TEL.2, TEL.4, TEL.5, TEL.6, RES.1,

RES.2, RES.3, RES.5, RES.6, RES.7, INT.1, INT.6

Figure 30: SERRANO testbed setup for platform evaluation Demo-4.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 43/123

Scenario:

Query and Model Training

Traditionally ML model training is a batch job that requires historical data. This, in most cases,

leads to relatively long training times which can be even more time consuming if performance

optimisation is also used. Thus, training, optimisation and validation of ML models are done

offline. First, the user has to define several parameters in the configuration file used by the

Event Detection Engine (EDE) component from SAR:

- Connector - In this section, users can define the input and output data sinks. Because

EDE is designed to be a distributed system, users have also to define a Dask scheduler.

If an existing Dask cluster exists, it must be set here; if not, a local cluster can be

defined. Finally, users define the query used for the historical data.

- Filter/Augmentation - In these sections, users define any pre-processing operations

which are required, including but not limited to: scaling, filtering, deleting, feature

engineering, etc.

- Analysis - In this section, users can run several data analytics tasks such as; Pearson

Correlation, data visualisation etc.

- Training/Detection - In these sections, users define ML methods for model creation

and validation. Here, users can also define optimisation methods.

Figure 31 shows an example configuration file used to generate training data (last 2 weeks of

monitoring) (TEL.1, TEL.4) and then train an unsupervised predictive model, IsolationForest

(RES.3). For this demo we have chosen the IDEKO use-case as the application to be monitored

(INT.1, INT.6).

It should be noted that pre-processing, ML models, evaluation functions, as well as analysis

methods are user definable and can be customised and extended based on user preference.

The demonstration presented here is not to be considered as a complete overview of the EDE

tool. For more examples and information, please refer to the documentation from the official

repository [3].

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 44/123

Connector:
 PMDS:
 Endpoint: 'http://pmds.services.cloud.ict-serrano.eu'
 Cluster_id: 7628b895-3a91-4f0c-b0b7-033eab309891
 Start: '-2w'
 End: ''
 Groups:
 - general
 - cpu
 - memory
 - network
 - storage
 Namespace: uvt-aspataru
 Dask:
 SchedulerEndpoint: local
 Scale: 3
 SchedulerPort: 8787
 EnforceCheck: false
 KafkaEndpoint: <Serrano Message Broker>
 KafkaPort: 9092
 KafkaTopic: edetopic
 GrafanaUrl: 'http://85.120.206.26:32000'
 GrafanaToken: <token>
 GrafanaTag: ede_test
 MetricsInterval: 1m
 QSize: 0
 Index: time
 QDelay: 10s
Augmentation:
 Scaler:
 StandardScaler:
 copy: true
Mode:
 Training: true
 Validate: false
 Detect: true
Training:
 Type: clustering
 Method: isoforest
 Export: sr_isolationforest_1
 MethodSettings:
 n_estimators: 100
 max_samples: 10
 contamination: 0.07
 verbose: true
 bootstrap: true
Detect:
 Method: isoforest
 Type: clustering
 Load: sr_isolationforest_1
 Scaler: StandardScaler
 Analysis:
 Plot: true

Figure 31: Example EDE configuration file.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 45/123

Inference

For the real-time analytics, the model trained in the previous step is instantiated and exposed

to the end user via a RESTful service. The resources exposed to the end-user are, in fact, just

mirroring the settings from the YAML configuration file. The main difference is that in the

current version, training is not supported only inference is. This was done because training is

a long running process; thus, adding it is not a pertinent requirement.

Figure 32 shows the OpenAPI based interface (GEN.4) where users can set all the integration

endpoints as well as queries and predictive models to be used for inference (RES.3, TEL.5).

Figure 32: Event Detection Engine REST API Interface.

It should be also noted that this web service uses asynchronous background workers for

handling the initialization of detection tasks. Keep in mind that EDE itself is built on a

distributed processing backend, Dask, thus these background service workers, after initialising

detection, only monitor the resulting Dask tasks. It is not guaranteed that the service worker

and detection task should be on the same physical compute node.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 46/123

The current status of the detection task can be fetched using the job resources as seen in

Figure 33 where an example status message can also be seen.

Figure 33: Example job status response.

Reporting

Once anomaly detection methods have been executed (RES.5), reporting these detections is

very important. Furthermore, the root cause analysis results also have to be reported. In order

to do this, EDE is capable of pushing metadata about the anomalous event to both the

Message Broker as well as a Grafana instance (RES.6, TEL.4). If no dashboard is set in Grafana

where annotations can be sent, EDE will generate a default dashboard with all available

metrics.

Figure 34 shows this Generic EDE Grafana Dashboard including the annotations with the

anomalies identified. We should mention here that not all visualisation types support

annotations in Grafana. For example, in Figure 34 the Global CPU Usage has no annotations.

Figure 34: EDE Grafana Dashboard and annotations.

The root cause analysis takes the form of feature rankings computed using Shapely values

(RES.6). This will push for each detection instance a JSON descriptor into the Message Broker

of the form:

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 47/123

In the above Figure 36, “shape_values” consists of key-value pairs with the key being the

feature name and the value being the score obtained. Another visualisation of this analysis

can be seen in Figure 35. In this figure, we can also see that each feature encodes not only the

feature name but also the originator of each measurement. This will allow exact pinpointing

of the issue being detected. This information is then retrieved by the Resource Orchestrator

that executes automatically all the necessary actions.

.

Figure 35: Root cause analysis - Feature Ranking

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 48/123

Automatic application redeployment

The SERRANO Resource Orchestrator is subscribed to the Kafka topic that the Event Detection

Engine (EDE) forwards the information related to the detected events within the SERRANO

platform. Upon receiving the event description, it coordinates the necessary redeployment

actions to mitigate the performance degradation for the affected deployed applications

(RES.2, RES.3). To this end, the Resource Orchestrator analyses the details in the “analysis”

and “shape_value” fields, determines the affected worker nodes and applications’

microservices that are assigned to them (TEL.4, INT.1). These operations involve the

interaction among various components such as the Event Detection Engine, Resource

Orchestrator, Message Broker, and Central Telemetry Handler (GEN.4, TEL.1, INT.6).

Figure 36 shows logs from the operation of the Resource Orchestrator components after

receiving the anomalous event notification.

Figure 36: Orchestration mechanisms logs and analysis of detected anomalous event detection.

At the same time, the SERRANO telemetry framework is notified for anomalous performance

in the affected cluster and automatically collects measurements based on the streaming

telemetry (TEL2, TEL.6), where continuous measurements are sent at a rate much shorter than

the typical monitoring approach. Next, the Resource Orchestrator requests the ROT (RES.1) to

assign the affected microservices across the available edge and cloud resources (GEN.1) while

excluding the affected worker nodes from the orchestration decision. Figure 37 shows details

from the SERRANO orchestration mechanisms for the redeployment of the affected

microservices.

(a)

(b)

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 49/123

Figure 37: SERRANO Deployment objects and orchestration mechanisms logs.

The Clusters column in the “SERRANO Application Deployments” table (Figure 37) presents the

ROT’s decision for the assignment of the application microservices to the available K8s clusters

(GEN.2, RES.2). We can notice that, initially (Figure 37a), all microservices were deployed in

the same cluster (UVT K8s cluster – UUID “7628b895-3a91-4f0c-b0b7-033eab309891”). In

contrast, after the redeployment (Figure 37b), the affected microservice (i.e. “position-service-

model-inference”) was moved to a second cluster (NBFC K8s cluster - UUID "5a075716-7d7d-

4b40-9566-bc1a33ee70c2"), and the SERRANO Deployment object has two assignment

entries.

Finally, the Resource Orchestrator interacts with the Orchestration Drivers (RES.2, RES.7) to

perform the transparent deployment across the SERRANO platform without any other user

intervention. Figure 38 shows details from the custom Grafana dashboard regarding the

number of applications microservices each in K8s cluster before and after the redeployment

as well as details about the position service microservices.

(a)

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 50/123

Figure 38: Grafana dashboard – Position service microservices before and after the automatic redeployment.

Moreover, a video for this demonstration is available in the project’s YouTube channel in the

following link https://www.youtube.com/@serranoproject7470.

https://www.youtube.com/@serranoproject7470

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 51/123

4 Secure Storage Use Case

The Secure Storage Use Case highlights the SERRANO integrated platform’s storage

capabilities. Beyond the core storage functionality, it uses the acceleration capabilities

developed as part of the project to improve performance and the intelligent orchestration

features to meet user requirements closely.

4.1 Use case description

This UC focuses on providing secure, high-performance storage of files with lower latency than

a purely cloud-based approach. It achieves this goal by extending Chocolate Cloud’s

commercial SkyFlok multi-cloud distributed storage service with on-premises edge devices

that act as storage locations. Medium and large businesses (250+ employees) that are SkyFlok

customers would like to extend their use of Chocolate Cloud’s SkyFlok service.

Figure 39: Secure Storage UC components.

SkyFlok works great for file-based collaboration and file sharing workflows as well as for data

archival purposes. However, given its fully cloud-based architecture, it lags behind in terms of

latency compared to an on-premises storage solution. Moving data closer to the edge can

significantly improve download and upload latencies. While many customers choose SkyFlok

over competing solutions thanks to the privacy guarantees it offers, privacy concerns remain

a major impediment to the more wide-spread adoption of cloud storage in general. Due to

legal requirements or internal policies, enterprises want strong guarantees that their data

cannot be accessed by third parties, including the storage provider. Conventional cloud

storage can only achieve this to a limited degree. Moving the file encryption/decryption

process on-premises, under full control of the enterprise, is key to providing these guarantees.

To make it even more appealing to enterprise customers, files are accessed through an S3-

compatible API. This makes it very easy to interact with the storage service, removing one of

the obstacles usually faced by companies when they want to migrate from an existing storage

solution to a new one.

The technical details of the use case are presented in Deliverable 2.4 and Deliverable 6.7. The

Secure Storage Service is described in Deliverable 3.4.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 52/123

4.2 Demo

4.2.1 Mid-project Secure Storage Demonstrator

An early version of the use case was presented in the mid-project review in M20 through the

“Secure Storage Demonstrator”. It has been included in this deliverable for completeness but

will only be presented in the final project review again if specifically requested. A detailed

description of this demonstrator can be found in Deliverable D6.6 [4].

The M20 Demo focused on showing the S3-compatible API for managing buckets and objects

and using it for file storage operations (SIR.2). To highlight the widespread applicability of this

solution, the demonstrator featured s3fs [5], a well-known S3 client accessing the API. S3fs

enables Linux, MacOS, and FreeBSD users to seamlessly mount an S3-backed FUSE [6] file

system on a device’s system. This makes it possible to very easily create a cloud-based storage

and sharing solution that appears to the user as a conventional folder. This is shown in Figure

40. Using fstab [7], it can be mounted automatically during startup and behave similarly to the

desktop clients available for services such as Dropbox or Google Drive.

The demo included the following steps:

- Map showing cloud storage locations.

- Using docker to run the Gateway and 3 SERRANO edge locations.

- Creating a storage policy through the SkyFlok web admin interface, detailed

explanation of the 3+3 hybrid policy, where 3 locations are edge devices and 3 are

cloud locations in the EU.

- Create S3 bucket using AWS CLI using the newly created storage policy.

- Create a folder on the local machine.

- Mount S3 bucket into the newly created folder using s3fs.

- Copy a .pptx file into folder.

- Check using SkyFlok web admin interface that the file has been uploaded and uses the

locations we have previously selected.

- Open the .pptx file using the file system explorer.

- Unmount folder using the file system explorer.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 53/123

Figure 40: M20 Secure storage demonstrator: overview of sharing files using s3fs and FUSE and the

SERRANO-enhanced Storage Service.

4.2.2 Developer web portal and cloud performance

This demonstrator showcases the user-friendly interfaces of the SERRANO-enhanced Secure

Storage Service. While there are no KPIs directly connected to this aspect apart from GEN.3,

the usability of the project’s outcomes is an important requirement. It is also a key factor in

Chocolate Cloud’s exploitation plans.

To enhance the usability of the SERRANO-enhanced Storage Service, we have created a web

portal to cater to the needs of the developers who will use the service. The features have been

selected by studying the online interfaces of object storage providers and based on the

project’s requirements with special emphasis on the use cases. The developer portal will also

play an important role in the exploitation of the project’s outcomes.

Its features revolve around letting developers manage three core entity types: S3 buckets,

storage policies, and API keys. Compared to the REST APIs, it presents a friendly, graphical

environment suitable for non-technical users as well. Figure 41 shows the interface where

users can create a new storage policy, by declaring the application’s intent. This information

is then submitted to the SERRANO orchestration services.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 54/123

Figure 41: Developer portal – second step of the new storage policy creation wizard.

As part of our efforts to disseminate the results of SERRANO, we have created a website [8]

that publishes cloud monitoring information for all supported cloud storage locations. The

data is collected using the schema described in Deliverable D3.4 [9] and includes locations

across the globe from the three major global and most EU-based cloud providers. Data is

aggregated from daily measurements and included starting with June 2023. Measurements

are currently being performed from central Europe with plans to extend this to locations in

Western Europe and the US. By disseminating this information to the general public, we aim

to raise awareness of both SERRANO and SkyFlok. We also plan to use it as part of the

marketing campaign for SkyFlok S3, a software product that we are developing based on the

technological advances made by SERRANO.

The demonstrator will first present the entities managed through the Developer web portal:

• Buckets: listing of all buckets of a team and metadata associated with individual

buckets.

• Storage Policies: list existing storage policies, new policy creation wizard, declarative

storage policy creation.

• API keys: list existing API keys, create a new API key.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 55/123

The demo will then show the information provided by the website:

• First, the possibility to choose the month for which performance data is presented, as

shown in Figure 42. This refreshes the map view, granting a quick overview of how

the measured performance evolved through a simple red-green colour scale.

• Second, we scroll down to see a way to filter the locations based on their geographic

locations and we use the search function to find a cloud provider we are interested in.

We look at the presented data as shown in Figure 43, noticing how download and

upload speeds compare to each other. We can also see that different locations have

different variances in their measured performance, especially in the case of

approximated latency.

Figure 42: Cloud performance website showing map of EU cloud storage locations and their relative

performances.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 56/123

Figure 43: Cloud performance website showing detailed information of OVH Strasbourg and Frankfurt

locations for the month of December 2023.

4.2.3 TLS offloading

Whenever an Nvidia DPU is available, the On-premises Storage Gateway can perform the TLS

encryption directly on this resource for outgoing connections. TLS-offloading decreases the

overall CPU cycles needed to serve each request, which provides performance benefits in

scenarios with a CPU bottleneck. The overall time to retrieve an object is reduced and the

overall outgoing throughput of the system increases. This demonstrator has been created to

provide a deep dive into how TLS offloading has been integrated with the SERRANO-enhanced

Storage Service and illustrate how the associated KPIs (UC1.6, SIR.4, SIR.5) have been

evaluated.

The demonstrator is composed of the following steps:

- Present the components involved in the demonstrator: the two instances of the

Gateway running inside Docker containers and the S3 client application.

- While measurements are running, a separate terminal window is used to show CPU

usage related to TLS encryption. One terminal window shows the output of the client

application, and each instance of the Gateway has a separate terminal window. This is

shown in Figure 44.

- Set HW kernel TLS to off and run measurement.

- Set HW kernel TLS to on and run measurement.

- Run measurement using the instance with no TLS.

- Compare results.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 57/123

Figure 44: TLS offloading demo showing the outputs of the two instances of the Gateway (top left: no TLS,

bottom left: kernel TLS) client application (top right) and the CPU utilisation on the machine hosting the

instances (bottom right).

The setup is the same as that used to evaluate UC1.2, UC1.6, SIR.4 and SIR.5 and is presented

in Section 4.3.

4.3 Evaluation

The KPIs for the Secure Storage Use Case were selected so that they can be used to evaluate

whether the main goals and objectives of the UC have been achieved. They also reflect the

integration points with various platform components and features and are not limited to the

core storage features.

Table 8: UC1 technical success criteria

ID KPI Success criterion Estimated target

value

Result

UC1.1 Read and write latency

reduction with respect to

existing cloud locations

Successful integration of

edge devices into the

SkyFlok and SERRANO

ecosystem with the goal of

reducing latency.

Reduction of 10 - 50% For file sizes between

1MB and 15MB

Read: 62-70%

Write: 39-45%

UC1.2 Number of applications using

the service simultaneously

Demonstration of client

applications storing data in

the edge/cloud

infrastructure using S3

REST API.

20 instances 200

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 58/123

UC1.3 Reduction in time taken to

encode and decode data with

respect to a CPU-based

solution

Demonstration of GPU- and

FPGA- accelerated RLNC

encoding and decoding

algorithms running on the

on-premises storage

gateway.

Reduction of 20-30% Up to 2.1x speedup

on the cloud FPGA

cards. Up to 6.6x

speedup on the edge

FPGA devices

UC1.4 Reduction in time taken to

encrypt and decrypt data with

respect to a CPU-based

solution

Demonstration of GPU- or

FPGA-accelerated AES-

GCM encryption and

decryption algorithms

running on the on-premises

storage gateway.

Reduction of 20-30% Up to 220x speedup

on the cloud T4 GPU

devices. Up to 147x

speedup on the edge

Jetson GPU

UC1.6 Reduction in CPU load

associated with encryption for

TLS connections with respect to

no hardware acceleration

Using DPU-based hardware

acceleration for encryption

of TLS connections on the

On-premises storage

gateway.

Reduction of 10-20% 23-37%

UC1.7 Storage task execution that

involves the creation of a new

storage policy without

intervention from the user

Transparent operation with

regard to the choice of

storage locations. Each user

application that issues a

storage task should state its

requirements. The

SERRANO resource

orchestrator should

create/assign a storage

policy automatically.

Demonstration

successful

Demonstrated

through Intent-

driven operation and

automatic storage

policy creation demo

UC1.8 Storage task execution in a

sandboxed environment.

Transparent operation

deployed using the

SERRANO orchestrator.

Based on the Security Tiers

defined in WP3.

Demonstration

successful

Deployment

described in this

section

UC1.1 has been evaluated using a measurement script [10] specifically designed for this

purpose. The script uses Boto3 to make S3 PUT_OBJECT and GET_OBJECT requests, measuring

uploads and downloads separately. Each scenario has been measured 100 times with average

values being shown in Figure 46 and Figure 47. To get a precise idea of how much time each

part of each workflow takes, the code of the Gateway has been instrumented. An API designed

to control measurements and retrieve results has been implemented specifically to evaluate

these KPIs. It has been documented in Deliverable 6.7 [11].

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 59/123

Figure 45: Measurement setup for evaluating read and write performance of different storage policies.

Figure 45 shows the measurement setup in terms of deployment. The Gateway is collocated

with the measurement script in the same container, hosted on the K8s cluster of UVT in

Timisoara. Regarding storage locations, 4 SERRANO edge devices have been deployed to the

same cluster and 4 cloud locations have been selected from Central and Western Europe.

These cover the three major global cloud providers (Amazon, Google and Microsoft) as well

as one of the largest EU-based providers (OVH). To be able to compare how different storage

strategies affect upload and download performance, we have created three separate storage

policies and assigned each to a different S3 bucket. Every policy distributes data to 4 storage

locations in a 3+1 erasure coded (Random Linear Network Coding over GF(28)) configuration.

Thus, any 3 out of 4 locations are sufficient to retrieve the data. They all employ AES GCM with

a key size of 256 bits for encryption and DEFLATE level 7 for compression. Caching is turned

off and randomly generated file data is used. The cloud-only policy uses only cloud locations,

the edge-only policy utilises only edge locations while the hybrid policy uses three SERRANO

edge devices and one cloud location. The precise setup is shown on Figure 45.

Results for uploading files of sizes 1MB, 5MB, 10MB and 15MB are shown in Figure 46. We

can see a major reduction in the time taken to upload the erasure coded fragments when

comparing a cloud-only to and edge-only policy, with a roughly order of a magnitude

difference. This translates into a reduction of the overall time taken (UC1.1) of between

39.4%-44.7%. The hybrid policy also results in faster file uploads, improvements vary between

19.5%-27.9%. We can also observe that the different parts of the workflow don’t change based

on file size or storage policy. A single exception is the retrieval of the upload links (explained

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 60/123

in Deliverable 3.4 [9]), as the computational load required to create the signature is slightly

lower for edge locations, compared to the cloud locations in question.

Figure 46: Time taken to upload a file, comparing a cloud-only an edge-only and a hybrid storage policy.

The improvement to download performance (UC1.1) shown in Figure 47 is even greater at

between 62.4%-70.8% for the edge-only and 28.6%-41.5% for the hybrid policy.

Figure 47: Time taken to download a file, comparing a cloud-only an edge-only and a hybrid storage policy

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 61/123

Given that this workflow entails both less data processing and fewer round trips to the

Skyflok.com backend, performance is more heavily dictated by the time needed to download

the erasure coded fragments. In fact, in this particular scenario where enough data is stored

at the edge, the hybrid policy would match the edge-only policy with a download algorithm

that favours fragments stored at the edge. The current naive algorithm always uses the cloud

location.

We have also briefly evaluated the impact of caching using a separate measurement script

[12], with results shown in Figure 48. Using caching with cloud-only storage policies improves

performance by roughly an order of magnitude. The gains grow with file size. In comparison,

edge-only policies show only a small benefit in absolute terms and a significant but more

modest one in relative terms.

Figure 48: Impact of caching on the time needed to download a file.

We have also briefly examined the performance gains of multipart uploads for large files,

compared to regular uploads. Multipart uploads allow the client to fragment a file into smaller

parts, facilitating separate uploads for each fragment. This approach also makes it possible to

parallelise the requests. We have conducted a single measurement for files of sizes between

10MB and 200MB, with the results shown on Figure 49. The experiment [13] involved

evaluating segment sizes of 5MB and 10MB and allowed for a maximum concurrency of 5. This

means that at most 5 HTTP requests were made by the client during each multipart upload.

The Gateway was configured to use 8 worker processes, and caching was turned off. The

cloud-only storage policy from the previous experiments was used.

For smaller files, we could not see any gain from using multipart uploads. In some cases,

performance was actually worse compared to regular uploads. This can be explained by the

additional HTTP requests that need to be made: first, a multipart upload must be created,

then each part must be uploaded separately, and finally it must be completed. In these cases,

the gains from parallelisation were overshadowed by the overhead of the additional requests.

Starting from 50MB and up, the gains became more substantial and increased with file size.

Uploading a 200MB file was almost 2x faster through the multipart upload workflow. We can

1
5

.4
7

1
6

.7
8

1
5

.3
1

3
9

.9
3

4
3

.9
9

4
6

.2
8

7
5

.6
7

6
8

.8
1

7
9

.9
4

9
5

.2
2

9
8

.9

1
0

4
.2

6

5
3

3
.7

6

4
7

.5
8

3
9

1
.8

4 9
4

2
.5

4

2
5

9
.4

6 9
8

2
.1

6

1
2

4
1

.4
9

2
4

3
.9

4

1
0

6
3

.0
2

2
4

4
1

.4
4

2
6

5
.2

6

1
3

4
1

.3
9

0

500

1000

1500

2000

2500

3000

Cloud
(1MB)

Edge
(1MB)

Hybrid
(1MB)

Cloud
(5MB)

Edge
(5MB)

Hybrid
(5MB)

Cloud
(10MB)

Edge
(10MB)

Hybrid
(10MB)

Cloud
(15MB)

Edge
(15MB)

Hybrid
(15B)

D
o

w
n

lo
ad

 t
im

e
 (

m
s)

D O W N L O A D T I M E I N M S

Cached Not cached

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 62/123

also observe that, at least for larger files, larger part size is beneficial as it reduces the number

of HTTP requests that must be made. We expect that users of the service would need to fine-

tune the part size and the level of parallelism based on file size, outgoing connection

bandwidth towards the storage locations and the CPU resources available at the Gateway.

This can be done on a per-file basis as the Storage Service allows this level of flexibility.

Figure 49: Comparing multipart uploads to regular uploads.

To integrate the FPGA-developed application into the UC1 flow and evaluate UC1.3, we

decoupled the host executable from the FPGA accelerator by creating a shared library. This

library encapsulates the application required to initialise the FPGA platform, perform memory

transactions to and from the acceleration card, and return the outputs calculated by the FPGA.

We developed a wrapper function in two versions: one for communication with the erasure-

coding encoder shared library application and another for the decoder. The encoder/decoder

accelerator parameters, as well as the input/output data, are provided through a Python

function to the wrapper, which then initiates the application's shared object. Communication

between the 'libified' application and the FPGA acceleration card is facilitated by invoking the

Xilinx Runtime Environment (XRT) libraries.

The docker image for this execution setup was developed based on the Xilinx image libraries.

These libraries are necessary to expose the Xilinx runtime libraries, which are executed inside

the container, to the PCIe space of the host machine, including the installed FPGA hardware

platforms.

REST endpoints on the Gateway are defined to allow the execution of the UC1 flow with or

without the FPGA cards.

• The enable_fpga_acceleration endpoint is used to enable the use of the FPGA

applications: curl https://localhost:2525/enable_fpga_acceleration/ -k

• The disable_fpga_acceleration endpoint is used to disable the use of the FPGA

applications: curl https://localhost:2525/disable_fpga_acceleration/ -k

The following test was initially performed to evaluate the execution of the encode/decode

FPGA applications inside this environment, by calling the test_fpga_acceleration endpoint.

4
7

3
1

5
6

0
5

7
2

7
4

7
8

2
8

9
1

5
0 1

6
0

6
2

2
7

9
0

8

5
1

2
8

5
9

3
1

6
9

1
5

6
6

9
3

6
9

4
5 1
2

0
6

9 2
3

0
0

6

3
9

0
7

5
7

9
0

6
7

5
0

9
3

2
6 1
4

0
1

0

2
0

1
0

4

4
0

3
3

2

0

10000

20000

30000

40000

50000

10MB 20MB 30MB 40MB 50MB 100MB 200MB

U
p

lo
ad

 t
im

e
 (

m
s)

U P L O A D T I M E I N M S

Multipart upload 5MB parts Multipart upload 10MB parts Regular upload

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 63/123

Figure 50: FPGA acceleration test UC1.

In the above test, the U50 FPGA card is used for the erasure coding encoder application and

the U200 card for the decoding task. An input of approximately 5MB is provided to the

encoder high-level function alongside the encoding parameters (i.e number of encoding

chunks, number of encoding symbols and overall number of encoding packets). This is done

similarly for the decoding task.

For the end-to-end FPGA-based execution a 10MB test file was selected. In this flow, the UC1

stages are executed in the system’s CPU and the encoding/decoding tasks on the FPGA

platforms, as shown in Figure 51. The call to the endpoints, delays invoking the shared object

that calls the FPGA accelerator. Additionally, there is an execution time overhead induced by

the Xilinx runtime libraries that are called through the containerised shared memory space.

However, the execution time of the encoder and decoder kernels show an improvement (up

to 2.1x on the same platforms) compared to the execution of the CPU-based application, as

those measurements. The corresponding evaluation is described in Deliverable D4.4 [14].

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 64/123

Figure 51: end-to-end execution of UC1 with FPGA-accelerated erasure coding.

To evaluate UC1.2, UC1.6, SIR.4, and SIR.5, we have implemented a different measurement

setup, deployed to an Nvidia’s lab located in Israel. The overview on Figure 52 shows the two

host machines (named 512 and 513), each equipped with an Nvidia DPU (on a Mellanox

Technologies MT2892 Family [ConnectX-6 Dx]) and directly linked to each other through a 100

Gbps LAN connection. They both have 512GB of RAM and two AMD EPYC 73F3 CPUs with 16

cores each, installed into separate sockets. Host machine 512 has the Gateway in two flavours:

one with kernel TLS and a baseline one with no TLS, both running inside Docker containers.

Integration has been achieved by building a custom version of the OpenSSL 3.0.0 library. This

library is loaded into the kernel TLS container and automatically detects what HW resources

are available. If an appropriate DPU is detected and HW TLS offloading is enabled,

computations related to TLS encryption are performed on the DPU. To be able to more

accurately measure and better separate CPU load associated with TLS encryption, the

OpenSSL library is loaded by Nginx, rather than the Gateway’s Python application. Nginx acts

as a TLS termination proxy, forwarding incoming HTTPS requests to the Python application as

HTTP requests through the host's loopback interface. Conversely, Nginx acts as a simple HTTP

proxy in the container without TLS, forwarding HTTP requests without changes to the

Gateway.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 65/123

Host machine 513 represents the clients and can simulate a large number of parallel requests.

It is running a custom measurement script [15] that automates all the steps and makes results

consistent and repeatable.

The experiment is focused on measuring:

• CPU usage of Nginx worker processes – user time and kernel CPU time. This is done on

machine 512 by looking at /proc/{PID}/stat. We found this gave the most accurate

measurement of how many CPU cycles are used by Nginx.

• Read throughput, measured at the client to provide an accurate representation of the

capabilities of the Gateway.

Figure 52: Overview of measurement setup for evaluating TLS-offloading in the context of the Secure Storage

use case.

We have fixed the number of workers processes the Python Gateway uses to 32. Given the

host’s hardware, this should be sufficient not to become a performance bottleneck and thus

affect results. File caching is set to on with the same intent. Each measurement is repeated

1000 times, and a 50MB file is uploaded, then downloads are measured. We compare HW

kernel TLS (TLS offloading) with SW kernel TLS and the baseline approach with no TLS. We look

at different concurrent numbers of clients of 20, 50, and 100. This is proper parallelism as the

client application uses a different process for each HTTP request (avoiding the limitations

imposed by the Python GIL), taken from a pool of processes. This allows us to measure the

system at various loads. We also look at different numbers of Nginx worker processes: 1, 2, 3

and 4. This allows us to evaluate how the Storage Service performs given scenarios with

different CPU bottlenecks.

Host machine - 513Host machine 512

HTTPS

100 Gbps
dedicated network

connection

S3 Client application

Python 3.11

Parallel processes
simulate a large
number of users

Docker container no TLS

Simple HTTP proxyS3 Gateway

Local cache

Docker container kernel TLS

TLS termination
proxy

S3 Gateway

Local cache

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 66/123

Figure 53: Total CPU time used by Nginx worker processes while serving storage requests.

Looking at the plots of Figure 53, we can clearly see the TLS offloading working, reducing the

total number of CPU cycles (UC1.6 and SIR.5) used by Nginx worker processes by 23%-37%,

when compared against SW kernel TLS. However, this is a pessimistic approximation (lower

bound) as Nginx worker processes must also perform tasks not related to TLS encryption. as

well. An optimistic approximation (upper bound) can be inferred by subtracting the CPU usage

measured on the no TLS container, considering that the product of the operation is close to

the actual CPU time used for TLS encryption. This results in a decrease between 35%-60%. We

can observe that these gains are achieved even with 4 Nginx worker processes, a scenario that

is less bottlenecked by the CPU. Figure 54 shows very similar gains when observing the kernel

CPU time separately. This is somewhat expected given the use of kernel TLS.

Figure 54: Kernel CPU time used by Nginx worker processes while serving storage requests.

We also evaluated the total read throughput of the SERRANO-enhanced Storage service when

using TLS offloading and have seen an improvement between 6% and 60% compared to SW

kernel TLS (SIR.4). The improvement varies greatly with the number of Nginx worker

0

20

40

60

80

100

120

140

20 50 100 20 50 100 20 50 100 20 50 100

1 1 1 2 2 2 3 3 3 4 4 4

To
ta

l C
P

U
 t

im
e

in
 s

e
co

n
d

s

Number of parallel clients / Number of Nginx worker processes

T O T A L C P U T I M E

HW kernel TLS SW kernel TLS No TLS

0

20

40

60

80

100

120

20 50 100 20 50 100 20 50 100 20 50 100

1 1 1 2 2 2 3 3 3 4 4 4

K
e

rn
e

l C
P

U
 t

im
e

in
 s

e
co

n
d

s

Number of parallel clients / Number of Nginx worker processes

K E R N E L C P U T I M E

HW kernel TLS SW kernel TLS No TLS

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 67/123

processes. With smaller numbers, the TLS encryption becomes more of a bottleneck, and thus,

the gains are more pronounced.

We have tested this setup with up to 200 clients accessing the service in parallel (UC1.2) and

16 Nginx worker processes. This resulted in the throughput figures included in Table 9.

Table 9: Throughput measured technical success criteria

HW kernel TLS SW kernel TLS No TLS

35.19 Gbps 33.51 Gbps 39.14 Gbps

It would be possible to serve even more parallel clients. However, the number of open sockets

of the measurement application was so high that the OS-level limit on the number of files

open by any single process was reached. By relaxing this constraint, higher numbers can be

achieved.

Figure 55: Read throughput of the SERRANO-enhanced Storage Service using TLS offloading.

The successful achievement of UC1.7 has been shown using the intent-driven operation and

automatic storage policy creation demonstrator described in Section 4.2.

The achievement of UC1.8 is described in the following. The Gateway is spawned in a

sandboxed environment as a container deployment on K8s. This is transparent to the

administrator and the user of the service, as the sandboxed environment is embedded in the

systems software running on the worker and control-plane nodes. Specifically, the installation

of the storage gateway at the local cluster is done according to the instructions from the

relevant partner (CC), using the provided helm chart. The changes needed to enable

sandboxing rely on the runtimeClassName parameter used for the specific deployment. In this

case, the runtime class refers to the underlying low-level container runtime used to host the

container: kata-fc. This container runtime boots an AWS Firecracker microVM and spawns

the Gateway’s container in this microVM, isolating it from the rest of the workloads running

on the infrastructure. In the snippet below we show that the service is running as advertised:

0

5

10

15

20

25

30

20 50 100 20 50 100 20 50 100 20 50 100

1 1 1 2 2 2 3 3 3 4 4 4

R
e

ad
 t

h
ro

u
gh

p
u

t
in

 G
b

p
s

Number of parallel clients / Number of Nginx worker processes

T O T A L R E A D T H R O U G H P U T

HW kernel TLS SW kernel TLS No TLS

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 68/123

kubectl describe pod -n serrano-cc cc-gw-on-premise-storage-gateway-56f74b8f6-m2n8b
Name: cc-gw-on-premise-storage-gateway-56f74b8f6-m2n8b
Namespace: serrano-cc
Priority: 0
Runtime Class Name: kata-fc
Service Account: default
Node: bf/192.168.4.117
Start Time: Mon, 18 Dec 2023 21:35:22 +0000
Labels: app.kubernetes.io/instance=cc-gw
 app.kubernetes.io/name=on-premise-storage-gateway
 pod-template-hash=56f74b8f6
Annotations: cni.projectcalico.org/containerID:
6ec104d93cc675fcd4bf21a8c59832a05b9a88788f5e8a5f5c629027a0944e5c
[snipped]
Status: Running
IP: 192.168.231.58
IPs:
 IP: 192.168.231.58
Controlled By: ReplicaSet/cc-gw-on-premise-storage-gateway-56f74b8f6
Containers:
 on-premise-storage-gateway:
 Container ID: containerd://8559a7ceb761f0635cfbae6560eb97470dddaba41c7f0acc9e3ac048e65bda82
 Image: harbor.nbfc.io/nubificus/serrano/cc-gw-
signed@sha256:0c3a96549c792a19dcd17f3e5f60db198bbe1d31d954e80bc39ca2a0d252a893
 Image ID: harbor.nbfc.io/nubificus/serrano/cc-gw-
signed@sha256:0c3a96549c792a19dcd17f3e5f60db198bbe1d31d954e80bc39ca2a0d252a893
 Port: 2525/TCP
 Host Port: 0/TCP
 State: Running
 Started: Mon, 18 Dec 2023 21:35:34 +0000
 Ready: True
 Restart Count: 0
 Liveness: http-get http://:http/ delay=10s timeout=1s period=10s #success=1 #failure=3
 Readiness: http-get http://:http/ delay=10s timeout=1s period=10s #success=1 #failure=3
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-m4fgl (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
[snipped]
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 13m default-scheduler Successfully assigned serrano-cc/cc-gw-on-premise-
storage-gateway-56f74b8f6-m2n8b to bf
 Normal AddedInterface 13m multus Add eth0 [192.168.231.58/32] from k8s-pod-network
 Normal Pulling 13m kubelet Pulling image "harbor.nbfc.io/nubificus/serrano/cc-
gw-signed@sha256:0c3a96549c792a19dcd17f3e5f60db198bbe1d31d954e80bc39ca2a0d252a893"
 Normal Pulled 13m kubelet Successfully pulled image
"harbor.nbfc.io/nubificus/serrano/cc-gw-
signed@sha256:0c3a96549c792a19dcd17f3e5f60db198bbe1d31d954e80bc39ca2a0d252a893" in 563.786005ms
(563.806985ms including waiting)
 Normal Created 13m kubelet Created container on-premise-storage-gateway
 Normal Started 13m kubelet Started container on-premise-storage-gateway

If we examine the node where this container is running (bf), we can see the AWS Firecracker

instance running jailed, with the specific container id:

root@bf:~# ps -ef |grep 6ec104d93cc675fcd4bf21a8c59832a0
root 4115085 1 0 21:35 ? 00:00:00 /opt/kata/bin/containerd-shim-kata-v2 -namespace
k8s.io -address /run/containerd/containerd.sock -publish-binary /usr/bin/containerd -id
6ec104d93cc675fcd4bf21a8c59832a05b9a88788f5e8a5f5c629027a0944e5c
root 4115141 4115085 0 21:35 ? 00:00:05 /firecracker –id 6ec104d93cc675fcd4bf21a8c59832a0
–start-time-us 1142763162158 –start-time-cpu-us 76147 –parent-cpu-time-us 0 –config-file
/fcConfig.json

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 69/123

Additionally, this sandboxed container is running in a separate namespace, with a specific

security policy enabled:

kubectl describe ns serrano-cc
Name: serrano-cc
Labels: ubernetes.io/metadata.name=serrano-cc
 policy.sigstore.dev/include=true
Annotations: <none>
Status: Active

This feature, detailed in D3.4 [9] and D6.7 [11], prevents non-signed container images from

running on this specific namespace (attestation). This signature is verified by GitHub’s OpenID

service, along with the original signature, issued by GitHub itself, when the container image is

being built. This process ensures that the container image is legitimate and verified by an

authenticated third-party. More details for the deployed policy can be found below:

kubectl describe clusterimagepolicies.policy.sigstore.dev
Name: nbfc-policy
Namespace:
Labels: <none>
Annotations: <none>
API Version: policy.sigstore.dev/v1beta1
Kind: ClusterImagePolicy
Metadata:
 Creation Timestamp: 2023-12-18T21:32:07Z
 Finalizers:
 clusterimagepolicies.policy.sigstore.dev
 Generation: 1
 Resource Version: 585379312
 UID: 72694581-b673-4b2f-9e69-c0ed2a1f7d36
Spec:
 Authorities:
 Keyless:
 Identities:
 Issuer: https://token.actions.githubusercontent.com
 Subject Reg Exp: https://github.com/nubificus/.*/.github/workflows/*@*
 URL: https://fulcio.sigstore.dev
 Name: authority-0
 Images:
 Glob: **
 Mode: enforce
Status:
 Conditions:
 Last Transition Time: 2023-12-18T21:32:07Z
 Status: True
 Type: ConfigMapUpdated
 Last Transition Time: 2023-12-18T21:32:07Z
 Status: True
 Type: KeysInlined
 Last Transition Time: 2023-12-18T21:32:07Z
 Status: True
 Type: PoliciesInlined
 Last Transition Time: 2023-12-18T21:32:07Z
 Status: True
 Type: Ready
 Observed Generation: 1
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal FinalizerUpdate 29m clusterimagepolicy-controller Updated "nbfc-policy" finalizers

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 70/123

5 FinTech Use Case

The Fintech UC demonstrates the automatic optimisation of InbestMe’s dynamic investment

management. The SERRANO project contributes to the investment management use case by

accelerating critical parts of the overall Dynamic Portfolio Optimisation (DPO) application and

providing a framework that simplifies the deployment, management, operation, and

monitoring. Additionally, for the provision of investment management as a service (SaaS), the

UC benefits from the Secure Storage service that keeps the data of third parties secure. The

UC also demonstrates the advantages of cloud-based acceleration of various computationally

intensive operations. The SERRANO platform is also beneficial for InbestMe because it reduces

cloud costs and improves the quality of the services. The use case provider is able to easily

deploy multiple instances of the investment management platform on local as well as external

cloud resources.

5.1 Use case description

This UC aims to demonstrate the cloud continuum capabilities of the SERRANO platform

within the context of dynamic investment portfolio optimisation. The UC is based on

microservices architecture while leveraging the project developments for transparent

deployment on the cloud as well as the seamless execution of the SERRANO accelerated

kernels in cloud and edge resources that include FPGA or GPU accelerators and HPC platforms.

Portfolio optimisation (Figure 56) is a very representative and demanding investment

management process that can benefit from SERRANO. It starts by getting the market data

required for the analysis, which are analysed by applying a set of technical calculations.

Subsequently, forecasting algorithms and various investment strategies are applied, in

parallel, in the investment instruments. The output from the forecasting and the investment

strategies is used for creating new investment profiles. The investment profiles are again

analysed by applying forecasting methods and back testing. Finally, the investment profiles

are rebalanced to match the expected distribution of the investment profiles, but this

component is not part of the SERRANO project.

Figure 56: Portfolio optimisation workflow.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 71/123

The Dynamic Portfolio Optimisation (DPO) application, is a container-based application

deployed on the SERRANO platform using the SERRANO SDK. This application primarily

focuses on portfolio construction and optimisation.

It begins by gathering necessary data like market data, investment profiles, asset classes, and

strategy rules. These data elements are securely stored using the Secure Storage Service of

the SERRANO platform. Following data acquisition, the application conducts market analysis,

a process that employs the kernels Black Scholes, Kalman, Savgol, and wavelet that require

substantial computational resources. To enhance this step's efficiency, the DPO application

utilises the seamless access to the SERRANO-accelerated kernels provided by the SERRANO

SDK.

These accelerated kernels are instrumental in calculating technical indicators for various

investment instruments, leveraging historical price data secured through the platform's

Secure Storage service. The overall process and interactions between the DPO application's

services and the SERRANO platform components are depicted in Figure 57. The figure

highlights how these components are integrated using the SERRANO SDK and the interfaces

exposed by the SERRANO platform services.

Figure 57: Interactions between the fintech use case DPO service and SERRANO platform core components.

5.2 Demo

The following sections present a series of demonstrations highlighting the application of

Dynamic Portfolio Optimisation (DPO) within the SERRANO framework, focusing on financial

portfolio analysis and optimisation. These demonstrations encompass a range of experiments,

from simulating financial portfolio analysis on the SERRANO platform to optimizing

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 72/123

investment portfolios for balancing risk and return, and a comparative performance analysis

of DPO using the SERRANO acceleration mechanisms across varied datasets. Each evaluation

scenario leverages key components of the SERRANO framework and evaluates crucial KPIs like

cloud adaptation, instance deployment, and rates of market and portfolio analysis. These

demonstrations collectively showcase the effectiveness, efficiency, and scalability of the

SERRANO framework in real-world financial applications.

5.2.1 Simulating Financial Portfolio Analysis: Exploring DPO

Application on SERRANO platform.

This evaluation scenario aims to assess the capabilities of the SERRANO framework in the

context of financial portfolio analysis. The focus is on accessing the DPO application through

a browser, utilizing the UVT Kubernetes infrastructure, and evaluating various SERRANO

functionalities, including INB components and SERRANO platform components, such as the

library of SERRANO-accelerated kernels, secure storage service, and secure and trusted

execution through SERRANO’s lightweight virtualization mechanisms. The study also considers

key performance indicators (KPIs) outlined in D6.2 (M27), specifically the conversion/adaption

to cloud-based containers, independent instances deployment, and the rate of market

analysis.

The experiment involves connecting to the DPO application via

https://dpoapp.services.cloud.ict-serrano.eu/api/v1/dpoapp/ on the UVT Kubernetes

platform. The input requirements are stored securely in CC's secure storage, and necessary

inputs are provided for the DPO to run. Upon completion of execution, the resulting required

metrics are downloaded locally.

The KPIs measured align with Deliverable D6.6 Section 5.2.2 which are also listed and further

elaborated in this Deliverable in Section 5.3 and include the following:

1. Conversion/Adaption to Cloud-Based Containers: Assessing the system's ability to

adapt to cloud-based container environments, emphasizing flexibility and scalability.

2. Independent Instances Deployment: Evaluating the deployment of independent

instances within the SERRANO framework to gauge its efficiency and resource

utilisation.

3. Rate of Market Analysis: Measuring the speed and efficiency of market analysis

processes within the financial portfolio context.

This experiment is going to be demonstrated in real-time so as to show the monitoring and

recording mechanisms employed to capture the performance and outcomes of the

experiment.

Following, we describe a comprehensive step-by-step overview of the DPO application's

functionality, accompanied by illustrative images.

https://dpoapp.services.cloud.ict-serrano.eu/api/v1/dpoapp/

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 73/123

Step 1: Accessing the DPO Application

• Begin by visiting the publicly available URL of the application at

https://dpoapp.services.cloud.ict-serrano.eu/api/v1/dpoapp/

Figure 58: DPO publicly available API.

Step 2: Configuring Parameters and Initiating DPO Execution

• Specify the parameters of the required data in JSON format and submit a POST request.

An example input format is provided below:

{
 "end_date": "2024-12-24",

 "investment_profiles": "InvestmentProfiles",

 "asset_classes": "AssetClasses",

 "strategy_rules": "StrategyRules",

 "asset_prices.csv",

 "kernel": "wavelet"
}

It is required to ensure that all files mentioned above are pre-stored in the SERRANO secure

storage service for successful application access and execution. The 'kernel' parameter can be

one of the following: wavelet, Savgol, Kalman, Black Scholes.

https://dpoapp.services.cloud.ict-serrano.eu/api/v1/dpoapp/

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 74/123

Figure 59: DPO API and input.

Step 3: Post-Execution Information

• Upon completion of Step 2, the system will display a screen providing details on where

the generated files can be downloaded, the execution time of the DPO, and the

selected kernel's run.

Figure 60: Completion of DPO execution, useful information and link to access produced files.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 75/123

Step 4: Downloading Generated Files

• Download the generated files from the provided URL

https://dpoapp.services.cloud.ict-serrano.eu/api/v1/dpoapp/download. The

application is now ready to accept new requests.

In the live demo, we will showcase the execution of each of the four SERRANO-accelerated

kernels (Wavelet, Savgol, Kalman, Black Scholes) on datasets of different sizes, illustrating the

diverse outcomes produced by each kernel.

5.2.2 Optimizing Investment Portfolios: Balancing Risk and Reward

In this evaluation, we aim to showcase the graphical representation of KPIs relevant to

business success. The primary tool employed for this demonstration is the Efficient Frontier.

This approach not only involves explaining the significance of the Efficient Frontier but also

highlights the advantages gained by inbestMe through the integration of SERRANO and DPO

technologies.

The Efficient Frontier is a fundamental concept in portfolio theory, illustrating the optimal

balance between risk and return. Utilizing this graphical representation allows for a

comprehensive analysis of various portfolios, particularly in the context of business success.

In the case of inbestMe, the Dynamic Portfolio Optimisation (DPO) technique becomes crucial.

DPO facilitates automated portfolio creation and enables the analysis of a vast number of

portfolios with multiple assets, a process that was previously handled manually and limited to

240 assets internally at inbestMe.

The fintech use case gains substantial advantages by integrating DPO, the portfolio

management processes to the SERRANO:

1. Automated Portfolios Creation: Significantly reduces the need for manual portfolio

creation.

• Enhances efficiency and accuracy in the creation of diverse portfolios.

2. Automated Market & Asset Analysis:

• Employs DPO to automate market and asset analysis processes.

• Handles a vast number of assets, potentially exceeding 9500, in contrast to the

825 assets managed manually at inbestMe.

3. Acceleration of Market & Asset Analysis:

• Outpaces human portfolio managers in the speed of market and asset analysis.

• Leverages SERRANO to accelerate the overall analysis process.

4. Creation of Multiple Portfolios:

https://dpoapp.services.cloud.ict-serrano.eu/api/v1/dpoapp/download

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 76/123

• Facilitates the creation of potentially over 3000 portfolios, surpassing the

current manual creation of 240 portfolios at inbestMe.

5. Creation of Portfolios with Reduced Risk and High Returns:

• DPO, in conjunction with SERRANO, enables the creation of portfolios that

strike a balance between risk and return.

The success of this evaluation is gauged through the assessment of several KPIs, as outlined in

Section 5.2.2 of Deliverable D6.6 but also in the following Section 5.3. These KPIs include:

• Conversion/Adaption to cloud-based containers.

• Independent instances deployment.

• Rate of market analysis.

• Rate of portfolio analysis.

The accompanying plots visually capture the enhanced portfolio management capabilities

achieved by inbestMe, thanks to the integration of SERRANO and Dynamic Portfolio

Optimisation (DPO).

Figure 61 depicts the notable advancements in portfolio management achieved by inbestMe

through the adoption of SERRANO and Dynamic Portfolio Optimisation (DPO).

Figure 61: Efficient Frontier: InbestMe Portfolios vs. SERRANO DPO Portfolios

On the left, the plot with blue dots represents InbestMe's current efficient frontier. Each dot

is a portfolio, positioned by its risk and expected return.

Moving to the right plot, the green dots illustrate the results of implementing SERRANO's DPO.

This comparison clearly shows a significant increase in the number of generated portfolios.

More importantly, it highlights DPO's ability to create portfolios that not only have a higher

expected return but also maintain the lowest possible risk.

The advantage of using DPO is clear. It allows for the automated creation of multiple portfolios

that achieve optimal balance, surpassing the limitations of manual portfolio construction. This

efficiency and effectiveness in generating high-performing portfolios advocate for DPO as a

transformative tool in portfolio management.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 77/123

5.2.3 Local vs Accelerated DPO Performance Analysis Across Diverse

Datasets

In this evaluation, we have conducted a comprehensive analysis of the DPO performance on

local containers and SERRANO’s accelerated system. This evaluation focuses on running the

fintech application across various datasets of differing sizes, utilizing the components of the

SERRANO platform. The primary aim is to evaluate the performance capabilities of the DPO

components within SERRANO. Furthermore, this study aims to demonstrate the advantages

of utilizing the SERRANO platform for the fintech use cases.

Our evaluation is centred on critical KPIs such as the efficiency of Conversion/Adaptation to

Cloud-Based Containers and the efficacy of Independent Instances Deployment. These factors

are of significant importance, considering that our experiments are conducted within the

SERRANO cloud environment. In addition, we have examined the Rate of Market and Portfolio

Analysis to determine the practical effectiveness of these components in real-world fintech

applications. Table 10 presents a detailed analysis of the performance outcomes observed

when executing DPO applications on 9 datasets, each utilizing the accelerated setup. Each

table is structured to include the following columns:

• Size: Dataset Size in MB.

• Kernels execution - Accelerated: Average duration (in seconds) for five runs of

accelerated the kernels.

• Kernel Execution - Local: Average duration (in seconds) for five runs of the kernel on

local deployment (not accelerated).

• DPO Functionalities: Average duration (in seconds) for five runs of DPO functionalities,

excluding the kernels.

• Total Execution - Accelerated: Average total duration (in seconds) for completing five

DPO runs when kernels accelerated.

• Total Execution - Local: Average total duration (seconds) for completing five DPO runs

on local set up.

These tables offer a comprehensive view of the time efficiency of each system in various

aspects of the DPO application execution.

Table 10: Execution Information for DPO execution on Accelerated and Local set up.

Size
(MB)

Kernel
Execution -
Accelerated

Kernel
Execution -

Local

DPO
Functionalities

Total
Execution -
Accelerated

Total
Execution - Local

93 93 395.71 16.29 109 412

102 96 432.19 16.76 112 449

127 112 542.19 16.87 128 559

169 140 712.81 17.48 157 730

212 186 907.53 19.18 205 926

254 197 1072.34 18.98 216 1091

296 243 1267.97 20.52 263 1288

338 289 1430.38 21.11 310 1451

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 78/123

The results from the analysis of DPO performance, based on the data provided, reveal

significant insights into the effectiveness of the SERRANO platform's accelerated systems

compared to local container execution. The evaluation, conducted across various dataset

sizes, demonstrates a consistent trend in performance metrics. There is a pronounced

reduction in kernel execution time when utilizing the accelerated systems. The overhead

introduced by DPO functionalities remains relatively stable across different dataset sizes,

indicating a scalable and efficient integration of these functionalities within the SERRANO

framework. The total execution time, encompassing both kernel execution and DPO

functionalities, also shows a marked improvement with acceleration.

Overall, the data underscores the performance of the SERRANO accelerated systems over

local containers, especially in terms of kernel execution and total processing times. This

implies that for fintech applications requiring high computational efficiency, the utilisation of

SERRANO's accelerated systems can offer substantial benefits in terms of speed and

performance.

5.3 Evaluation

The KPIs of this category were selected based on factors that affect the satisfaction of business

and technical requirements. For the business success criteria, first, we want to reduce cloud

costs by at least 50% by deploying a hybrid cloud infrastructure. Furthermore, we care to

increase the portfolio performance by at least 10%, which will maximise the returns and

minimise the risks correlated to improving accuracy in forecasting and market predictions.

Regarding the technical success criteria, we want to migrate our applications and services to

cloud-native successfully. Additionally, we target to deploy independent cloud-based

instances of our system for third parties. It is also essential to rate markets and portfolios

through continuous analysis of them. Moreover, technical success will be considered to create

real-time orders using live market prices.

Table 11: UC2 business success criteria

ID KPI Success criterion Estimated target value Result

UC2.1 Percentage of cloud

costs reduction

Reduce cloud costs by

deploying a hybrid

cloud infrastructure

Reduced by 50% or

more

We have deployed more

than 70% of services and

cut more than 50% costs

in cloud infrastructure

bills.

UC2.2 Percentage of

portfolio performance

increase

Increase portfolio

performance

(return/risk)

Increased by 10% or

more

10%-15% improvement,

the new portfolios are

closer to the efficient

frontier.

UC2.3 Percentage of

improvement

Improve accuracy of

forecasting and

prediction

Improved by 10% or

more

15%-25% improvement,

we can run forecasting

for more assets and

different periods.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 79/123

Table 12: UC2 technical success criteria

ID KPI Success criterion Estimated target value Result

UC2.4 Conversion/adaptation

to cloud-based

containers

Convert/adapt the INB

applications and system

to cloud-based

containers

Conversion/adaptation

successful

Porting is successful.

UC2.5 Independent instances

deployment

Deploy independent

cloud-based instances of

the INB system for third

parties

Deployment successful Deployment is

successful.

UC2.6.

REM

Real-time orders

creation

Create real-time orders

using live prices

Real-time orders

creation successful

We excluded real-

time order creating in

the demo due to its

complexity to run in

sandbox

environment.

UC2.7 Rate of market analysis Continuous market

analysis

100 financial assets per

hour or more

We can analyze more

than 1000 assets per

hour.

UC2.8 Rate of portfolio analysis Continuous portfolio

analysis

100 portfolios per hour

or more

We can analyze more

than 1000 assets per

hour.

Managing heterogeneous cloud infrastructure is complex. As a result, companies like INB opt

to use a single cloud provider to facilitate the management and administration of cloud

resources. With SERRANO and UC2.1, INB deployed a hybrid cloud infrastructure consisting of

local and cloud computing units. UC2.1 measures the number of resources deployed in the

cloud and locally as well as the utilisation of the cloud vs. local resources. It aims at having at

least 50% of the utilisation be in local compute resources or at least 50% of the resources are

local deployments. As a result, this achieves 50% direct cloud cost reduction.

Investment portfolio performance is the actual return of an investment portfolio in a specific

period. In UC2.2, we measured the return of the portfolios after integrating the DPO

application with the SERRANO developments. The evaluation was successful since by

executing more often and accurate portfolio management activities we achieved a 10%

performance increase.

Similarly, UC2.3 measures the accuracy of portfolio analysis, predictions, and forecasting.

Unlike UC2.2, U2.3 is related to estimating the expected return. Thanks to being able to

perform more computation-intensive operations, we improved the accuracy of the

predictions.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 80/123

UC2.4 aims to demonstrate the SERRANO enhancements that facilitate the transparent

deployment of INB’s applications and services across federated edge/cloud resources. To this

end, INB has ported its application to leverage the SERRANO-provided lightweight

virtualisation mechanisms. UC2.4 was evaluated by completing the porting of the applications.

Similarly, UC2.5 was evaluated by successfully demonstrating the deployment of multiple

instances of INB applications and services across the heterogeneous edge, cloud, and HPC

resources that are unified by the SERRANO platform.

UC2.6 has been removed due to infrastructure limitations, as it is practically unfeasible to set

up a demo and demonstrate the creation of real-time orders based on live prices. Specifically,

obtaining real-time live prices requires a specific connection to market-data providers, and

executing real-time orders also requires a specific connection to exchanges. Therefore, setting

up such infrastructure in a test environment would be unfeasible.

UC2.7 and UC2.8 are measured similarly. Specifically, in UC2.7, we measured how many

investment instruments were analysed, and in UC2.8, measured how many portfolios were

analysed and managed.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 81/123

6 Anomaly Detection in Manufacturing Settings

Use Case

Downtime of failed devices in an industrial plant must be kept to a minimum to achieve high

system availability. In the very competitive manufacturing world, getting the most out of the

machine may be the difference between being competitive or not. Thus, and mainly after the

irruption of the Industry 4.0 paradigm, many techniques and methods are being widely

applied to meet a simple yet complex goal: keep the machine working most of the time.

Companies that manufacture expensive high added-value parts are very demanding regarding

machine availability and quality assurance. As a result, predictive maintenance, remaining

lifetime assessment, and diagnosis of critical machine elements are state-of-the-art practices.

However, some techniques that are used require the machine to stop before performing the

analysis.

The use case leverages the SERRANO platform to change the state-of-the-art approach and to

perform machine component status assessment without stopping the machine. This UC aims

to develop a system that is able to detect anomalies by processing the amount of data

generated in near real-time by high-frequency sensors.

6.1 Use case description

This UC proposes a deployment approach where data analysis is performed continuously while

the hardware equipment keeps running most of the time, and the state of the various

independent components, along with the overall status, is continuously reported. Moreover,

the UC is focused on a single critical component, ball screws. A ball screw is a mechanical linear

actuator that transfers rotational motion to linear motion, moving the machine on the x and

y-axis. Ball screws are expensive and critical machine components whose breakage implies

stopping the machine for a significant time. Each machine has two ball screws, x and y axis.

The UC has developed a Data Processing Application to analyse real-time signals from the ball-

screw sensors and check for anomalies, detecting anomalous behaviours that may affect the

part quality, and predict imminent failures. This application has been divided into two

different services that analyse the data coming from the position sensors and the data from

the acceleration sensors of the ball screw.

• Position Processor Service: Classifies the difference between the expected and the

actual position during a time interval as normal or anomalous. The system adapts to

the expected degradation of the component during its useful life. Data is gathered

from position sensors (linear and angular).

• Acceleration Processor service: Classifies the vibration signal as normal or anomalous.

The system adapts to the expected degradation of the component during its useful life.

Data is gathered from acceleration sensors (vibration data).

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 82/123

Figure 62: Data Processing Application to analyses real-time signals from ball-screw sensors.

In addition, to obtain data from real machines at IDEKO's facilities, a test bench has been built

with two sensorised ball screws (X and Y axis), simulating data from machines in a real-

production scenario. The generated data is sent to SERRANO to be analysed in order to detect

anomalies through the applications/services (Data Processing Application).

The anomaly detection services created by IDEKO have been implemented in container-based

applications on the SERRANO platform via the Alien4Cloud platform. Specifically, this

deployment utilises the SERRANO Orchestrator plugin, which is designed to interpret the

TOSCA language and seamlessly interact with the SERRANO framework.

The streaming data integration with the SERRANO platform is done through the Data Broker

component. Data Broker provides an interface based on the MQTT protocol to facilitate the

publication and consumption of the data generated from the simulated machines’ ball screws

to use case applications/services and other SERRANO components.

Specifically, the developed anomaly detection services leverage the SERRANO SDK to facilitate

their seamless access to the SERRANO accelerated kernels. The SDK abstracts the integration

with the SERRANO hardware acceleration mechanisms in edge/cloud and HPC. These

SERRANO developments provide better performance and optimisation of the highly

computationally intensive kernels used (e.g., DTW, KMeans, KNN, or FTT) by the Model

Inference and Classifier Training services. Moreover, the S3-compatible Secure Storage

interface is used to store the last N streaming data received through the Data Broker. This

way, the required data is stored and accessible by all SERRANO components and the use case

services.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 83/123

Figure 63: Interactions between the use case developed services and core components of the SERRANO

platform.

The idea is to reduce the classifier training time and the needed time to make a new prediction

through the streaming data. This enables the early detection of possible imminent failures of

the ball screw, eliminating also their occurrence and providing greater control of the health

status of the ball screw in real time. The SERRANO platform is needed since the current

techniques and resources available at the edge cannot support the above operations.

6.2 Demo

The demonstrations associated with this use case has been categorised into two different
sections:

• D1. Application deployment into SERRANO platform using Alien4Cloud

• D2. Acceleration Mechanisms (Service Orchestration)

6.2.1 D1 - Application deployment into SERRANO platform using

Alien4Cloud

Description: This demo demonstrates how a data processing application for anomaly

detection in machine tool equipment can be deployed into the SERRANO platform. This

demonstration evaluates the capability of SERRANO’s mechanisms to deploy the services in

different locations and resources. The services developed by IDEKO for anomaly detection

have been deployed in container-based applications on the SERRANO platform through the

Alien4Cloud platform, more specifically using the SERRANO Orchestrator plugin developed to

interpret the TOSCA language and interact with the SERRANO framework.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 84/123

Main SERRANO services and components involved in the demo:

• ARDIA Framework, AI-enhanced Service Orchestrator

• Resource Orchestrator, Orchestration Drivers

• Data Broker

KPIs measured/evaluated:

● GEN.1 / GEN.2: The UC demonstrates the capability of the SERRANO framework to
provide transparent deployment of applications across federated and heterogeneous
infrastructures, leveraging the high-level requirements description of the application.

● GEN.3: This demonstrator covers one of the three use cases.
● SRV.1: The UC is described in the terms the ARDIA model defines.

Scenario Description: The demonstration first introduces the UC and the SERRANO

infrastructure. Then, the demonstration compiles through the Alien4Cloud the application

requirements into the Application Descriptor File and the application deployment YAML that

defines the components to be deployed, among other important deployment-related

configuration parameters (as presented in section 3.1 Demo-1).

The actual deployment of the UC services takes places the Alien4Cloud platform (Figure 64),

while the application status and performance (e.g., inference execution times) are illustrated

in a custom Grafana dashboard (Figure 65).

Figure 64: Alien4Cloud user interface.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 85/123

Figure 65: Grafana dashboard monitoring the inference execution times.

6.2.2 D2. Acceleration Mechanisms

Description: This demonstrator uses the application deployed in the previous demo (D1) to
demonstrate the use of the SERRANO SDK to transparently request the on-demand
deployment of SERRANO-accelerated kernels (e.g., KNN). By leveraging these SERRANO
developments, the use case applications increase their performance and throughput by keep
up with the increasing demand for fast and efficient processing of the collected data.

Main SERRANO services and components involved in the demo:

• Resource Orchestrator and Orchestration Drivers

• SERRANO Telemetry Framework

• Resource Optimization Toolkit

• vAccel and lightweight virtualization mechanisms

• Library of SERRANO-accelerated kernels

KPIs measured/evaluated:

• GEN.4 / INT.6: The use case will make use of the SDK for any kind of interaction with
the platform.

• ACC.4: The use case integrates accelerated kernels.

• RES.3: The demonstrator will show how the Orchestrator places containers based on
the telemetry measured on every instant.

• SRV.7: The demonstrator will cover partial or complete execution of components in
both edge and cloud.

Scenario Description: The focus is on highlighting the capabilities of the use case applications

to efficiently handle a large number of inference requests within a specific time window by

overcoming the constraints posed by the resource-limited edge devices. To this end, the

microservices rely on transparently executing the hardware-accelerated kernels across the

SERRANO platform that help address the scalability challenges. The scenario assumes a ball

screw nearing its end of life (EOL), demanding enhanced precision on the health status

assessment compared to a brand new one. The available resources include computational,

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 86/123

storage, and acceleration devices across edge/cloud and HPC platforms (Figure 12) that are

unified by the SERRANO platform services.

The demonstration starts displaying the current status of the application, through:

- the Grafana dashboard that illustrate how inferences are being executed

- the SERRANO logs that illustrate where are the kernels being executed

After this, a modification of the initial scenario is deliberately introduced to simulate the case

when the ball screw is reaching its end of life. This will cause the application requirements to

no longer be met. Hence, the SERRANO orchestration and deployment mechanisms will

automatically offload the corresponding workloads to the most appropriate hardware

acceleration resources to use the benefits of the SERRANO-accelerated kernels.

During the demonstration, there are available details from the operation of the SERRANO

mechanisms that show the framework’s decisions to keep requirements in place. Moreover

orchestration, the use case Grafana dashboard illustrates how the inference time increases

after the scenario modification and how returns to a regular state after SERRANO framework

decisions.

6.3 Evaluation

The current state-of-the-art techniques in the detection of anomalies in critical components

such as the ball screw are based on stopping the machine and executing controlled and

measured movements, comparing their performance with previous measurements. This

approach however, leads to obtaining low knowledge of the machine’s component health and

decreasing machine availability.

The success of this use case is based on leveraging the SERRANO platform to go beyond the

state-of-the-art approach and to perform the ball-screws’ status assessment without stopping

the machine, moving to real time health assessment. As a result, a deeper knowledge of the

components health is achieved, while and machine availability is increased.

The following is a summary and review of KPIs for the Business Success Criteria.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 87/123

Table 13: UC3 business success criteria.

ID KPI Success criterion Estimated target value Result

UC3.1 Transition to real-

time anomaly

detection

Transition from on-

demand to real time

data analysis for

anomaly detection to

reduce machine

stoppages

Transition successful SERRANO’s mechanisms

allow our UC to:

• Timely process

streaming data

leveraging SERRANO’s

kernel acceleration

mechanisms.

• Continuously infer the

status of balls crews

every 12 seconds using

data coming from

accelerometers.

• Continuously infer the

status of balls screws

every 10 seconds using

data coming from

position sensors for ML

model trained with 110

observations.

UC3.2 Anticipation of

failures

Anticipate failures

comparing to current

state-of-the-art

techniques

Anticipation successful SERRANO’s mechanisms

allow our UC to:

• Perform continuous

components health

assessment.

• Predict imminent

failures with enough

time to avoid severe

machine failures.

UC3.3 Anomaly detection

accuracy increase

Increase of anomaly

detection accuracy

(avoiding nuisance

alerts and false

positives/negatives)

Increase by 35% or

more

SERRANO’s mechanisms

allow our UC to:

• Reduce nuisance alerts

or false positives.

• Improve classifier

accuracy by 10%.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 88/123

UC3.1 Transition to real-time anomaly detection

The transition from on-demand component diagnosis to online diagnosis involves the

installation of new hardware elements, the development of new software systems that

dynamically identify optimal execution conditions, processing systems, monitoring

dashboards, and, above all, it implies the need to process a volume of data several orders of

magnitude higher. The latter is the cornerstone on which to build the rest of the solution, and

it is what SERRANO has managed to develop.

Our use case has successfully simulated a real-time component diagnosis scenario by

leveraging SERRANO's mechanisms. Our simulated scenario has been able to:

- Timely process streaming data leveraging SERRANO’s kernel acceleration

mechanisms.

- Continuously infer the status of balls crews every 12 seconds using data coming

from accelerometers.

- Continuously infer the status of balls crews every 10 seconds using data coming

from position sensors.

Figure 66 shows results obtained from on-demand component diagnosis performed in the ball

screw test bench at IDEKO facilities using a cycle frequency of a week, which is usually the

manufacturing client’s most used periodicity for running components’ diagnosis. The chart

displays 52 analyses carried out during 2021 year and the anomaly score obtained for each of

them.

Figure 66: Summary of 2021 results.

Figure 67 shows the results obtained for a single month of the same year. Five single analyses

were performed during January 2021.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 89/123

Figure 67: Results of January 2021.

For comparison, the next chart displays some results of the continuous diagnosis strategy

running over the SERRANO framework. Using this strategy, the component health is computed

every 10 seconds. Figure 68 shows some results from a single day, 2023-04-21, obtained by

our Position Service, which was developed during the project. As the chart displays, in a matter

of 20 minutes the number of component diagnosis inferences is greater than the inferences

for a whole year using the classical approach.

Figure 68: Some results from 2023-04-21.

Taking as a basis for this evaluation the Position Service of this use case, the next charts

illustrate the results obtained for the streaming data requirements along with the ML models’

complexity. In particular, Figure 69 compares the time needed to process streaming data by

our Position Service. The x-axis indicates the number of observations used to train the ML

model, while the y-axis indicates the time needed to infer a new observation using each ML

model. The colour series indicates the time using different acceleration mechanisms in

different infrastructures within the SERRANO platform. As depicted in Figure 12, the final

release of the SERRANO platform incorporates two types of hardware acceleration resources

(i.e., GPU and FPGA) in two of the Kubernetes clusters. The NBFC K8s cluster includes 3 GPUs

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 90/123

(Jetson AGX Xavier, Jetson Nano, Nvidia RTX 2060) and the AUTH K8s cluster includes 2 GPUs

(Nvidia T4) and 2 FPGAs (Xilinx Alveo, Xilinx MPSoC).

Figure 69: Inference time with SERRANO acceleration mechanisms for different range of ML models (Y axis -

prediction time in seconds and X axis - observations of the generated model).

Figure 69 perfectly illustrates the challenges of the use case. While the systems target is

making inferences every 10-12 seconds, this is achieved using an ML model trained using 110

observations. The inference time increases as the number of observations used to train the

model increases.

Figure 70 shows the inference time results when the available infrastructure also utilizes the

IDEKO’s edge devices. This illustrates the extreme differences in processing time between the

execution of the ML model on a commodity, regular, hardware at the edge, and the SERRANO

powered acceleration mechanisms and infrastructure.

Figure 70: Inference time with SERRANO acceleration mechanisms and IDEKO’s edge device (Y axis -

prediction time in seconds and X axis - observations of the generated model).

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 91/123

Additionally, the capacity of the SERRANO platform’s to facilitate classifier retraining for the

acceleration service for batches of machine big data has been evaluated. Throughout the

lifespan of the ball screw, the initial conditions undergo changes. Consequently, the initial

classifier model must also be adjusted, adapting to the new conditions of the ball screw.

Hence, the importance of retraining the model, allowing it to adapt to the evolving situations

of the ball screw. To this end, intentionally the classifier retraining process using various sets

of machine data (simulated data) has been initiated, mimicking a scenario where 80% of

recent inferences were deemed anomalous. Consequently, the acceleration service detected

changes in the ball screw’s conditions, signalling the necessity for a model update.

Subsequently, the SERRANO orchestration mechanisms dynamically offloaded the execution

of the required computations to the HPC platform due to the big data. In this case, the

SERRANO-accelerated version of the KMEANS kernel for the HPC platform was employed. The

following table summarizes the end-to-end execution times for the on-demand execution of

the KMEANS kernel. This strategic adjustment is crucial since the local resources within the

use case infrastructure are insufficient to provide the updated model version for these dataset

sizes.

Table 14: Execution times for the SERRANO-accelerated KMEANS kernel (acceleration services) for classifier

retraining model on HPC with different batches of machine data

Dataset
Total

datapoints
Move Data
to HPC (sec)

Kernel
Execution (sec)

Move Data
from HPC (sec)

Total Execution
Time (sec)

cycle_26 852020 11 483 10 504

cycle_104 3408080 12 396 17 425

cycle_156 5538130 23 330 10 363

cycle_208 6816160 12 462 11 485

cycle_234 7668180 8 407 10 425

cycle_260 8520200 13 406 8 427

The evaluation results indicate that the SERRANO platform, equipped with acceleration,

orchestration, and security mechanisms developed in the project context can address the

challenge of processing the data volume from a common setup of self-diagnostic cycles for

critical components in the machine tool sector.

UC3.2 Anticipation of failures

Anticipation of failures is a side effect of the transition mentioned in the previous success

criteria. Current state-of-the-art techniques perform periodical (e.g. weekly) analysis for

predicting and detecting anomalies due to the need to stop the machine to execute diagnosis

tasks. This approach can oversee failures happening between running two diagnoses due to

extremely fast component degradations. The usage of SERRANO’s developments allows our

use case to:

- Perform continuous components health assessment

- Predict imminent failures with enough time to avoid severe machine failures

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 92/123

At the end of January 2022 (bold vertical line in the bellow chart), the bearing package

supporting the Y-axis balls crew of IDEKO’s test bench broke. The anomaly score for the

previous weeks, computed using the classic weekly analysis strategy, was insufficient to

foresee the incidence (see Figure 71). The classic strategy was not able to predict it because

the origin of the failure was a wrong ball screw preload after an erroneous maintenance task,

days after the execution of the last diagnosis test.

Figure 71: Results from 2022-01, where a vertical line locates the breakage.

Our team used those days’ data to feed the continuous anomaly detection system developed

during the project. Experimental tests suggest that the continuous strategy would have

successfully predicted the failure with enough time to, at least, avoid the damage that a

sudden breakage can cause. Results from these tests are illustrated in Figure 72, where, after

some filtering, an increasing pattern in the anomaly detection score is clearly identified.

Figure 72: Hypothetical results utilizing SERRANO platform.

Experiments using real breakage data suggest, as also experience do, that a continuous

monitoring system allows one to anticipate the failures, especially for components that fail

suddenly, without a prior clear pattern of degradation. These situations are often caused by a

human error during a maintenance task, among other root causes. The data volume involved

in this task is, however, the main difficulty to tackle. SERRANO framework, as described

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 93/123

before, has demonstrated the ability to process these data effectively, enabling the

implementation of this anomaly detection system on a manufacturing plant.

UC3.3 Anomaly detection accuracy increase

In order to evaluate these success criteria IDEKO created a scenario that compares the two

component health assessment strategies: (i) current state-of-the-art periodical machine self-

diagnosis cycles and (ii) continuous self-diagnosis using SERRANO powered framework. The

following sections give important details of the scenario setup to better understand the

context and the results.

Machine

The scenario was set up in IDEKO’s ball screw test bed. As described in previous deliverables,

the test bed comprises two ball screws working 24/7 to speed up degradation and enables the

execution of both on-demand and continuous tests.

Figure 73: Test bed ball screw.

Hardware setup

The picture below gives an overview of both hardware and software systems involved in the

scenario setup.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 94/123

Figure 74: Different anomaly detection set up on demand vs continuous data.

The test bench (1) accelerometers are connected to a high frequency data acquisition system

(2). Ball screws’ position signals are gathered directly from the Siemens Sinumerik CNC (7).

Both acceleration and position signals are fed into our IoT Gateway (3), where the tests run.

The IoT Gateway runs the necessary software components for running both classical and

periodical tests (5) as well as continuous tests (4).

Scenario execution conditions

The test bench has been working for 10 days, during which the two health assessment

strategies were executed repeatedly:

1. Periodical machine self-diagnosis cycles have been executed every 24 hours.

2. Acceleration and Position services have been running and executing component health

assessment every few seconds.

During the test period, 7 cycles were executed in total using the first strategy and 77761 cycles

were executed using the second one. After the test period executions data were compiled and

analysed and the results are detailed below.

Results

The first strategy incurs on a data-resolution problem. Distinguishing execution with

anomalies from those that are normal, can became a problem. This is mainly because of the

lack of resolution in the data offered by the analysis using this strategy, which incurs to a

potential loss of information due to the lack of data for the health of the component in the

time period between one to another analysis.

Figure 75 shows a scenario (one analysis per day) where it is difficult to distinguish anomalies.

The dispersion of the data makes the system, which is forced to group executions into only

two groups (anomalous and normal values), tend to fail, often offering false positives.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 95/123

Figure 75: No anomalies are captured.

In contrast, Figure 76 shows a scenario where the second strategy is applied, using the

SERRANO technological developments. In this case, the health of the component is computed

every 10 seconds. Results clearly indicate that the anomaly detection system produces more

robust results, avoiding a large number of nuisance alerts.

Figure 76: Anomalies are captured using SERRANO platform.

NOTE: the number of points within the orange stripe has been reduced for the sake of clarity.

That stripe is comprised of about 77700 points.

Although it is not possible to estimate the accuracy of the detection system at full accuracy,

the above graph shows a significant change in data resolution, which allows the clustering

algorithm to perform much more accurate division of anomalous observations than the

traditional system.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 96/123

Furthermore, during the project, several benchmarking tasks were executed to compare the

accuracy of the model training tasks using different acceleration strategies. The following

image (Figure 76) gives an overview of the results of executing a model training task for the

KNN with different input data sizes and the accuracy obtained for each of them. The

comparison is done by executing the training task on IDEKO’s edge devices and comparing it

with the HPC approach. Using IDEKO’s edge device, the training was only successful with the

minimum data size used for the benchmarking. Comparing the accuracy between this and the

biggest trained model in the HPC infrastructure, the accuracy has improved by, approximately,

10%.

Figure 77: Benchmarking in position service comparing the accuracy of the model training.

The accuracy values presented in the preceding table were derived through an evaluation

process. First, the data used to build the classifier model underwent labelling, distinguishing

them as anomalous or non-anomalous using the KMEANS clustering method. Subsequently, a

robust validation technique, K-fold cross-validation, was employed, involving the division of

the dataset into five distinct sets. The model's predictions were then compared against these

labelled datasets. This approach ensured a rigorous assessment by iteratively training and

validating the model on different subsets of the data.

The following table provides a summary and review of KPIs that indicate the technical success

of UC3.

Table 15: UC3 technical success criteria.

ID KPI Success criterion Estimated target value Result

UC3.4 Rate of streaming

data processing

Being able to quickly

process large amounts

of streaming data

20MB/s or more 4MB/s processed with

both acceleration as

position services.

UC3.5 Increased

availability of

machine

Increase of machine

availability

2% or more, measured

in a monthly basis

2.57% improvement on

the test bench.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 97/123

UC3.4 Rate of streaming data processing

The rate of the streaming data processing has been measured with the current use case

scenario setup, which, in summary is comprised of:

- 3 machines with 2 ball screws each = 6 ball screws

- 2 accelerometers for per ball screw

- 2 position sensors (linear encoders) per ball screw

The data volume generated by the above setup is summarized as follows:

Sensor Volume (MB/s) Total volume 6 ball screws (MB/s)

2x Accelerometer 1.86 * 2 = 3.72 22.32

2x Position 0.124 * 2 = 0.248 1.488

TOTAL 3,968 MB/s 23.808 MB/s

The image (Figure 78) below describes the setup of the scenario.

Figure 78: Architecture of the scenario setup.

In summary, the current UC scenario setup produces about 24MB/s when both developed

service applications (i.e., Position Service and Acceleration Service) run in parallel. In this

situation, the applications run smoothly leveraging SERRANO’s platform internal mechanisms.

UC3.5 Increased availability of machine

This KPI is a side effect of the KPIs above. KPI 3.2 clearly describes a real use case where

machine availability can be dramatically increased, however, having real historical data for a

larger period of time and access to actual customer maintenance incidents registries would

make our case even stronger.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 98/123

Taking this into account, the measurement of this KPI has been based on testbed data for the

entire period for which historical data is available. For this purpose, the data from the

historical component has been crossed with the recorded incidents. For evaluating machine

availability improvements, incidents close to the moment of detection of an anomaly are

considered that would have been avoided.

Taken this into account, this yields an improvement of 2.57% in machine availability. Detailed

results are displayed in the table below.

Table 16: Effective availability of the test bench compared to a simulated scenario with continuous

monitoring.

Source Working hours Breakdown hours

Effective 1663 216

Simulated 1707 172

Improvement 2.57%

Our simulated scenario yields a positive conclusion on the effect on machine availability of a

scenario where the health of machine components is measured continuously.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 99/123

7 SERRANO Project KPIs

7.1 KPIs related to general project requirements

The following set of KPIs are related to Objective 1 “Define an intent-driven paradigm of

federated infrastructures consisting of edge, cloud, and HPC resources” and Objective 6

“Demonstrate the capabilities of the secure, disaggregated, and accelerated SERRANO

platform in supporting highly demanding, dynamic and safety-critical applications.” of the

SERRANO project. They correspond to the general vision of the project to enable the cognitive

and transparent application deployment over the federated edge, cloud, and HPC

infrastructures.

Table 17: KPIs related to general project requirements

ID KPI Description/Innovation Estimated target

value

Result

GEN.1 Unification of edge,

cloud and HPC

platforms.

SERRANO should unify

federated infrastructures,

with edge, cloud and HPC

resources, through the

provision of novel

automation and

orchestration mechanisms.

Transparent

deployment of

workloads in all

unified platforms.

The final release of

the SERRANO

platform (D6.7)

successfully unifies

edge, cloud, and HPC

platforms by offering

among the others the

transparent

deployment of

workloads, on-

demand execution of

SERRANO-accelerated

kernels, and intent-

driven creation of

secure storage

policies. These

functionalities were

successfully tested

and evaluated

through all the

platform and use

cases demonstrations

that described in

Sections 3, 4, 5 and 6.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 100/123

GEN.2 Abstractions for

interoperable and

infrastructure agnostic

deployments.

Applications have to

express their high-level

requirements in an

infrastructure agnostic

manner.

SERRANO

mechanisms should

translate the high-

level requirements to

infrastructure specific

parameters.

The SERRANO

orchestration

mechanisms (i.e., AI-

enhanced Service

Orchestrator,

Resource

Orchestrator, and

Resource

Optimisation Toolkit)

successfully provided

the required

functionalities. These

operations were

extensively tested and

evaluated through the

four platform

demonstrations and

by the

implementation and

evaluation of the

three project use

cases.

GEN.3 Applications

successfully

demonstrating

SERRANO capabilities.

Successful demonstration

of SERRANO platform

capabilities covering the

individual UC requirements

and the specific metrics for

security, performance,

interoperability, and

usability.

3 use cases. The project uses cases

and the platform

demonstrations were

carefully selected and

designed to cover and

evaluate all the

project use cases.

Their description

provides references

to the project KPIs

with special emphasis

on security,

performance,

interoperability, and

usability.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 101/123

GEN.4 Availability of open

and well-defined

interfaces

SERRANO should provide a

complete Service

Development Kit (SDK) to

support effectively the

creation, orchestration,

deployment, monitoring

and adaptation of novel

applications.

The three project UCs

should utilise the

provided interfaces to

interact with the

SERRANO platform.

The three project use

cases and all the

platform demos

utilise the SERRANO

SDK to interact with

the SERRANO

platform services.

More details are

available in the

respective sections in

this deliverable and

deliverable D6.7

(M36)

These high-level KPIs were successfully tested, featured, and verified as part of the platform

and use case demonstrators that were performed during the project's final phase (M30-

M36). GEN.1 and GEN.2 are related to evaluating the SERRANO orchestration, telemetry, and

deployment mechanisms. GEN.1 was assessed through the evaluation scenarios for the

platform demonstrators and the three use cases, where the developed mechanisms

transparently from the end users selected the most appropriate resources from the edge,

cloud, and HPC platforms. GEN.1 was also successfully evaluated for the HPC platforms as the

respective SERRANO-accelerated kernels were seamlessly executed and managed in the

available HPC infrastructure through the SERRANO orchestration mechanisms and SERRANO

HPC Gateway. GEN.2 was verified based on the ability of the AI-Enhanced Service Orchestrator

and Resource Orchestrator to translate the high-level requirements to infrastructure-specific

deployment objectives for deploying applications and defining secure storage

policies. GEN.3 was assessed by the number of use cases and platform demonstrators that

SERRANO designed, implemented, and evaluated. GEN.4 was achieved since all platform

demonstrators and the project use cases utilised the provided SDK to interact with the

SERRANO platform services.

7.2 KPIs related to edge, cloud and HPC acceleration

requirements

The KPIs related to edge, cloud, and HPC acceleration concern the accelerated UC applications

created for the SERRANO project as well as the context-aware run-time orchestration system

for the edge and cloud accelerators. These mainly focus on accelerated applications'

performance and energy efficiency and the benefits of performing approximate computing

techniques. The KPIs are related to Objective 4 "Provide acceleration and energy efficiency at

the edge and cloud" of the SERRANO project, and are also described in the description of the

work.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 102/123

Table 18: KPIs related to edge, cloud and HPC acceleration requirements

ID KPI Description/Innovation Estimated target

value

Result

ACC.1 Context-aware run-

time configuration

Enable context-aware run-

time configuration of the

approximate kernels at

edge and cloud sides to

meet

application’s/service’s

latency requirements

use-case dependent Developed several

different approximate

versions of accelerated

kernels, which trade

off accuracy for

performance/energy.

These kernels can be

exposed as different

endpoints through

NBFC’s FaaS service

and consumed by the

SEERANO orchestrator

to enable context-

aware run-time

configuration both at

Edge and Cloud.

ACC.2 Improve energy

efficiency

Improve energy efficiency

of cloud and edge nodes

over existing general-

purpose architectures by

utilizing FPGA and GPU

accelerators

10x-100x Final Energy gains

range from ~1.3x up to

~5000x reduction for

Cloud FPGAs (Xilinx

Alveo) and from

~1.15x up to ~2875x

for Edge FPGAs (Xilinx

MPSoC) compared to

the respective board’s

CPU performance (i.e.,

Intel and ARM

processors).

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 103/123

ACC.3 Energy savings from

approximate

computing

Obtain further energy

savings (depending on the

target domain) through

approximate computing

techniques, without

significant performance

and quality degradation

20-35%

Additional energy

savings range

between ~20% up to

~950% for Cloud

FPGAs and ~20% up to

~980% for Edge

FPGAs.

4 kernels accelerated

for the Anomaly

Detection in

Manufacturing

Settings use case (IDK),

4 kernels accelerated

for the FinTech use

case (INB) and 3

kernels acerated for

the Secure Storage use

case (CC). The kernels

have been accelerated

for various target

devices (including both

heterogeneous Cloud

& Edge FPGAs and

GPUs), resulting in

more than 100

different variations in

total.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 104/123

ACC.4 Number of hardware

accelerators

The number of hardware

accelerators (IP blocks) to

be developed per use case

study, mapped to

SERRANO platform and

used in the use case

scenarios

>= 3 Additional energy

savings range

between ~20% up to

~950% for Cloud

FPGAs and ~20% up to

~980% for Edge

FPGAs.

4 kernels accelerated

for the Anomaly

Detection in

Manufacturing

Settings use case (IDK),

4 kernels accelerated

for the FinTech use

case (INB) and 3

kernels acerated for

the Secure Storage use

case (CC). The kernels

have been accelerated

for various target

devices (including both

heterogeneous Cloud

& Edge FPGAs and

GPUs), resulting in

more than 100

different variations in

total.

ACC.5 Number of

interoperable functions

using hardware

accelerators

The number of UC

hardware acceleration

functions available as a

serverless function,

regardless of their

hardware-specific

implementation. Each

function maps to the

respective hardware-

specific implementations

from ACC.4.

>= 2 4 functions/kernels

are accelerated in

hardware.

The ACC.2 KPI is measured as follows: Each UC algorithm has its corresponding hardware

accelerator. Those accelerators are executed standalone for a pre-defined input in the

SERRANO’s infrastructure and the platform’s energy consumption is extracted during the

accelerator’s execution. The extracted energy consumption is compared to the energy that is

consumed by a general-purpose platform when the UC algorithm is executed standalone for

the same input.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 105/123

The ACC.3 KPI is measured as follows: For the UC algorithms that allow an error margin at

least one approximate accelerator is developed. The approximate GPU/FPGA designs are

executed standalone in the SERRANO’s infrastructure for a pre-defined input and the

platform’s energy consumption is extracted. The extracted energy consumption is compared

to the energy consumption of the accurate version when it is executed standalone on the

same platform for the same input.

With respect to the measurements of ACC.3 for HPC, the benchmarking of the HPC services is

performed with different data sizes and approximation parameters, e.g. data precision and

loop perforation. Therefore, the parameters, such as the execution time, performance

(FLOPS), and energy consumption, are measured and compared to the precise execution of

the HPC services in order to determine the KPI value.

7.3 KPIs related to secure infrastructure requirements

The KPIs related to secure infrastructure requirements cover the main aspects of the SERRANO

secure data storage mechanisms. These focus on usability, performance, reliability, and

security, enabling increased observability within the SERRANO platform by collecting and

correlating monitoring and telemetry data.

Table 19: KPIs related to secure infrastructure requirements.

ID KPI Description/Innovation Estimated

target value

Result

SIR.1 Reduction in data

access latency

Reduction of read and write time

for files, when system is

augmented with edge storage

locations and the On-premises

storage gateway, compared to a

purely cloud-based scenario.

Reduction should be measurable

for all file sizes. Estimated target

value is for files with size 1 kB.

50% For file sizes between

1MB and 15MB

Read: 62-70%

Write: 39-45%

SIR.2 S3 endpoint coverage

of bucket and object

CRUD

The Secure storage service

should support the basic

functionality of the S3 API

concerned with buckets and

objects. In particular, creating,

deleting and listing buckets,

creating, retrieving, deleting,

listing and retrieving objects.

100% 100%, with additional

endpoints to support

multipart uploads and

HTTP Range queries

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 106/123

SIR.3 Support for GDPR-

compliant cloud

storage locations

The Secure storage service

should make it possible to use

EU-based, GDPR-compatible

cloud locations. This is vital in

being able to accommodate for

legal requirements some

SERRANO users might have.

>=10 24

SIR.4 Performance

improvement for TCP

connections.

Speed up of TCP data transfer

throughput, compared to a set-

up with SW kTLS (without TLS

offload).

10%-150%

9%

SIR.5 Performance

improvement for TCP

connections in line

rate

Reduction in CPU utilisation in

comparison to a set-up with SW

kTLS (without TLS offload).

Reduction of 10-

20%
40%

SIR.1 Reduction in data access latency: A measurement application (described in Section 4.3)

has been created that uses the On-premises Storage Gateway’s REST interface to first create

a set of storage policies that use purely cloud-based locations, purely edge locations and a

combination of the two. Following this, a measurement campaign has been conducted

covering a wide range of file sizes as part of UC1.

SIR.2 S3 endpoint coverage of bucket and object CRUD: Coverage can be checked by

comparing the S3-compatible storage interface’s list of endpoints (Swagger UI [16] or

OpenAPIv3 [17]) to Amazon’s documentation [18]. This feature has also been showcased in

the demo created for the mid-project review, described in Section 4.2.1.

SIR.3 Support for GDPR-compliant cloud storage locations: This information is published on

the SkyFlok website [19] and is also available through an endpoint of the Cloud Telemetry API

[20].

SIR.4 Performance improvement for TCP connections: We compared the improvement of TCP

data transfer throughput, to a set-up with SW kTLS (without TLS offload). Measuring the

throughput is done using mlnx_perf tool, which prints the throughput. The TLS acceleration

demonstrator covers this KPI. This KPI has also been evaluated in the context of UC1, as

described in Section 4.3.

SIR.5 Performance improvement for TCP connections in line rate: We compared the CPU

utilisation of the setup in line rate, to a set-up with SW kTLS (without TLS offload). Measuring

the CPU utilisation is done with the mpstat command, and checking the “idle” column, then

reducing the output from 100 and getting the CPU utilisation. The TLS acceleration

demonstrator covers this KPI. UC1.6, a derivative of this KPI has been evaluated in the context

of UC1, as described in Section 4.3.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 107/123

7.4 KPIs related to network and cloud telemetry framework

requirements

The KPIs related to network and cloud telemetry framework requirements cover the main

aspects of the SERRANO telemetry framework mechanisms, which enable increased

observability within the SERRANO platform through the collection and correlation of

monitoring and telemetry data.

Table 20: KPIs related to network and cloud telemetry framework requirements

ID KPI Description/Innovation Estimated target

value

Result

TEL.1 Availability of appropriate

telemetry probes.

The lowest part of the

SERRANO telemetry

framework are the

resource-specific probes

that collect and forward

the necessary inventory

and monitoring data.

Probes to collect

inventory and

monitoring

information from

edge/cloud platforms

based on Kubernetes,

HPC platforms,

SERRANO edge

devices and on-

premise gateway

components.

The final release of the

SERRANO platform

includes the following

monitoring probes: (i)

K8s probe, HPC probe,

and edge storage

devices probe.

Moreover, it is

integrated with the

Cloud Telemetry API

from the Secure

Storage service to

retrieve telemetry

data for the available

cloud storage

locations.

TEL.2 Support of streaming

telemetry.

The telemetry framework

should be able through the

designed data analytics

mechanisms to enable the

data-driven provision of

streaming telemetry

information.

On-demand provision

of concurrent

streaming telemetry

sessions with

granularity up to 5

seconds.

The final release of the

SERRANO platform

supports the dynamic

and on-demand

provision of streaming

telemetry data. A

number of integration

tests were performed

during the evaluation

of the final SERRANO

platform and an

example is reported in

D6.7 (M36).

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 108/123

TEL.3 Provide estimations for

network-related

parameters.

The SERRANO telemetry

framework mechanisms

and the designed AI/ML

methods should

intelligently monitor the

interconnection links

across the distributed

edge, cloud and HPC

infrastructures.

Network-related

metrics (e.g., available

bandwidth, delay)

should be available

and considered by the

SERRANO cognitive

orchestration

algorithms.

This requirement is

partially implemented

in the SERRANO

platform through the

provision of telemetry

data from the

available cloud

storage locations by

the Secure Storage

service. In addition,

we performed several

theoretical and

appropriate

algorithmic solutions

were developed

related to the ML-

based provision of

estimations for

network-related

parameters. These

works are reported in

deliverables D5.3

(M15) and D5.4 (M31),

also leading to two

publications in

internal peer-

reviewed conferences

and journals.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 109/123

TEL.4 Storage and aggregation

of telemetry information.

Other core services of the

SERRANO platform along

with the platform

administrators should

have access to the overall

collected telemetry

information and relevant

events.

The telemetry API and

a web-based user

interface should

provide an aggregated

view of the available

resources along with

their current status

across the overall

SERRANO platform

The final release

includes the Persistent

Monitoring Data

Storage (PMDS) that

provides long-term

storage for the

collected telemetry

data. This

functionality was

successfully evaluated

through several tests

and its usage in Demo-

4 "Service Assurance

and Remediation"

platform evaluation.

Moreover, the

availability of the

aggregated collected

telemetry data is

evaluated through

several Grafana

dashboards that

support the platform

evaluation scenarios

and project use cases.

TEL.5 Correlation of telemetry

data to infer metrics and

localise failures.

A set of AI/ML algorithms

based on collected data

will provide feedback at

the telemetry framework

and trigger the

orchestration and service

assurance mechanisms.

ML algorithms will

correlate information

from a number of

different data sources.

Failure detection rate

will be measured.

The final release of the

SERRANO platform

provides the

corresponding

functionality through

the ML methods by

the Service Assurance

and Remediation

service. This

component leverages

the collected

telemetry data from

the diverse

monitoring probes.

TEL.6 Reprogrammable

monitoring probes.

The SERRANO probes

should support the

configuration of their

operation through a

predefined REST interface.

Support at least: a)

enable/disable data

collection, b) enable/

disable reporting, c)

change reporting

interval, d) set alarm

level for specific

parameters.

The final version of all

SERRANO monitoring

probes supports the

targeted

functionalities. Their

implementation was

evaluated through

several integration

tests.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 110/123

TEL.1 was assessed against the number of different telemetry probes that were deployed in

the final version of the SERRANO evaluation testbed. More specifically, the SERRANO

evaluation testbed included at least one probe for the following infrastructure resources: (i)

edge/cloud platforms based on K8s, (ii) HPC platform, (iii) SERRANO edge storage devices, and

(iv) cloud storage locations. Moreover, the monitoring probes for the computational resources

in edge, cloud, HPC platforms collected telemetry data for the deployed applications and

SERRANO-accelerated kernels. The SERRANO Enhanced Telemetry Agents successfully

collected metrics from all these probe types and there was a successful integration with the

HPC Gateway for collection HPC telemetry data.

TEL.2 was verified using code instrumentation in the Enhanced Telemetry Agent and

monitoring probes along with specifically designed evaluation scenarios that triggered the on-

demand provision of streaming telemetry. One of these scenarios is reported in deliverable

D6.7 (M36), where streaming telemetry is trigger upon receiving a notification by the Service

Assurance and Remediation service for some anomalous event within the SERRANO platform.

Next, the ETA initiated a streaming session by requesting detailed telemetry data every 5

seconds regarding the CPU and memory performance at the affected worker nodes. The

performed integration and evaluation tests assessed that the SERRANO telemetry framework

mechanisms are able to automatically start, configure, and terminate the provision of

streaming telemetry data.

TEL.6 was extensively tested and verified using a number of specific tests. In this case, the

performed tests assessed the ability of the ETA components to enable and disable data

collection, and change the reporting period for each probe type.

TEL.3 and TEL.5 were evaluated based on the availability of estimations for at least two

network-related metrics to SERRANO orchestration algorithms and the provision of feedback

to the telemetry framework for adapting the monitoring probes.

TEL.4 was featured during the final demonstrators with the provision of several Grafana

dashboards that, by utilizing the telemetry API, display the appropriate collected telemetry

information and relevant events. The evaluation was successful since the end users and other

SERRANO services (i.e., RES.1, RES.5, RES.6, SRV.8) were able to retrieve the stored telemetry

data through the provided API.

7.5 KPIs related to resource orchestration and service

assurance

The KPIs in this section cover the most critical aspects of the SERRANO resource orchestrator

and the service assurance mechanisms. These functionalities are related to Objective 5

“Cognitive resource orchestration and transparent application deployment over edge/fog-

cloud/HPC infrastructures” of the SERRANO project.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 111/123

Table 21: KPIs related to resource orchestration and service assurance

ID KPI Description/Innovation Estimated target

value

Result

RES.1 Availability and scalable

execution of cognitive

and multi-object

orchestration

algorithms

The Resource Optimisation

Toolkit should expose well-

defined interfaces to

facilitate the inclusion of

different orchestration

algorithms. Moreover, it

should automatically scale

the number of available

instances to cope with the

orchestration requests.

Integration of at least

3 designed

algorithms and ability

to support cloud-

native execution.

Several tests were

performed to verify

the ROT’s ability to

scale with the number

of requests.

Moreover, the final

version integrates

three of the SERRANO

designed algorithms

(reported in D5.4)

that were also used in

all platform (Section

3) and use cases

evaluations.

RES.2 Coordinate the

workload placement

across multiple

orchestration

platforms.

The SERRANO platform

through the Resource

Orchestrator should

orchestrate multiple local

orchestrators across the

federated and

heterogeneous

infrastructure.

Support of

Kubernetes (k8s) for

edge/cloud platforms

and Slurm and PBS-

based batch job

schedulers for HPC

platforms.

The SERRANO

Orchestration Drivers

successfully manage

platforms with local

orchestrators based

on K8s and HPC

schedulers. This

functionality was

evaluated in platform

demonstrations

Demo-1, Demo-2,

Demo-4, and in all

RES.3 Dynamic and data-

driven adjustments in

workload and data

placement.

The SERRANO orchestration

mechanisms should

coordinate data and

workload migration

operations within the

platform according to the

feedback by the telemetry

and service assurance

mechanisms.

Automatic workload

migration both across

different edge/cloud

resources and

cloud/HPC.

This KPI is successfully

covered and

evaluated through

the platform

demonstration

Demo-3 and the on-

demand execution of

the SERRANO

accelerated kernels

for project use cases

in Sections 5 and 6.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 112/123

RES.4 Cognitive distributed

secure data storage.

The SERRANO platform

should select the

appropriate storage

locations and coordinate the

data movement between

applications and the

distributed storage

resources according to

applications’ requirement

and the available resources.

Data-driven

definition and

selection of storage

policies for the

optimal distribution

of data across

multiple edge and

cloud storage

locations.

The successful

assessment of this KPI

is described in Section

4.3. Two different

storage policies were

automatically created

by the SERRANO

orchestration

mechanisms based on

the user high-level

requirements.

RES.5 Service Assurance using

Event Detection

The SERRANO platform must

be capable to detect

performance related

anomalies from the

monitoring data. The

anomalies targeted by

SERRANO are contextual and

temporal which are not

easily identified using single

attribute analysis.

Support for various

pre-processing and

ML based anomaly

detection methods.

Including both

supervised and

unsupervised

methods. The

reduction of both

false positive and

false negative

detection of

anomalous instances

is of paramount

importance.

Supervised methods

under 5% while for

unsupervised

methods under 15%

false positive

detection.

Several experiments

have been carried out

with the main focus

on showcasing the

training and inference

pipelines for the EDE

component. These

experiments include

Hyper-parameter

optimisation of

several supervised

methods as well as

unsupervised

methods. Based on

these experiments we

have a baseline of

what ML methods

(including their

parameters) yield

good predictive

performance, well

under the 5 and 15%

thresholds.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 113/123

RES.6 Root Cause Analysis The SERRANO platform

should be capable of

indicating why a particular

anomalous event has

occurred. This capability

enables the identification of

the root cause for such

events.

Development and

integration of

Explainable AI type

methods which

provide additional

data regarding the

causes for the

detected anomalous

instances. This data

information is to be

used by the SERRANO

for autonomous or

semi-autonomous

remediation action.

Analysis execution

time under 1 minute

for each inference

window.

Using Shapely values

computed on a per

predictive model we

are capable of

indicating what are

the most impactful

feature when

detecting anomalous

events. In conjunction

with the Telemetry

system naming

convention of these

features we can

indicate for each

prediction what the

most likely probable

cause of an

anomalous event is.

RES.7 Declarative approach

for describing the

workload

requirements.

The Resource Orchestrator

should cognitively decide for

the overall assignment of the

applications’ workloads

along with the desired

performance state.

The local

orchestrators should

take the actual

deployment decisions

based on the

provided desired

state.

Using the SERRANO

Resource

Orchestrator's

exposed interface,

the Orchestration

Drivers generically

described the

workload deployment

requirements to K8s

orchestration

mechanisms for the

edge/cloud platforms

and batch scheduler

in HPC. This

functionality was

successfully covered

and evaluated in

platform

demonstrations

(Demo-1, Demo-2,

Demo-3) and use case

evaluations for the

second and third

project use cases.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 114/123

RES.7 Declarative approach for

describing the workload

requirements.

The Resource Orchestrator

should cognitively decide for

the overall assignment of the

applications’ workloads along

with the desired performance

state.

The local orchestrators

should take the actual

deployment decisions

based on the provided

desired state.

Using the SERRANO

Resource

Orchestrator's

exposed interface, the

Orchestration Drivers

generically described

the workload

deployment

requirements to K8s

orchestration

mechanisms for the

edge/cloud platforms

and batch scheduler in

HPC. This functionality

was successfully

covered and evaluated

in platform

demonstrations

(Demo-1, Demo-2,

Demo-3) and use case

evaluations for the

second and third

project use cases.

RES.1 is related to the Resource Optimisation Toolkit (ROT) operation and was evaluated

through ROT usage in almost all final demonstrators of the SERRANO platform and all project

use cases. RES.2 was successfully assessed as the final version of the SERRANO platform

includes two different Orchestration Drivers that are able to manage the different low-level

orchestration platforms that the SERRANO Resource Orchestrator unifies. The evaluation was

performed through the final platform and use case demonstrators. The Resource

Orchestrator, based on the decisions of the ROT, was described the applications that then

were successfully deployed over edge/cloud and HPC platforms. For the edge/cloud

platforms, the application services were deployed correctly through the respective

Orchestration Driver and their state was retrieved and manage by the Orchestration Driver.

With respect to RES.2 for HPC, the evaluation was successful since the corresponding

Orchestration Driver was able to submit and manage HPC jobs through the SERRANO HPC

Gateway. RES.3 and RES.7 were evaluated using code instrumentation in the Resource

Orchestrator and Orchestration Driver, as well as through the platform demonstrations Demo-

1, Demo-2 and Demo-4 that showcased the automatic workload placement and migration

between different edge/cloud and HPC resources. The evaluation was successful since the

workload migrations triggered by the telemetry (TEL.5) and service assurance (RES.5) services,

and the provided workload was transparently executed in edge/cloud resources through the

SERRANO lightweight virtual mechanisms and in HPC through the HPC Gateway. Regarding

RES.7, the evaluation was successful since the SERRANO Orchestration Drivers were able to

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 115/123

transparently describe the platform-specific workload requirements to K8s scheduling

mechanisms and HPC Gateway.

RES.4 was successfully evaluated through the SERRANO platform demonstration “Intent-

driven operation and automatic storage policy creation” in Section 4.3. This section provides

specific details regarding the platform services involved in this process, along with a

performance evaluation for uploading and downloading files using two different storage

policies, one with cloud-only storage resources and one with SERRANO edge-only storage

locations.

Regarding the Service Assurance and Remediation component, we have two pertinent KPIs.

RES.5 describes the performance measures used for ML-based methods. Two values are given,

one for supervised and one for unsupervised methods detailing the upper threshold of a false

positive detection. Although performance metrics such as F1 or Jaccard Index are more

suitable when dealing with unbalanced datasets, false positive detection is of more significant

impact as it can lead to unnecessary adaptation and distributions in the platform. RES.6 aims

to reduce the execution time necessary for root cause analysis. In the case of large inference

windows, the execution time can significantly impact the capability of providing actionable

feedback to the orchestrator. To this end, we have several accelerated and approximate

variants of the analysis algorithms.

7.6 KPIs related to the ARDIA Framework and service

orchestration requirements

The KPIs related to the ARDIA framework and service orchestration requirements were initially

specified in deliverable D2.4 to measure the achievement level of the relevant project

innovations in this topic. The KPIs were updated and reworked in deliverable D6.6 to cover

the main aspects of the service orchestration and the ARDIA models, which enable

information communication among the various SERRANO components for application- and

service-orchestration purposes. The KPIs specified enable users to examine the extent to

which the Models, developed as part of the ARDIA framework, cover the UC application

requirements, including data-intensive security-critical applications. The specified KPIs also

provide more information about the level of achievement of service-orchestration-related

topics, such as the extent to which user-defined high-level, infrastructure-agnostic application

requirements can be translated to more specific resource constraints and the role of the AI/ML

techniques in this process.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 116/123

Table 22: KPIs related to service orchestration requirements

ID KPI Description/Innovation Estimated target value Result

SRV.1 Application Model

Expressiveness

The ARDIA Application

Model should be capable of

expressing all important

parameters (regarding

intent, profile,

requirements) of an

application in an

infrastructure independent

way.

100% coverage of the

elements used for

describing the UC

applications.

success

SRV.2 Resource Model

Expressiveness

The ARDIA Resource Model

should contain all the

elements being necessary

for the deployment of an

application from the

Resource Orchestrator’s

point of view

100% coverage of the

elements used by the

Resource Orchestrator.

success

SRV.3 Telemetry Data

Model

Expressiveness

The ARDIA Telemetry Data

Model should provide the

elements required for

capturing all the data

collected from SERRANO

infrastructure components.

100% coverage of the

concepts relevant to

the data shared

between SERRANO

components for the

project purposes

success

SRV.4 ARDIA Mappings Sufficient mappings

between the high-level and

medium-/low-level ARDIA

models should be provided

for aiding the service

orchestration process.

100% of well-defined

correspondences

among the elements of

the ARDIA models are

covered.

success

SRV.5 Application

Constraints

Translatability

The functionality provided

by the Service Orchestrator

should be driven by the

description of each

application taking into

account the translatable

constraints specified along

with their relative

importance.

80% of application high-

level constraints

specified for UCs are

translated to

intermediate or low

level constraints on

average.

success

SRV.6 Security- and Privacy-

aware Service

Orchestration

Service Orchestration should

not violate UC security and

privacy constraints.

100% of relevant

security and privacy

parameters are taken

into consideration by

the Service

Orchestrator.

success

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 117/123

SRV.7 Infrastructure-

agnostic service

orchestration

The ARDIA framework and

the Abstraction Models

developed should cover the

crucial parameters of the

respective components

enabling service

orchestration to support the

execution of an application

in several different

infrastructure types.

Three different types of

infrastructure covered

including but not

limited to cloud, edge

and HPC.

success

SRV.8 AI-enabled Service

Orchestration

Intelligent Service

Orchestration with the usage

of ML techniques taking into

account telemetry data from

the whole application

lifecycle. More precisely,

revise existing constraints or

introduce new ones through

the usage of such

techniques.

At least 20% of initial

constraints are affected

through the usage of

these mechanisms.

success

The evaluation of the KPIs mentioned in Table 22 above (SRV.1-SRV.8) was done via several

tests, mainly driven by the data provided by each UC provider, the collected telemetry data,

and the log files produced by the ARDIA Framework and especially by the AI-enhanced Service

Orchestrator. The above data were used to evaluate the extent to which the abstraction

models can cover user needs, the percentage of the user-defined constraints mapped to more

specific resource constraints, and the contribution of AI/ML techniques in this process. Finally,

the collected data were used to ensure that the particular UC requirements are satisfied. In

addition, these findings are successfully demonstrated by means Demo-1 and UC3.D1

presented in this deliverable. In summary, all of the KPIs were covered successfully.

More specifically, the evaluation of the first three KPIs regarding the expressiveness of the

three Abstraction Models of the ARDIA Framework was based on tests performed in

collaboration with the respective project partners. In particular, the UC providers were able

to express all their application requirements using the elements of the Application Model

(SRV.1). Also, the technical experts involved with the development of the relevant SERRANO

components validated that all important parameters required by the respective components

(AI-enhanced Service Orchestrator, Resource Orchestrator) for the deployment and execution

of an application and its micro-services were included in the Resource Model (SRV.2).

Moreover, all the telemetry data collected could be expressed using the elements of the

Telemetry Data Model (SRV.3).

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 118/123

The following two KPIs focus on the mapping rules specified and their usage by the AI-

enhanced Service Orchestrator (AISO) and hence their evaluation was based on log files

collected. Analysis of the log files indicated that several Mapping Rules were specified which

covered well the mapping needs and corresponded correctly to the intended transformations

among the elements of the ARDIA model (SRV.4). Accordingly, these mapping rules were used

by the AISO, on the basis of the constraints and priorities specified each time by the end-user,

to successfully translate the high-level constraints to deployment objectives, i.e. to

appropriate intermediate or low-level constraints, also taking into account their relevant

importance (SRV.5).

The evaluation of the last three KPIs was based on the analysis of both the elements of the

three Abstraction Models and the Mapping Rules specified and validated while using the

SERRANO platform. More precisely, the Application Model parameters regarding security and

privacy were successfully mapped to the appropriate elements of the Resource Model and

are taken into account with priority (in case of conflict) for application deployment (SRV.6).

Also, the developed Abstraction Models allow for infrastructure-agnostic description of high-

level requirements and intent, and in combination with the Mapping Rules specified enable

the deployment of applications and their microservices to different resource types, including

edge devices, HPC and Cloud (SRV.7). Finally, ML techniques were used for the specification

of several Mapping Rules on the basis of telemetry data collected from the respective

resources. These mapping rules affect the translation of initial constraints into deployment

objectives based on previous experience from the application lifecycle (SRV.8).

7.7 KPIs related to integration and platform development

requirements

The KPIs of this category were selected based on factors that affect the satisfaction of

requirements related to integration and platform development. In the table below (Table 23).

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 119/123

Table 23: KPIs related to integration and platform development requirements.

ID KPI Description/Innovation Estimated target

value

Result

INT.1 Deployment

using

containers

Components that can be

containerised will provide

images that are stored in

Docker registry and can

be used to facilitate the

deployment of these

components in other

environments

Available Docker

images for all

containerised

components

The deployment of

components using containers

was successfully achieved.

Docker images for all

containerised components

were created and stored in

the Docker registry. These

images can now be readily

used to deploy the

components in different

environments, significantly

simplifying the process and

ensuring consistency across

deployments.

INT.2 Integration

point

documentation

Integration points will

provide documentation

either in the API Spec

document or through

documents to describe

the input, output, and

intended functionality of

all functions that are

exposed by each

component.

Documentation

for all integration

points

Comprehensive

documentation for all

integration points was

successfully created and

compiled. This

documentation includes

detailed descriptions of the

input, output, and intended

functionality of each function

exposed by every component

INT.3 Code of

components

and CI/CD

configuration

in the same

repo

All components that

provide source code will

store the code in the

GitHub repository of the

Project. Also, CI/CD will

be stored inside the

corresponding folders of

the repository.

One GitHub

repository for all

components and

CI/CD

configuration

files

The integration of the code of

components and their

corresponding CI/CD

configurations into a single

GitHub repository was

successfully completed.

INT.4 Critical security

vulnerabilities

in component

source code

DevSecOps approach

enables code

vulnerability scanning

during each build of the

components resulting in a

report of all serious bugs

and security

vulnerabilities that have

to be resolved.

0 (No security

vulnerabilities

should be

present.)

The implementation of the

DevSecOps generated

detailed reports identifying

all serious bugs and security

vulnerabilities. As a result, all

identified critical security

vulnerabilities in the

component source code

were addressed and

resolved.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 120/123

INT.5 Unit and

Integration

tests

All components will

provide unit and, when

applicable, integration

tests as part of the CI/CD

pipeline. These will need

to run successfully to

create a new build of the

components.

Available unit and

integration tests

for all

components,

covering all

platform

functionalities.

The implementation of unit

and integration tests for all

components as part of the

CI/CD pipeline was

successfully completed. Each

component now includes

comprehensive unit tests,

and where applicable,

integration tests.

INT.6 Availability of

SERRANO SDK

The SERRANO SDK will

expose the developed

APIs from the individual

SERRANO services to

support the development

of deployment of

applications that fully

leverage the provided

innovations.

The three project

UCs should utilise

the SERRANO

SDK to interact

with the

SERRANO

platform.

The SERRANO Software

Development Kit (SDK) was

successfully developed and

made available, effectively

exposing the APIs from the

individual SERRANO services.

This SDK facilitates the

development and

deployment of applications

that leverage the innovations

provided by the SERRANO

platform.

Regarding INT.2, the documentation for all integration points has been checked manually,

ensuring it conforms to the OpenAPI Spec in GitHub or is among other supporting files within

the relevant GitHub repositories. Regarding INT.3, vulnerabilities have been checked using

SonarQube, as part of the CI/CD pipeline all partners use. Vulnerabilities reported by

Dependency-Track and Trivy have been minimised by updating dependencies and system

software. For INT.5, unit and integration tests are run by the aforementioned CI/CD pipeline.

It was the responsibility of each component developer to write and check the status of their

tests. Concerning the other, more self-explanatory KPIs defined in this subsection, these were

assessed based on their description with the help of the use case applications.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 121/123

8 Summary

D6.8 builds upon D6.4 (M20) and presents the final results from the comprehensive evaluation

of the SERRANO platform. While D6.4 focused on results obtained during ongoing integration

work based on the initial release of the SERRANO platform (M1-M18), D6.8 evaluates the final

release of the SERRANO platform. The evaluation was performed through the three project

use cases across diverse domains with demanding and heterogeneous requirements.

Additionally, several platform-level demonstrations were conducted. Section 3 describes how

the SERRANO platform accomplishes its objectives through four successful demos. Each use

case is separately addressed in dedicated sections providing insights into how the SERRANO

platform was evaluated through the project’s use case applications. Finally, Section 7 further

enriches the KPIs introduced in D6.2 (M18) and finalized in D6.6 (M27) by incorporating the

results from the numerous evaluations.

Based on the evaluation results and the presented demos, the SERRANO project has

successfully achieved its goal of attaining the specified KPI results. The SERRANO project

successfully and significantly expanded the boundaries of cloud computing by demonstrating

the transparent and secure deployment of complex business applications. This deployment

spans a computing continuum that integrates federated and highly diverse computational and

storage resources, including HPC nodes, GPUs, FPGAs, edge storage devices, accelerated and

configurable networks, on-side edge-computing, while hiding all this complexity through a

cognitive layer of abstraction.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 122/123

9 References

[1] “Deliverable 2.5 - Final Version of SERRANO Architecture,” SERRANO consortium, 2022.

[2] “SkyFlok,” Chocolate Cloud, [Online]. Available: https://www.Skyflok.com.

[3] “SERRANO Service Assurance Edge repository.,” SERRANO consortium, [Online].

Available: https://github.com/ict-serrano/service-assurance-ede.

[4] “Deliverable D6.6 - Final version of KPIs and evaluation methodology,” SERRANO

Consortium, 2023.

[5] “s3f repository,” [Online]. Available: https://github.com/s3fs-fuse/s3fs-fuse.

[6] “FUSE (Filesystem in USErspace),” [Online]. Available:

https://www.kernel.org/doc/html/latest/filesystems/fuse.html.

[7] “fstab documentation,” [Online]. Available: https://wiki.archlinux.org/title/fstab.

[8] “SkyFlok cloud storage performance.,” Chocolate Cloud, [Online]. Available:

https://www.skyflok.com/backend-performance/.

[9] “Deliverable D3.4 - Final release of SERRANO Secure Infrastructure Layer,” SERRANO

Consortium, 2023.

[10] “SERRANO Measurement script for UC1.1 and UC1.2 repository.,” SERRANO

Consortium, [Online]. Available: https://github.com/ict-serrano/On-Premise-Storage-

Gateway/blob/master/measurements/scripts/run_performance_measurements.py .

[11] “Deliverable 6.7 - Final version of SERRANO integrated platform,” SERRANO Consortium,

2023.

[12] “SERRANO measurement script for assessing caching performance repository.,”

SERRANO Consortium, [Online]. Available: https://github.com/ict-serrano/On-Premise-

Storage-Gateway/blob/master/measurements/scripts/run_cache_measurements.py.

[13] “SERRANO measurement script for measuring multipart upload performance

repository.,” SERRANO Consortium, [Online]. Available: https://github.com/ict-

serrano/On-Premise-Storage-

Gateway/blob/master/measurements/scripts/run_large_file_measurements.py .

[14] “Deliverable D4.4 - Final Release of the SERRANO Cloud and Edge Acceleration Platforms

and Tools,” SERRANO Consortium, 2023.

D6.8 – Final version of business, end user and technical evaluation

ict-serrano.eu 123/123

[15] “SERRANO automated measurement script for UC1.6 repository.,” SERRANO

Consortium, [Online]. Available: https://github.com/ict-serrano/On-Premise-Storage-

Gateway/blob/master/measurements/scripts/run_MLNX_measurements.py.

[16] “SERRANO Swagger UI documentation.,” SERRANO Consortium, [Online]. Available:

https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/docs .

[17] “SERRANO OpenAPI v3 gateway repostory.,” SERRANO Consortium, [Online]. Available:

https://github.com/ict-serrano/On-Premise-Storage-

Gateway/blob/master/openapi.json.

[18] “Amazon S3 documentation.,” Amazon, [Online]. Available:

https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple

_Storage_Service.html .

[19] “SkyFlok cloud locations.,” Chcoloate Cloud, [Online]. Available:

https://www.skyflok.com/cloud-locations-3/.

[20] “SERRANO Cloud Telemetry API.,” SERRANO Consortium, [Online]. Available: https://on-

premise-storage-gateway.services.cloud.ict-serrano.eu/cloud_locations.

[21] “Python unittest framework:,” [Online]. Available:

https://docs.python.org/3/library/unittest.html.

