

TRANSPARENT APPLICATION DEPLOYMENT IN A SECURE,

ACCELERATED AND COGNITIVE CLOUD CONTINUUM

Grant Agreement no. 101017168

Deliverable D6.7

Final version of SERRANO integrated platform

Programme: H2020-ICT-2020-2

Project number: 101017168

Project acronym: SERRANO

Start/End date: 01/01/2021 – 31/12/2023

Deliverable type: Report

Related WP: WP6

Responsible Editor: INTRA

Due date: 31/12/2023

Actual submission date: 30/12/2023

Dissemination level: Public

Revision: FINAL

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No 101017168

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 2/173

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 3/173

Revision History

Date Editor Status Version Changes

09.06.23 INTRA Draft 0.1 Table of Contents

20.11.23
INTRA, USTUTT

Draft 0.2
Contributions in Sections 4.5, 4.6, 5 and

6

27.11.23
ICCS, INB, IDEKO, UVT

Draft 0.3
Update in ToC; Contributions in

Sections 4.2, 4.3, 4.5, 4.10, 4.11

04.12.23 IDEKO Draft 0.3 Table 2 section 6.3

14.12.23
INNOV, UVT, ICCS,

IDEKO, NBFC
Draft 0.4

Contributions in Sections 4.1, 4.7,

4.12.1, 4.12.2 and 6.3 (table 2)

18.12.23
INB, MLNX, INTRA,

NBFC, CC
Draft 0.5

Updates in Sections 2, 4.7.1, 4.8, 4.10,

6.3 and 7

19.12.23
AUTH, INTRA

Pre-final 0.6
Consolidated version for internal

review.

22.12.23 INTRA Revised 0.7 Integrate review changes

28.12.23 ICCS Final 1.0

Author List

Organization Author

INTRA Makis Karadimas, Paraskevas Bourgos

MLNX J.J. Vegas Olmos, Yoray Zack, Amelia Pakouline-Navarro

INB Maria Oikonomidou, Ferad Zyulkyarov

IDEKO Aitor Fernández, Javier Martin

ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Emmanouel Varvarigos, Dimitris Vergados,

V. Kosmatos, T. Iliadis

INNOV Andreas Litke, Efstathios Karanastasis, Efthymios Chondrogiannis, Filia Filippou,

Kassie Papasotiriou, Stelios Pantelopoulos

UVT Adrian Spataru, Gabriel Luhasz

USTUTT Kamil Tokmakov, Dennis Hoppe

CC Marton Sipos, Daniel E. Lucani, Marcell Fehér

AUTH Argyris Kokkinis, George Zervakis, Dimosthenis Masouros, Vaggelis Argyropoulos,

Dimitrios Mitsas, George Margaritis, Ioannis Sofianidis, Stelios Siskos, Dimitris,

Danopoulos, Kostas Siozios

NBFC Anastassios Nanos, Charalampos Mainas

Internal Reviewers

Kostas Siozios, Dimitrios Danopoulos, AUTH

Ferad Zyulkyarov, INB

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 4/173

Abstract: This deliverable (D6.7) presents the outcomes of Task 6.1 – “Integration, Verification

and Testing” covering the total duration of WP6, which aims at unifying the outcomes of the

developed components and services in WP3-5 to release the versions of the integrated

SERRANO platform. The deliverable presents the overview and the details of the SERRANO

platform, including the final release status, the SERRANO platform components and

functionalities, the development and integration environment, the software deployment

specifications and the verification and validation results on the platform components.

Keywords: SERRANO platform, integrated components, development environment,

integration environment, software deployment, verification, validation

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 5/173

Disclaimer: The information, documentation and figures available in this deliverable are written by the

SERRANO Consortium partners under EC co-financing (project H2020-ICT-101017168) and do not

necessarily reflect the view of the European Commission. The information in this document is provided

“as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The

reader uses the information at his/her sole risk and liability.

Copyright © 2023 the SERRANO Consortium. All rights reserved. This document may not be copied,

reproduced or modified in whole or in part for any purpose without written permission from the

SERRANO Consortium. In addition to such written permission to copy, reproduce or modify this

document in whole or part, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 6/173

Table of Contents

1 Executive Summary ... 15

2 Introduction ... 16

2.1 Purpose of this document ... 16

2.2 Document structure .. 16

2.3 Audience .. 16

3 Overview of SERRANO Platform .. 17

3.1 SERRANO Architecture .. 17

3.2 Final Release Status ... 18

4 SERRANO Platform Components and Functionalities ... 21

4.1 AI-enhanced Service Orchestrator .. 21

4.1.1 Description ... 21

4.1.2 Inner components .. 21

4.1.3 Integration details and REST APIs .. 22

4.2 Resource Orchestrator .. 29

4.2.1 Description ... 29

4.2.2 Inner components .. 30

4.2.3 Integration details and REST APIs .. 31

4.3 Resource Optimization Toolkit .. 43

4.3.1 Description ... 43

4.3.2 Inner components .. 44

4.3.3 Integration details and REST APIs .. 44

4.4 SERRANO Telemetry Framework ... 49

4.4.1 Description ... 49

4.4.2 Telemetry framework components ... 49

4.4.3 Integration details and REST APIs .. 50

4.5 Data Broker .. 61

4.5.1 Message Broker .. 61

4.5.2 Stream Handler .. 64

4.6 HPC System Hardware Interface ... 72

4.6.1 Integration details and REST APIs .. 73

4.7 HW Acceleration Abstractions and Trusted Execution ... 79

4.7.1 HW Acceleration Abstractions ... 79

4.7.2 Multi-tenant Isolation and Trusted Execution ... 89

4.8 Secure Storage Service, On-premises Gateway, and TLS Offloading 99

4.8.1 Secure Storage Service ... 99

4.9 Service Assurance and Remediation ... 106

4.9.1 Description ... 106

4.9.2 Integration details and REST APIs .. 108

4.10 Secure Storage Use Case Integrated Functionality ... 117

4.10.1 Integration details and REST APIs .. 118

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 7/173

4.11 Fintech Analysis Use Case Integrated Functionality .. 127

4.11.1 Integration details and REST APIs .. 128

4.12 Anomaly Detection in Manufacturing Settings Integrated Functionality 130

4.12.1 Integration details and REST APIs .. 133

4.12.2 UC Integration with Data Broker .. 139

5 Development and Integration Environment ... 141

5.1 DevSecOps and Continuous integration/Continuous Delivery practices 141

5.1.1 Static Application Security Testing (SAST) .. 142

5.1.2 Software Composition Analysis (SCA) .. 143

5.1.3 Container Image Scanning .. 144

5.1.4 Vulnerability Management .. 144

5.2 SERRANO Continuous Integration/Continuous Delivery stack................................ 144

5.2.1 Version Control System – GitLab .. 145

5.2.2 Continuous Integration – Jenkins ... 147

5.2.3 Docker .. 149

5.2.4 SonarQube .. 150

5.2.5 NGINX ... 152

5.2.6 Harbor... 152

5.2.7 Dependency-Track .. 154

5.2.8 Kubernetes ... 154

6 Software Deployment Specifications and Validation .. 157

6.1 Continuous Integration/Continuous Deployment Processes 157

6.2 Integration plan ... 160

6.2.1 Common API specification approach ... 160

6.2.2 Development using containers .. 160

6.2.3 Code and Deployment configuration on GitHub ... 161

6.2.4 Unit, integration, and security tests ... 161

6.2.5 Code Quality and Security .. 163

6.3 Verification and Validation Results ... 163

7 Conclusions .. 170

8 References ... 171

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 8/173

List of Figures

Figure 1: SERRANO high-level architecture .. 17

Figure 2: AI-enhanced Service Orchestrator architecture and main components 22

Figure 3: AI-enhanced Service Orchestrator REST Open API ... 23

Figure 4: AI-enhanced Service Orchestrator deployment to UVT’s K8s cluster using CI/CD

pipeline ... 23

Figure 5: Anomaly Detection use case modelled using TOSCA and presented in Alien4Cloud

 .. 25

Figure 6: Interaction with the CTH ... 27

Figure 7: AI-enhanced Service Orchestrator Example no. 1 .. 28

Figure 8: AI-enhanced Service Orchestrator Example no. 2 .. 28

Figure 9: AI-enhanced Service Orchestrator Example no. 3 .. 29

Figure 10: Resource Orchestrator and Orchestration Drivers architecture and main

components .. 30

Figure 11: Resource Orchestrator and Orchestration Drivers container images in SERRANO

Harbor image repository .. 32

Figure 12: Resource Orchestrator and Orchestration Driver into Jenkins CI/CD pipeline and

their deployment in UVT’s K8s cluster ... 32

Figure 13: Setup for the integration tests of SERRANO Resource Orchestrator 32

Figure 14: Resource Orchestrator REST API ... 34

Figure 15: Resource Orchestrator REST API – Methods related to inter-component

communication... 35

Figure 16: Acceleration Service microservices deployed across two K8s clusters within the

SERRANO platform ... 39

Figure 17: Kernel execution and data handling from the end user’s perspective, common

approach for all supported modes and platforms ... 40

Figure 18: SERRANO accelerated kernel execution in HPC platform 43

Figure 19: Resource Optimization Toolkit architecture and main components 43

Figure 20: ROT container images into SERRANO Harbor image repository 44

Figure 21: ROT into Jenkins CI/CD pipeline and deployment in UVT’s K8s cluster 45

Figure 22: Resource Optimization Toolkit REST API ... 46

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 9/173

Figure 23: SERRANO hierarchical telemetry architecture .. 50

Figure 24: Setup for the final integration tests of SERRANO telemetry framework 51

Figure 25: Telemetry framework REST interfaces – Control and management methods 52

Figure 26: Telemetry framework REST interfaces – High-level CTH methods 53

Figure 27: Persistent Monitoring Data Storage (PMDS) RESTful interface 53

Figure 28: Memory performance monitoring data: (a) typical operation of telemetry

framework, (b) streaming telemetry.. 61

Figure 29: Message Broker and execution of SERRANO accelerated kernels 63

Figure 30: Stream Handler and possible integrations with data sources and other

infrastructure ... 64

Figure 31: Resource Orchestrator Interaction with Stream Handler 67

Figure 32: Telemetry Agent Interaction with Stream Handler .. 67

Figure 33: REST Endpoints exposed by Streaming Core Platform (through the REST Proxy) .. 69

Figure 34: Schema Registry REST API ... 70

Figure 35: Stream Handler example on a Jupyter notebook ... 71

Figure 36: Interaction between HPC Gateway and HPC infrastructure 73

Figure 37: REST API endpoints exposed by HPC system hardware interface. 74

Figure 38: vAccel software stack .. 80

Figure 39: vAccel integration with container runtimes ... 81

Figure 40: Libification of original kernel ... 84

Figure 41: vAccel port ... 84

Figure 42: Performance overhead of vAccel on local execution (library overhead) 84

Figure 43: Performance overhead of vAccel for VM execution ... 85

Figure 44: Performance overhead of end-to-end operation with sandboxed OpenFaaS

container and vAccel .. 88

Figure 45: Image and signature creation ... 92

Figure 46: Signature Verification Process .. 95

Figure 47: The components of the Secure Storage Service ... 99

Figure 48: The components of the cloud monitoring features of the SERRANO-enhanced

Storage Service. .. 102

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 10/173

Figure 49: Developer portal – second step of the new storage policy creation wizard. 102

Figure 50: Secure Storage API REST endpoints .. 104

Figure 51: Overview of Amazon AWS Signature Version 4 process9 104

Figure 52: Service Assurance and Remediation general architecture 107

Figure 53: EDE Architecture ... 107

Figure 54: Sequence Diagram of SAR Interactions ... 116

Figure 55: Storage Policy API REST endpoints .. 118

Figure 56: Sample storage policy file ... 119

Figure 57: Resource and Telemetry API (exposed by On-premises Storage Gateway) REST

endpoints .. 120

Figure 58: Overview of the integration of TLS offloading into the On-premises Storage Gateway

 .. 124

Figure 59: DOCA DPU utilization in SERRANO .. 124

Figure 60: List of REST endpoints used in the evaluation of the Secure Storage Use Case ... 126

Figure 61: DPO application structure and integration with SERRANO components 128

Figure 62: DPO Landing Page and example input .. 129

Figure 63: Developed Data Processing application .. 131

Figure 64: Interactions between the use case developed services and core components of the

SERRANO platform ... 132

Figure 65: Integration with SERRANO components ... 134

Figure 66: Integration workflow ... 137

Figure 67: Internal topics generated for communication between the microservices through

the MQTT Broker .. 138

Figure 68: Internal website Dashboard for aggregated results and stats 138

Figure 69: Communication between the sending of streaming data through the MQTT protocol

(Data Broker) to the SERRANO platform and how the results obtained are stored in an

internal Dashboard ... 139

Figure 70: Vulnerability management in CI/CD.. 142

Figure 71: SAST by SonarQube ... 142

Figure 72: SBOM Operations using Dependency-Track ... 143

Figure 73: Severity assessment of Jackson vulnerabilities ... 144

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 11/173

Figure 74: SERRANO CI/CD components .. 145

Figure 75: The SERRANO GitHub organization and its contents .. 146

Figure 76: Structure of a SERRANO component on GitHub ... 147

Figure 77: Jenkins Dashboard... 148

Figure 78: Basic parts of the Docker architecture .. 150

Figure 79: SonarQube in SERRANO CI/CD .. 151

Figure 80: SonarQube scan results overview ... 151

Figure 81: Trivy scan result overview on Harbor ... 153

Figure 82: Trivy scan result details on Harbor.. 153

Figure 83: Dependency-Track in SERRANO CI/CD .. 154

Figure 84: Kubernetes Dashboard in SERRANO CI/CD ... 155

Figure 85: Helm charts in SERRANO on GitHub ... 156

Figure 86: Procedure for developing and releasing the software components 157

Figure 87: Containers in Kubernetes pods ... 161

Figure 88: GitHub repositories ... 161

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 12/173

List of Tables

Table 1: Integration status of SERRANO interfaces ... 19

Table 2 Integration details of AI-enhanced Service Orchestrator ... 24

Table 3: Integration details of Resource Orchestrator .. 33

Table 4: Integration details of Resource Optimization Toolkit .. 45

Table 5: Integration details of Resource Optimization Toolkit .. 51

Table 6: Integration details of Message Broker ... 62

Table 7: Telemetry notification messages ... 66

Table 8: Integration details of Stream Handler .. 68

Table 9: Integration details of SERRANO HPC System Hardware Interface 74

Table 10: SERRANO kernels ported to vAccel .. 83

Table 11: Example python snippet that implements the k-MEANS execution over Python

vAccel.. 87

Table 12: Input format for the serverless function .. 88

Table 13: Integration details of SAR-EDE ... 110

Table 14: Verification and Validation Results on Platform Components 163

Table 15: Verification and Validation Results on Use Case Components 168

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 13/173

Abbreviations

A4C Alien4Cloud

A4COP Alien4Cloud Orchestrator Plugin

ACL Access Control Lost

AI Artificial Intelligence

AISO AI-enhanced Service Orchestrator

AMQP Advanced Message Queuing Protocol

API Abstract Programming Interface

ARDIA A Resource reference model for Data-Intensive Applications

ARM Advanced RISC Machines

ASGI Asynchronous Server Gateway Interface

AWS Amazon Web Services

CI/CD Continuous Integration / Continuous Development

CNCF Cloud Native Computing Foundation

CoT Chain of Trust

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

CSV Comma-Separated Values

CT Certificate Transparency

CTH Central Telemetry Handler

CUDA Compute Unified Device Architecture

D Deliverable

DAST Dynamic Application Security Testing

DBScan Density-Based Apatial clustering of applications with noise

DevSecOps Development, Security, and Operations

DL Deep Learning

DMM Digital MultiMeter

DoW Description of Work

DPO Dynamic Portfolio Optimization

DPU Data Processing Unit

DTW Dynamic Time Warping

EC European Commission

EDE Event Detection Engine

EFT Electronic Funds Transfer

ETA Enhanced Telemetry Agent

ETL Extract, Transform, Load

FaaS Function as a Service

FPGA Field-Programmable Gate Array

FTT Fast Fourier transform

GB GigaByte

GDPR General Data Protection Regulation

GEMM GEneral Matrix to Matrix Multiplication

GPS Global Positioning System

GPU Graphics Processing Unit

GRAA Greedy Resource Allocation Algorithm

HDFS Hadoop Distributed File System

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 14/173

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HW Hardware

IaC Infrastructure as Code

ID IDentification

IDE Integrated Development Environment

IO Input Output

IoT Internet of Things

IP Internet Protocol

IPsec Internet Protocol Security

JDBC Java Database Connectivity

JSON JavaScript Object Notation

K8s Kubernetes

KNN K-Nearest Neighbors algorithm

ML Machine Learning

MPSoC MultiProcessor System on a Chip

MQTT Message Queue Telemetry Transport

NBI North Bound Interfaces

NIC Network Interface Controller

OCI Open Container Inititative

OIDC OpenID Connect

OS Operating System

OWASP Open Web Application Security Project

PBS Portable Batch System

PCIe Peripheral Component Interconnect express

PM Project Manager

PMDS Persistent Monitoring Data Storage

PO Project Officer

PyPI Python Package Index

RDBMS Relational DataBase Management System

REST Representational State Transfer

RHEL Red Hat Enterprise Linux

RO Resource Orchestrator

ROT Resource Orchestration Toolkit

RoT Root of Trust

RQ Redis Queue

SAR Service Assurance and Remediation

SAST Static Application Security Testing

SCA Source Composition Analysis

SDK Service Development Kit

SDLC Software Development Life Cycle

TEE Trusted Execution Environment

TPM Trusted Platform Module

UI User Interface

UUID Universal Unique Identifier

YAML YAML Ain't Markup Language

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 15/173

1 Executive Summary

SERRANO envisages the development and deployment of disaggregated federated cloud

infrastructures that operate, process, and store in the edge, enabling accelerated edge nodes

to be integral parts of the computation and storage chain. In addition, the SERRANO

ecosystem expansion includes HPC infrastructures that can be utilized for exceptionally

computationally intensive simulations and data analysis, bridging the gap between these

currently largely separated computing paradigms.

Deliverable 6.7 reports on the work performed in WP6 for developing, integrating, testing,

and releasing the final release of the SERRANO platform. The WP6 activities related to D6.7

aim to unify the outcomes of the developed components and services in WP3-5 to release the

final integrated SERRANO platform.

The deliverable presents an overview of the SERRANO platform, including the final release

status, the final SERRANO platform components and functionalities, the development and

integration environment, the software deployment specifications, and the verification and

validation results on the platform components.

The information provided in the present deliverable has supported the final evaluation of the

use cases, reported in deliverable D6.8 “Final version of business, end user and technical

evaluation” (M36).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 16/173

2 Introduction

2.1 Purpose of this document

The present deliverable (D6.7) consolidates the outcomes of Task 6.1 – “Integration,

Verification and Testing” covering the whole duration of WP6, which aimed at unifying the

outcomes of the developed components and services in WP3-5, to release the final integrated

SERRANO platform.

In particular, this deliverable aims to present the integrated platform's final release and report

on the outcomes of the supported tested functionalities and interfaces. The final release of

the SERRANO platform includes the final updates on the components development that

synthesize the SERRANO platform, providing the fully fletched SERRANO functionality.

Towards this end, each component implements the totality of the envisioned features along

with the final inter-component communication interfaces.

The final release of the SERRANO platform has been used as a basis for the evaluation of the

SERRANO developments through the demonstration of the three project use cases, reported

on deliverable D6.8 “Final version of business, end user and technical evaluation” (M36).

2.2 Document structure

The present deliverable is split into seven main sections:

• Executive Summary

• Introduction

• Overview of SERRANO Platform

• SERRANO Platform Components and Functionalities

• Development and Integration Environment

• Software Deployment Specifications and Validation

• Conclusions

2.3 Audience

The deliverable is public and available to anyone interested in the final release of the SERRANO

integrated platform, unifying the outcomes of the developed components and services.

Moreover, this document can also be helpful to the general public in obtaining a better

understanding of the framework and scope of the SERRANO project.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 17/173

3 Overview of SERRANO Platform

3.1 SERRANO Architecture

The SERRANO architecture has been initially presented in deliverable D2.3 “SERRANO

architecture” (M09) and updated in its final version in the context of D2.5 “Final version of

SERRANO architecture” (M18). These deliverables comprehensively describe the overall

architecture, SERRANO components, interfaces, and supported workflows. In this section, we

provide a short description of the architecture (Figure 1) to facilitate the presentation of the

final version of the SERRANO integrated platform.

Figure 1: SERRANO high-level architecture

The Service Layer contains the AI-enhanced Service Orchestrator (Section 4.1) that analyses

applications to determine the possible deployment scenarios and translates the given

application requirements (high-level requirements) to lower-level ones. The Orchestration

Layer ensures efficient service orchestration and resource management through the SERRANO

Resource Orchestrator (Section 4.2).

The Resource Optimization Toolkit (Section 4.3) provides joint computational and storage

resource allocation and service placement algorithms, leveraging optimization and AI/MI

techniques. The Central Service Assurance manages the runtime lifecycle of each application

deployment across the SERRANO heterogeneous infrastructure. It receives notifications from

the Service Assurance and Remediation mechanisms (Section 4.9) at the infrastructure level

and triggers proactively and reactively re-optimization actions to maintain the required

performance level.

The Secure Data Layer includes the Secure Storage Service (Section 4.8) that abstracts the

required actions for edge and cloud storage resources, operating as a security access broker

that guarantees and enforces privacy and security requirements on data. The Persistent

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 18/173

Monitoring Data Storage (Section 4.4.2) allows the management of the historical monitoring

data, which is mainly required by the service assurance and remediation system.

The Infrastructure Abstraction Layer facilitates the integration of hardware and software

platforms within the SERRANO platform. The Orchestration Drivers (Section 4.2.2) enable

efficient and transparent deployment of services across the heterogeneous infrastructure.

The Service Assurance (Section 4.9) includes data-driven mechanisms that facilitate the

identification of critical situations and activate self-driven adaptations.

The Resource Layer includes heterogeneous edge, cloud, and HPC computational and storage

resources encompassing the SERRANO-enhanced resources (Sections 4.6, 4.7, 4.8). Across the

SERRANO ecosystem resides the Infrastructure, Platform, and Application Telemetry stack

(Section 4.4) that collects metrics across the infrastructure and deployed applications. The

main components are the Central Telemetry Handler, the Enhanced Telemetry Agents, and the

Monitoring Probes. In addition, the Data Broker (Section 4.5) provides the required

asynchronous inter-component communication within the SERRANO platform and connects

external data sources, making them available to internal services.

Section 4 lists the components of these main entities and their subcomponents, highlighting

the provided functionalities, along with their integration, as part of the final release of the

SERRANO platform.

3.2 Final Release Status

SERRANO adopted an iterative approach to implement and evaluate the individual

technological developments and overall platform integration. The design and implementation

activities were implemented using a spiral model with two iterations (M01-M18, M19-M36).

Based on the selected development strategy, there are three main releases for the integrated

SERRANO platform: the initial platform prototype, the complete platform prototype, and the

final platform prototype.

The initial release of the SERRANO platform was reported on deliverable D6.3 (M18). The

initial platform prototype was the outcome of the first development iteration (M1-M18),

providing a subset of the envisioned features along with the primary interfaces for inter-

component communication. Based on the initial release, the complete platform prototype

provided the remaining functionality and was available in M33. This release corresponds to a

fully functional platform that integrates all SERRANO components and provides a prototype

suitable for the platform and use cases’ evaluation.

This deliverable reports the SERRANO platform's final release based on the complete platform

prototype. The final platform is fully integrated and includes improvements based on the

feedback from the final evaluation of the SERRANO platform through the demonstration of

the three project use cases. Deliverable D6.8 “Final version of business, end user and technical

evaluation” (M36) includes the performance evaluation analysis and results.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 19/173

Finally, the following table summarizes the integration status of the various components and

interfaces provided by the SERRANO platform components.

Table 1: Integration status of SERRANO interfaces

Name Involved Components Status

WP5T1AISO-I: AI-enhanced
Service Orchestrator

AI-enhanced Service
Orchestrator, Resource
Orchestrator, Central

Telemetry Handler, ARDIA
Framework

Interface is fully implemented,
integrated and tested

WP5T5RO-I: Resource
Orchestrator

Resource Orchestrator, AI-
enhanced Service

Orchestrator, Service
Assurance, ARDIA Framework

Interface is fully implemented,
integrated and tested

WP5T5OD-I: Orchestration
Drivers

Orchestration Driver, Resource
Orchestrator, K8s, HPC

Gateway

Interface is fully implemented,
integrated and tested

WP5T2ROT-I: Resource
Optimization Toolkit

Resource Optimization Toolkit,
Resource Orchestrator

Interface is fully implemented,
integrated and tested

WP5T4EMT-I: Energy &
Resource Aware Mapping

Interface

SERRANO HPC Gateway,
Resource Orchestrator

Interface is fully implemented,
integrated and tested

WP4T2HPC-I: Uncertainties
Estimation Interface

SERRANO HPC Gateway,
Resource Orchestrator

Interface is implemented,
integrated and tested

WP3T2DSS-I: Secure Storage
API

On-premises Storage Gateway,
SERRANO applications and

services

Interface is fully implemented,
integrated and tested

WP3T2DSSSLT-I: Storage
location telemetry API

On-premises Storage Gateway,
Central Telemetry Handler

Interface is fully implemented,
integrated and tested

WP5T3CTH-I: Central
Telemetry Handler Interface

Central Telemetry Handler, AI-
enhanced Service

Orchestrator, Resource
Optimization Toolkit, Service

Assurance

Interface is fully implemented,
integrated and tested

WP5T3ETA-I: Enhanced
Telemetry Agent Interface

Enhanced Telemetry Agent,
Central Telemetry Handler,

Orchestration Drivers, Service,
Monitoring Probes

Interface is fully implemented,
integrated and tested

WP5T5PMDS-I: Persistent
Monitoring Data Storage

Interface

Enhanced Telemetry Agent, AI-
enhanced Service

Orchestrator, Service
Assurance and Remediation

Interface is fully implemented,
integrated and tested

WP5T5MB-I: Message Broker
Interface

SERRANO platform
components, use cases and
applications, external data

sources

Interface is fully implemented,
integrated and tested

WP5T5SC-I: Streaming Core
Interface

SERRANO platform
components, use cases and
applications, external data

sources

Interface is fully implemented,
integrated and tested

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 20/173

WP5T5SAR-I: Service
Assurance Interface

Service Assurance and
Remediation, Resource

Orchestrator, use cases and
applications

Interface is fully implemented,
integrated and tested

WP4T3PC-I: Plug&Chip
Interface

SERRANO Plug&Chip
framework, use cases and

applications

Interface is fully implemented,
integrated and tested

WP4T1HWRT-I: Hardware
Accelerators Interface

Local Orchestrators, SERRANO
hardware accelerated kernels

Interface is fully implemented,
integrated and tested

WP4T2HPC-I: HPC Services
Interface

HPC Gateway, Resource
Orchestrator, Orchestration

Drivers

Interface is fully implemented,
integrated and tested

WP5T5TLV-I: Trusted and
Lightweight Virtualization

Interface

Orchestration Drivers, Local
Orchestrators, use cases and

applications

Interface is fully implemented,
integrated and tested

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 21/173

4 SERRANO Platform Components and

Functionalities

4.1 AI-enhanced Service Orchestrator

4.1.1 Description

The AI-enhanced Service Orchestrator (AISO) facilitates the deployment and execution of

applications (and their internal components/micro-services), taking into account a

considerable amount of knowledge that may directly or indirectly come from the end user and

the SERRANO platform (e.g., user-specified requirements, user intent, and telemetry data

collected for a particular application or micro-service). The application owners initially specify

the application requirements and their particular goals/intents based on the elements

included in the Application Model, which are consequently used by the AISO. Based on these,

the AISO detects potential deployment scenarios/objectives, which it accordingly expresses

using the elements of the Resource Model and then communicates to the Resource

Orchestrator (RO). These models are part of the ARDIA Framework and were analytically

described in the deliverable D5.1 [90]. The Telemetry Data model (also part of the ARDIA

Framework) is used to express the data from the Central Telemetry Handler (CTH). The latter

was used in the background for the collection and analysis of relevant application data, based

on which several mapping rules (which are enforced by the AISO) were specified.

4.1.2 Inner components

The architecture of the AISO (analytically described in the deliverable D2.5 [85]) is presented

in Figure 2. Its internal components are responsible for expressing the given application

requirements and user’s goals/intents into the appropriate resource constraints (Translation

Mechanism) and preparing the appropriate deployment scenarios/objectives (Deployment

Scenarios Preparation).

The functionality provided by the AISO, and in particular the Translation Mechanism, is driven

by the specified mapping rules. The latter express the relation among the elements included

in the three abstraction models (part of the ARDIA Framework) and were developed in close

collaboration with domain experts, taking into account the telemetry data collected by the

Central Telemetry Handler (CTH) and using state of the art ML techniques, as described in the

deliverable D5.4 [92]. When more than one option is available to satisfy the same application

requirement or constraint, a branch is created by the Deployment Scenarios Preparation

mechanism that indicates that the same constraints can be satisfied in different ways.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 22/173

Figure 2: AI-enhanced Service Orchestrator architecture and main components

4.1.3 Integration details and REST APIs

4.1.3.1 AISO services

The functionality provided by the AISO is available as REST services. Figure 3 presents the

services available by the AISO. As can be noticed, there are three different services. The first

service (CreateDeploymentScenarios) detects potential application or micro-services

objectives based on the given application requirements and user goals or intents. The second

service (ApplicationDeploymentThroughRO) uses the first service to detect objectives as

above, and consequently sends the output to the RO (by invoking the relevant RO service) to

deploy the application micro-services to the appropriate resources. It eventually service

returns the deployment’s unique ID. The third service (ApplicationManagement) gets the

unique ID as input and can be used for service management purposes (e.g., un-deployment).

Both the input and output of the AISO’s first two services comply with the elements included

in the Application and Resource Models, respectively.

The AISO was implemented using Java (v.1.8). The application was compiled and packaged to

a WAR file using Apache Maven tool. Accordingly, the Docker image was prepared so that it

could be finally deployed to UVT’s K8s cluster following the CI/CD process through the

specification of the appropriate Jenkins pipeline and Helm charts. Figure 4 presents the output

of this process (through the Jenkins GUI).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 23/173

Figure 3: AI-enhanced Service Orchestrator REST Open API

Figure 4: AI-enhanced Service Orchestrator deployment to UVT’s K8s cluster using CI/CD pipeline

More information about the AISO services is available in Table 2. As already mentioned, there

are three services that serve different purposes. The definition of input/output of each one of

them is available at the OpenAPI YAML file. Figure 4 presents the tests that took place as part

of the deployment process (i.e., Jenkins pipeline).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 24/173

Table 2 Integration details of AI-enhanced Service Orchestrator

IP(s)/Port(s)

AI-enhanced Service Orchestrator (AISO):

• https://ai-enhanced-service-orchestrator.services.cloud.ict-

serrano.eu/AISO

• https://ai-enhanced-service-orchestrator.services.cloud.ict-

serrano.eu/AISO/CreateDeploymentScenarios

• https://ai-enhanced-service-orchestrator.services.cloud.ict-

serrano.eu/AISO/ApplicationDeploymentThroughRO

• https://ai-enhanced-service-orchestrator.services.cloud.ict-

serrano.eu/AISO/ApplicationManagement

Resource Orchestrator (RO):

• https://resource-orchestrator.services.cloud.ict-serrano.eu

Central Telemetry Handler (CTH):

• https:// central-telemetry.services.cloud.ict-serrano.eu

Publicly accessible

(y/n and other

details)

The IPs are publicly accessible, but the access has been restricted though

authentication.

Type of API REST

Associated host

names
https://ai-enhanced-service-orchestrator.services.cloud.ict-serrano.eu/

API

documentation

https://ai-enhanced-service-orchestrator.services.cloud.ict-

serrano.eu/AISO/openapi/aiso_rest.yaml

Location of

integration tests

https://ai-enhanced-service-orchestrator.services.cloud.ict-

serrano.eu/AISO/tests/Jenkinsfile

4.1.3.2 Interaction with Alien4Cloud (A4C)

The functionality provided by the AISO has been integrated with the Alien4Cloud (A4C)

platform (as presented in the deliverable D5.4), which enables users to graphically formulate

the deployment descriptor of their application and specify their goals/intents. For this

purpose, an Alien4Cloud Orchestrator Plugin (A4COP) was developed to deploy applications

on the SERRANO ecosystem. The plugin generates a JSON file with a predefined format (based

on the elements included in the Application Model) that encompasses both the application

deployment descriptor and the user’s goals/intents. This file, and in particular the given

application requirements and goals/intents, can be accordingly processed by the AISO to

detect the appropriate deployment options, which are then passed to the RO.

To ensure the successful interaction of the AISO with A4COP (e.g., correct format, missing

fields, etc.) several tests were made to verify that the data provided through A4COP are in line

with the required specifications and can be further processed by the AISO as well as the rest

components of the SERRANO platform (mainly the RO).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 25/173

The integration tests were performed using the Anomaly Manufacturing use-case, which was

defined using the SERRANO TOSCA extension. Figure 5 shows the application modelled in the

A4C Topology Editor interface. The application consists of three components, all of which

depend on two SERRANO core services. These dependencies are managed by the A4COP,

updating the Config Maps of the containers with the corresponding endpoints and credentials

of the SERRANO services registered with A4C.

Figure 5: Anomaly Detection use case modelled using TOSCA and presented in Alien4Cloud

The TOSCA topology also contains information about the intent. An example is presented

below:

topology_template:
 node_templates:
 PositionClassifierTrainer:
 type: serrano.nodes.PositionClassifierTrainer
 properties:
 intent:
 Application_Performance:
 Total_Execution_Time: "</= 200 ms"
 ...

The intent is translated by the A4COP using the specification of the AISO, and the relation

between components is translated to Kubernetes descriptors (YAML). If there are any

dependencies between the services, these will be reflected in the intent JSON, under the

application workflow field. The output of the aforementioned process (including JSON and

YAML) is then sent to the AISO for detecting potential deployment scenarios/objectives (e.g.,

target infrastructure, hardware accelerators, etc.) that facilitate the deployment process and

consequently the RO for deploying the application microservices to the appropriate resources

by utilizing the AISO services described in Section 4.1.3.1.

Several tests took place to check the integration between the A4COP, AI-enhanced Service

Orchestrator, Resource Orchestrator, and Telemetry Services. All tests have been performed

on the Anomaly Manufacturing use case and passed in the production environment at UVT.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 26/173

The first two tests validate the functionality of the A4COP when connecting with the SERRANO

core components. When creating an Orchestrator instance in A4C, the plugin executes an

HTTP GET request to the root path of the AISO, Resource Orchestrator and Telemetry services

using the configured credentials. A successful response is returned (i.e., 200 OK) and the

Orchestrator instance is initiated successfully. If the plugin cannot establish a successful

connection when contacting the core SERRANO components, (i.e., the Orchestrator instance

is initiated, but the SERRANO Location is not available for deployment) the Orchestrator must

be disabled, and the credentials must be verified before re-enabling the instance.

The next four tests are related to deploying an application defined using the SERRANO TOSCA

extension after generating the correct documents for the AISO and RO components. The tests

validate that the application can be deployed, and the status of the components can be

investigated. In the third test, the A4C user selects a SERRANO Location and clicks the deploy

button. The A4COP generates the Kubernetes YAML descriptor and the intent request for the

AISO. The two generated documents respect the corresponding schemas and can be

successfully processed when sent on a cold line as request to the AISO, more specifically, the

“/CreateDeploymentScenarios” endpoint. In the fourth test, the two generated documents

are sent to the AISO via HTTP REST to the “/ApplicationDeploymentThroughRO” endpoint and

a successful status code is received. The body of the response contains the deployment ID.

The application is presented as deployed in the A4C interface and status can be investigated

at component level. The fifth test is about an unsuccessful response from the AISO. In this

case, the A4C user is presented with the error and the application remains in the undeployed

state. In the sixth test, the deployment ID obtained during the fourth test can be used to

retrieve information from the Resource Orchestrator and the Telemetry services.

The final two tests validate the interaction for stopping an application. In the seventh test, the

A4C user hits the un-deploy button. The A4COP contacts the AISO (the

“/ApplicationManagement” endpoint) to stop the deployment execution with the ID received

during the fourth test. The AISO service responds with a success code. The application is

presented as undeployed in the A4C interface. Finally, in the eighth test, regards the case that

the AISO times out or responds with an unsuccessful status code, e.g., when the service may

not be able to un-deploy the application at that moment because some components may not

be available due to network interruptions. In this case, the application remains deployed from

the A4C perspective and the un-deploy button must be clicked again at a later point.

4.1.3.3 Interaction with the Resource Orchestrator (RO) and Central Telemetry

Handler (CTH)

The output of the AISO is also a JSON description with a predefined format (based on the

elements included in the Resource Model) that includes the given deployment descriptor

(YAML file) along with the particular deployment scenarios/objectives detected. This

description is provided to the RO, which accordingly uses the given data to allocate the

appropriate resources for the deployment and execution of the application. On condition that

the application has been successfully deployed, the RO returns to the AISO the deployment

unique identifier that can be used for application management purposes (e.g., un-deploy).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 27/173

In the above process, the Central Telemetry Handler is used in the background for collecting

information about the infrastructure and its status. More precisely, the CTH is used to get

information about the available platforms, their capabilities and the status of the associated

resources. An example is presented in Figure 6. In this example, a GET request is sent to the

CTH (/api/v1/telemetry/central/clusters) that returns a JSON response with the Unique IDs of

available clusters (UUID), which can be accordingly provided to the CTH service

(/api/v1/telemetry/central/clusters/{UUID}) for retrieving detailed information.

Figure 6: Interaction with the CTH

Several tests were made to ensure the successful interaction of the AISO with the RO (e.g.,

correct format of deployment description and objectives). Initially, focus was given to

successfully deploying the application micro-services to the appropriate resources through the

provided deployment descriptor. Then, additional tests were made to ensure that the RO

could properly use the produced deployment scenarios/objectives.

The examples presented in the following figures showcase the usage of the AISO and are based

on the deployment and execution of the applications of a SERRANO UC, taking into account

specific user requirements regarding the total execution time or energy consumption of the

respective components/microservices. In order to present both the input and output of the

AISO, the “CreateDeploymentScenarios” service was used (Figure 3), and hence the output of

the AISO had to be manually provided to the RO. Alternatively, the

“ApplicationDeploymentThroughRO” could be used, which directly provides the generated

output to the RO.

In the first example (Figure 7), the application to be deployed is about training the ML model

being used for anomalies detection in the third SERRANO UC, and the user requirement is

minimum application execution time. The AISO suggests the usage of HPC (instead of edge

resources) so that the total execution time of this process is minimized. The AISO provides this

particular response since it has been informed (via the CTH services) that there are only two

options available, i.e., usage of edge resources or HPC, and based on the data collected for

these platforms the second one is the best option.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 28/173

Figure 7: AI-enhanced Service Orchestrator Example no. 1

In the second example (Figure 8), the AISO detects that two options are available (i.e., either

usage of HPC or an edge resource with the appropriate configuration), so that the total

execution time of the above component/micro-service is below a predefined threshold.

Figure 8: AI-enhanced Service Orchestrator Example no. 2

In the third example (Figure 9), which concerns the market analysis microservice used by the

second SERRANO use case, the AISO suggests that the best option for the lowest possible

energy consumption would be the usage of a U50 accelerator.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 29/173

Figure 9: AI-enhanced Service Orchestrator Example no. 3

In all the cases above, the output of the AISO (i.e., the JSON description with the particular

scenarios/objectives along with the deployment descriptor YAML file) was accordingly sent to

the RO, which returned back the deployment UID through which the respective application

microservices status can be observed and un-deployed, when being necessary.

More precisely, a POST request is initially sent to the RO REST service

(/api/v1/orchestrator/deployments) with the JSON description (i.e., the output of the

aforementioned process) that encompasses both the deployment YAML description and the

particular objectives detected, which is accordingly used for making the actual deployment of

the application micro-services. The RO returns back the deployment unique ID (DUID). Then,

by sending a GET request to the RO REST service (/api/v1/orchestrator/deployments/{DUID})

more information about the deployment process that took place can be retrieved through the

JSON file that this service returns. More information about the last two services of the RO can

be also found in Section 4.2.3.2.3.

4.2 Resource Orchestrator

4.2.1 Description

SERRANO adopts a hierarchical architecture to enable end-to-end cognitive resource

orchestration and transparent application deployment over heterogeneous resources. The

SERRANO Resource Orchestrator acts as the high-level orchestrator that interacts with

multiple Local Orchestrators, each handling individual parts of the overall unified

infrastructure. The Orchestration Drivers complete the implementation of the hierarchical

resource orchestration.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 30/173

An Orchestration Driver provides an abstraction layer for interacting with the specific edge,

cloud, and HPC orchestration mechanisms, dealing with the low-level details of the

heterogeneous Local Orchestrators at the individual platforms. The adopted design enables

the SERRANO Resource Orchestrator to manage the underlying heterogeneous infrastructure

more abstractly and disaggregated than the Local Orchestrators. Figure 10 depicts the

architecture and the main components of the Resource Orchestrator and Orchestration

Drivers.

Figure 10: Resource Orchestrator and Orchestration Drivers architecture and main components

4.2.2 Inner components

The Resource Orchestrator consists of two primary services: Orchestration API Server and

Orchestration Manager, while the Datastore component completes the architecture. The

Datastore is based on etcd [1], an open-source distributed key-value store, and stores the

SERRANO API objects that include configuration and state data for the available platforms,

deployed applications, and SERRANO hardware and software accelerated kernels. It also

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 31/173

facilitates the distributed communication among the Orchestration API Server, Orchestration

Manager, and Orchestration Drivers.

Regarding the Orchestration API Service, the Access Interface exposes the appropriate

interfaces to enable bidirectional communication for exchanging commands, information, and

notifications. The Dispatcher handles the interaction with the Datastore by managing the

SERRANO Orchestration API objects. These objects serve as the primary means of

communication between the different components of the system. Additional information for

the SERRANO Orchestration API objects is available in Section 9.1 at deliverable D5.4 (M31).

The Orchestration Manager implements the main part of the application logic and coordinates

the resource allocation and application deployment, kernel execution, and secure storage

policy management operations. It performs operations based on the SERRANO Orchestration

API objects that are created through the API Server. The Scheduler Controller interacts with

the ROT to retrieve the instructions for the cognitive application deployment and definition of

secure storage policies. The Cluster Controller attaches Kubernetes clusters and HPC platforms

to the Resource Orchestrator and oversees their operational state. The Execution Controller

prepares the required application deployment instructions and triggers the actual deployment

by interacting with the Orchestration Drivers at the selected edge/cloud and HPC platforms.

Since SERRANO unifies edge and cloud platforms that use Kubernetes (K8s) as the

orchestration platform and HPC platforms with HPC resource managers [2] and batch jobs

schedulers [3], two types of Orchestration Drivers are available. The Orchestration Interface

component provides an infrastructure-agnostic interface between the Resource Orchestrator

(i.e., Orchestration Manager) and the Local Orchestrators. It facilitates the generic description

of the deployment preferences and constraints. The Orchestration Plug-in differs for each

Orchestration Driver type and translates the Resource Orchestrator requests to specific

actions for the Local Orchestrator at each platform.

Deliverables D5.3 (M15) and D5.4 (M31) provide more details for the overall design and

implementation of the Resource Orchestrator and Orchestration Drivers.

4.2.3 Integration details and REST APIs

4.2.3.1 Integration details

The Resource Orchestrator services and Orchestration Drivers have been implemented in

Python, leveraging popular open-source frameworks such as FastAPI [5], Pika [6], and PyQt

[7]. These components, along with their configuration files are packaged as Python

applications and seamlessly integrated into the SERRANO CI/CD pipeline. Within the SERRANO

Harbor image repository [57], the Orchestration API and Orchestration Manager services are

packaged within its dedicated container image, whereas both Orchestration Drivers share a

common image (Figure 11). In addition, all the required Kubernetes YAML description files

(i.e., ConfigMap, Deployment, Services, Ingress) were created to facilitate to facilitate their

deployment on Kubernetes platforms. The developed components are also integrated into

SERRANO’s Jenkins pipeline, leading to their automatic deployment in the SERRANO testbed

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 32/173

infrastructure (Figure 12). Figure 13 provides a visual representation of the setup employed

for the final integration tests of the SERRANO Resource Orchestrator, demonstrating the

comprehensive and well-integrated nature of our solution.

Figure 11: Resource Orchestrator and Orchestration Drivers container images in SERRANO Harbor image

repository

Figure 12: Resource Orchestrator and Orchestration Driver into Jenkins CI/CD pipeline and their deployment

in UVT’s K8s cluster

Figure 13: Setup for the integration tests of SERRANO Resource Orchestrator

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 33/173

Table 3: Integration details of Resource Orchestrator

IP(s)/Port(s)

Resource Orchestrator:

• https://resource-orchestrator.services.cloud.ict-serrano.eu
ROT Controller:

• https://rot.services.cloud.ict-serrano.eu
Central Telemetry Handler:

• https:// central-telemetry.services.cloud.ict-serrano.eu
Orchestration Drivers:

• https://uvt-driver.services.cloud.ict-serrano.eu (K8s - UVT)

• https://nbfc-driver.services.cloud.ict-serrano.eu (K8s - NBFC)

• https://ideko-driver.services.cloud.ict-serrano.eu (K8s - IDEKO)

• https://hpc-interface.services.cloud.ict-serrano.eu (HPC)

Publicly
accessible (y/n
and other details)

The IPs are publicly accessible, but the access has been restricted though
authentication.

Type of API REST

Associated host
names

https://resource-orchestrator.services.cloud.ict-serrano.eu

API
documentation

https://raw.githubusercontent.com/ict-serrano/Resource-
Orchestrator/main/orchestrator_rest.yaml

Location of
integration tests

https://raw.githubusercontent.com/ict-serrano/Resource-
Orchestrator/main/Jenkinsfile

The final version of the exposed REST API includes several methods organized into two main

categories. The first set of methods (Figure 14) enables the deployment and management of

cloud-native applications, execution of SERRANO accelerated kernels, and the cognitive

creation of secure storage policies. The second set (Figure 15) abstracts the interaction of the

Orchestration Manager and Orchestration Driver services.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 34/173

Figure 14: Resource Orchestrator REST API

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 35/173

Figure 15: Resource Orchestrator REST API – Methods related to inter-component communication

4.2.3.2 Integration with SERRANO Services

4.2.3.2.1 Resource Orchestrator and Orchestration Drivers

During their initialization, the Orchestration Drivers are registered to the Resource

Orchestrator through the exposed REST endpoint by the Orchestration API Server. They also

send a summary of the available resources in the platforms they manage. The Orchestration

API Server uses this information to update the respective contents in Datastore. Bellow, there

is an example of the available K8s and HPC clusters under the management of the Resource

Orchestrator for the testbed setup in Figure 13. This information is available through the

following GET request.

GET /api/v1/orchestrator/clusters

The

{"clusters":[{"cluster_uuid":"e65c33ac-3109-4a15-9cc2-9f4e90f82c2d","type":"k8s","
last_seen":"1700469459"}, {"cluster_uuid":"7628b895-3a91-4f0c-b0b7-033eab309891","
type":"k8s","last_seen":"1700478141"}, {"cluster_uuid":"5a075716-7d7d-4b40-9566-bc
1a33ee70c2","type":"k8s","last_seen":"1700478258"}, {"cluster_uuid":"b7143497-a168
-4c8d-a899-8c56dccda8ad","type":"hpc","last_seen":"1700498273"}]}

4.2.3.2.2 Secure storage policies cognitive creation

The SERRANO platform supports creating automated secure storage policies based on

significantly varying storage task requirements. This operation integrates the functionality of

many platform components, such as the Secure Storage service (Section 4.8.1), the SERRANO

Telemetry Framework (Section 4.4), the Resource Optimization Toolkit (Section 4.3), and the

SERRANO Resource Orchestrator services.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 36/173

Storage request orchestration

The SERRANO Resource Orchestrator provides a set of REST methods

(/api/v1/orchestrator/storage_policies) (Figure 14) that enable external services to request

the creation of a secure storage policy within the SERRANO platform. These requests are

initially handled by the Orchestration API server. The Orchestration API Server validates the

request parameters and creates the corresponding Storage Policy object in the Datastore.

{"name": "hybrid-policy", "description": "", "policy_parameters": {"data_size": 0,
"cost": 0, "volatility": 0, "availability": 1, "latency": 1, "lat": 45.7472357, "l
ng": 21.2316107}, "policy_uuid": "c13a8c59-a218-4c29-82d1-482e688b3d47", "kind": "
StoragePolicy", "decision": {}, "cc_policy_id": 0, "status": 2, "logs": [{"timesta
mp": 1700568600, "event": "Storage Policy description received."}, {"timestamp": 1
700568600, "event": "Request ROT decision"}], "updated_by": "Orchestration.Manager
", "created_at": 1700568600, "updated_at": 1700568600}

Next, the Orchestration Manager is notified of the new request and, through its Scheduler

controller, triggers the orchestration of the secure storage policy request. To this end, it

requests the orchestration decision from the ROT. Section 4.3.3.2 provides more technical

details for this step. When the Orchestration Manager receives the ROT’s decision, it updates

the decision field in the corresponding Storage Policy object through the Orchestration API

Server. The following example corresponds to a secure storage policy that utilizes cloud and

edge storage locations.

{"name": "hybrid-policy", "description": "", "policy_parameters": {"data_size": 0,
"cost": 0, "volatility": 0, "availability": 1, "latency": 1, "lat": 45.7472357, "l
ng": 21.2316107}, "policy_uuid": "c13a8c59-a218-4c29-82d1-482e688b3d47", "kind": "
StoragePolicy", "decision": {"backends": [78,79], "edge_devices": [1, 2], "redunda
nt_packets": 1}, "cc_policy_id": 0, "status": 3, "logs": [{"timestamp": 1700568600
, "event": "Storage Policy description received."}, {"timestamp": 1700568600, "eve
nt": "Request ROT decision"}, {"timestamp": 1700568607, "event": "Get decision res
ponse from ROT"}], "updated_by": "Orchestration.Manager", "created_at": 1700568600
, "updated_at": 1700568607}

Secure storage policy creation

In the subsequent phase, the Orchestration Manager, through the Execution Controller,

initiates the policy creation process by requesting it from the Secure Storage Service. It

formats the appropriate request based on the provided orchestration decision and triggers

the creation process by executing the exposed REST method (POST /storage_policy) provided

by the Secure Storage Service (Section 4.8.1).

POST /storage_policy

Parameters:
{
 "name": "hybrid-policy", "description":"", "backends": [78, 79],
 "edge_devices": [1,2],
 "redundancy": {"redundant_packets": 1, "scheme": "RLNC"}
}

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 37/173

Finally, the Orchestration Manager updates the cc_policy_id, status, and logs fields according

to the response status of the previous request.

{"name": "hybrid-policy", "description": "", "policy_parameters": {"data_size": 0,
"cost": 0, "volatility": 0, "availability": 1, "latency": 1, "lat": 45.7472357, "l
ng": 21.2316107}, "policy_uuid": "c13a8c59-a218-4c29-82d1-482e688b3d47", "kind": "
StoragePolicy", "decision": {"backends": [78,79], "edge_devices": [1, 2], "redunda
nt_packets": 1}, "cc_policy_id": 6318801792532480, "status": 5, "logs": [{"timesta
mp": 1700568600, "event": "Storage Policy description received."}, {"timestamp": 1
700568600, "event": "Request ROT decision"}, {"timestamp": 1700568607, "event": "G
et decision response from ROT"},{"timestamp": 1700568607, "event": "Request Storag
e Policy to Secure Storage Gateway"},{"timestamp": 1700568612, "event": "Storage P
olicy created successfully"}], "updated_by": "Orchestration.Manager", "created_at"
: 1700568600, "updated_at": 1700568612}

4.2.3.2.3 Cloud-native applications deployment

Sections 9.1 and 9.4.2 in the deliverable D5.4 (M31) provide a detailed technical presentation

regarding the transparent application deployment within the SERRANO platform. Next, we

focus on the integration among the Resource Orchestrator services for deploying the

Acceleration Service from the Anomaly Detection in Manufacturing Settings use case (Section

4.12), which includes three microservices.

Orchestration API server and Orchestration Manager

The Orchestration API server receives the requests for the application deployments through

its exposed REST methods (/api/v1/orchestrator/deployments) (Figure 14) and creates the

appropriate Deployment object1 in the Datastore. Next, we list the Deployment object for the

Acceleration Service deployment.

{
 "kind": "Deployment", "name": "UC3-Acceleration-Service",
 "deployment_uuid": "fdf45855-1299-47f1-8ea6-98be8d89030b",
 "deployment_description": "YAML DESCRIPTION",
 "assignments": [], "assignments_status": [],
 "logs":[{"timestamp":1700589809, "event":"Deployment description received."}],
 "status":1, "updated_by": "Orchestration.API","created_at": 1700589809,
 "updated_at": 1700589809
}

The Orchestration Manager is notified of the new request and, through its Scheduler

controller, triggers the ROT to provide the high-level orchestration decision for the application

deployment. Then, the Orchestration Manager, through its Execution Controller, creates and

stores in the Datastore the appropriate number of Assignment and Bundle objects according

to the assignment of the application microservices into the individual edge, cloud, and HPC

platforms as described in the ROT response.

1 For clarity, we omitted the contents of the deployment_description field that include the YAML description of
application’s microservices.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 38/173

{"kind": "Deployment", "assignments": [{"cluster_uuid": "e65c33ac-3109-4a15-9cc2-9
f4e90f82c2d", "deployments": ["acceleration-service-classifier-training", "acceler
ation-service-data-manager"]}, {"cluster_uuid": "5a075716-7d7d-4b40-9566-bc1a33ee7
0c2", "deployments": ["acceleration-service-model-inference"]}]}

The ROT allocated the three application microservices across two distinct K8s clusters.

Specifically, two of these microservices have been assigned to the IDEKO cluster, identifiable

by the unique identifier “e65c33ac-3109-4a15-9cc2-9f4e90f82c2”, while the third resides in

the NBFC cluster with the unique identifier “5a075716-7d7d-4b40-9566-bc1a33ee70c2”.

Consequently, the Execution Controller within the Orchestration Manager creates two

Assignment objects (UUIDs “4aae522e-3d56-42a2-b5f7-56d1cc4bef2b” and “4ea8f80a-8354-

433f-8100-5ed8b469f54c”), each associated with a selected platform. These objects are also

linked with the initial Deployment object (“fdf45855-1299-47f1-8ea6-98be8d89030b”).

/serrano/orchestrator/assignments/5a075716-7d7d-4b40-9566-bc1a33ee70c2/assignment/
4aae522e-3d56-42a2-b5f7-56d1cc4bef2b

{"uuid": "4aae522e-3d56-42a2-b5f7-56d1cc4bef2b", "kind": "Deployment", "cluster_uu
id": "5a075716-7d7d-4b40-9566-bc1a33ee70c2", "deployment_uuid": "fdf45855-1299-47f
1-8ea6-98be8d89030b", "bundles": ["6f2e474f-06b8-4b96-afa3-e3f90a088a9a"], "status
": 1, "updated_by": "Orchestration.Manager", "logs": [{"timestamp": 1700592156, "e
vent": "Assignment created."}], "created_at": 1700592156, "updated_at": 1700592156
}

/serrano/orchestrator/assignments/e65c33ac-3109-4a15-9cc2-9f4e90f82c2d/assignment/
4ea8f80a-8354-433f-8100-5ed8b469f54c

{"uuid": "4ea8f80a-8354-433f-8100-5ed8b469f54c", "kind": "Deployment", "cluster_uu
id": "e65c33ac-3109-4a15-9cc2-9f4e90f82c2d", "deployment_uuid": "fdf45855-1299-47f
1-8ea6-98be8d89030b", "bundles": ["1499c29a-acbb-46c7-84fd-38eb6c4559f2", "8241f40
b-1d02-446c-b4e6-94a5944f84c7"], "status": 1, "updated_by": "Orchestration.Manager
", "logs": [{"timestamp": 1700592156, "event": "Assignment created."}], "created_a
t": 1700592156, "updated_at": 1700592156}

Furthermore, three Bundle objects (identified by UUIDs “6f2e474f-06b8-4b96-afa3-

e3f90a088a9a”, “1499c29a-acbb-46c7-84fd-38eb6c4559f2”, and “8241f40b-1d02-446c-

b4e6-94a5944f84c7”) has been generated, each corresponding to a specific application

microservice. These Bundles were mapped to the corresponding Assignment objects and

provide the required deployment descriptions for the platform-level orchestration

mechanisms. It's important to note that, due to space constraints, the detailed descriptions of

these Bundles are omitted from this text.

Orchestration Manager and Orchestration Drivers

Creating the Bundles and Assignment objects by the Orchestration Manager activates the

Orchestration Drivers at the at the two selected platforms. Each Orchestration Driver receives

the Assignment object that includes the list of all Bundles’ unique identifiers related to the

specific assignment. The Orchestration Driver retrieves the description for each Bundle object

and uses the K8s API to apply the required deployment actions. Next, we present the log

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 39/173

messages from the Orchestration Driver in NBFC K8s clusters that successfully executed the

Bundle that was related to its assignment.

INFO:SERRANO.Orchestrator.OrchestrationDriver:Assignment event for key '/serrano/o
rchestrator/assignments/5a075716-7d7d-4b40-9566-bc1a33ee70c2/assignment/43a82209-c
3d3-4cc9-a584-fa9155056c13'

INFO:SERRANO.Orchestrator.DriverKubernetes:Handler deployment request ...

DEBUG:SERRANO.Orchestrator.DriverKubernetes:{"uuid": "43a82209-c3d3-4cc9-a584-fa91
55056c13", "kind": "Deployment", "cluster_uuid": "5a075716-7d7d-4b40-9566-bc1a33ee
70c2", "deployment_uuid": "fd9a6e44-428f-4c18-b13d-3ddd93509222", "bundles": ["5d4
bb088-01b5-46cf-aa79-fd4536718968"], "status": 1, "updated_by": "Orchestration.Man
ager", "logs": [{"timestamp": 1700595973, "event": "Assignment created."}], "creat
ed_at": 1700595973, "updated_at": 1700595973}

DEBUG:SERRANO.Orchestrator.DriverKubernetes:Create ConfigMap 'acceleration-service
-model-inference-config'

DEBUG:SERRANO.Orchestrator.DriverKubernetes:Successful ConfigMap description for b
undle '5d4bb088-01b5-46cf-aa79-fd4536718968'

DEBUG:SERRANO.Orchestrator.DriverKubernetes:Create Deployment 'acceleration-servic
e-model-inference'

DEBUG:SERRANO.Orchestrator.DriverKubernetes:Successful Deployment description for
bundle '5d4bb088-01b5-46cf-aa79-fd4536718968'

INFO:SERRANO.Orchestrator.DriverKubernetes:Deployment for assignment '43a82209-c3d
3-4cc9-a584-fa9155056c13' successfully executed

Finally, the Orchestration Manager informs, through the Central Telemetry Handler, the

SERRANO telemetry framework to start the automatic monitoring of the deployed application

(Section 4.4.3). Figure 16 shows the three deployed application microservices in the two

selected K8s clusters.

Figure 16: Acceleration Service microservices deployed across two K8s clusters within the SERRANO platform

4.2.3.2.4 On-demand SERRANO HW/SW accelerated kernels execution

The SERRANO platform supports the on-demand execution of the SERRANO-accelerated

kernels. The on-demand execution is based on the Functional as a Service (FaaS) execution

model. The SERRANO SDK supports the on-demand execution of the kernels, whereas the

orchestration and deployment mechanisms handle all the required operations and return the

results to the application service. The overall process involves the following steps: (1) move

input data to SERRANO storage services, which provides the data description from the next

step; (2) request the execution of kernel; and (3) retrieve the results. Figure 17 summarizes

the overall workflow from an end-user perspective, while additional information is available

in deliverable D5.4 (M31).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 40/173

Figure 17: Kernel execution and data handling from the end user’s perspective, common approach for all

supported modes and platforms

Kernel execution in edge and cloud platforms

We consider the on-demand execution of the KMEANS kernel from the Position Process service

of the third use case. Initially, the service uses the appropriate method from the SERRANO SDK to

push the input data for the kernel in the SERRANO platform.

{'queue_id': '84e0b309-e3f8-488e-a441-073720b55b4e', 'bucket_id': '84e0b309-e3f8-4
88e-a441-073720b55b4e', 'arguments': ['position', 'labels'], 'storage': 'broker',
'total_size_MB': 7.35}

Next, it requests the kernel execution from the SERRANO orchestration and deployment

mechanisms. The Orchestration API server creates the corresponding Kernel object in the

Datastore.

{"kind": "FaaS", "request_uuid": "1465c479-03d7-4123-8329-fac9fa580256", "kernel_n
ame": "kmeans", "deployment_objectives": {}, "data_description": {"queue_id": "3a0
47bd2-5558-410b-ae7c-8e7fd3953ae2", "bucket_id": "3a047bd2-5558-410b-ae7c-8e7fd395
3ae2", "arguments": ["position", "labels"], "storage": "broker", "total_size_MB":
7.35, "w": 200, "iterations": 2, "uuid": "1465c479-03d7-4123-8329-fac9fa580256"},
"assignment_uuid": "", "logs": [{"timestamp": 1700667284, "event": "Kernel descrip
tion received."}], "status": 2, "updated_by": "Orchestration.API", "created_at": 1
700667284, "updated_at": 1700667284}

The Orchestration Manager service contacts the ROT, which selects the appropriate type of

accelerated resources and the specific platform that will assign the kernel execution. Next, the

Orchestration Manager creates the necessary Assignment and Bundle objects in the

Datastore. In the following example, the selected platform is NBFC K8s cluster (UUID

“5a075716-7d7d-4b40-9566-bc1a33ee70c2”) and the selected acceleration platform is GPU,

as listed in the Bundle object.

/serrano/orchestrator/assignments/5a075716-7d7d-4b40-9566-bc1a33ee70c2/assignment/

b8f74a2e-a6fc-456a-94d2-34583b2ab7cb

{"uuid": "b8f74a2e-a6fc-456a-94d2-34583b2ab7cb", "kind": "FaaS", "cluster_uuid": "
5a075716-7d7d-4b40-9566-bc1a33ee70c2", "deployment_uuid": "1465c479-03d7-4123-8329
-fac9fa580256", "bundles": ["8d7c2128-1a97-4b13-bd42-69abf817ab7e"], "status": 1,

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 41/173

"updated_by": "Orchestration.Manager", "logs": [{"timestamp": 1700667284, "event":
"Assignment created."}], "created_at": 1700667284, "updated_at": 1700667284}

/serrano/orchestrator/bundles/bundle/8d7c2128-1a97-4b13-bd42-69abf817ab7e

{"uuid": "8d7c2128-1a97-4b13-bd42-69abf817ab7e", "description": {"kind": "FaaS", "
request_uuid": "1465c479-03d7-4123-8329-fac9fa580256", "kernel_name": "kmeans", "d
ata_description": {"queue_id": "3a047bd2-5558-410b-ae7c-8e7fd3953ae2", "bucket_id"
: "3a047bd2-5558-410b-ae7c-8e7fd3953ae2", "arguments": ["position", "labels"], "st
orage": "broker", "total_size_MB": 7.35, "mode": "gpu", "w": 200, "iterations": 2,
"uuid": "1465c479-03d7-4123-8329-fac9fa580256"}, "status": 1, "updated_by": "Orche
stration.Manager", "logs": [{"timestamp": 1700667284, "event": "Bundle created."}]
, "created_at": 1700667284, "updated_at": 1700667284}

The Orchestration Driver at the selected platform is notified for the kernel execution

assignment and reads the instructions from the Bundle object. Then, it requests the actual

execution from the OpenFaaS service, oversees the progress, and collects detailed monitoring

information. The vAccel framework (Section 4.7.1.1) abstracts all the resource-specific details

to enable the seamless deployment of the accelerated kernels across heterogeneous

acceleration resources, such as GPUs and FPGAs.

INFO:SERRANO.Orchestrator.OrchestrationDriver:Assignment event(s) ...

INFO:SERRANO.Orchestrator.OrchestrationDriver:Assignment event for key '/serrano/o

rchestrator/assignments/5a075716-7d7d-4b40-9566-bc1a33ee70c2/assignment/b8f74a2e-a

6fc-456a-94d2-34583b2ab7cb'

DEBUG:SERRANO.Orchestrator.DriverKubernetes:{"uuid": "b8f74a2e-a6fc-456a-94d2-3458

3b2ab7cb", "kind": "FaaS", "cluster_uuid": "5a075716-7d7d-4b40-9566-bc1a33ee70c2",

"deployment_uuid": "1465c479-03d7-4123-8329-fac9fa580256", "bundles": ["8d7c2128-1

a97-4b13-bd42-69abf817ab7e"], "status": 1, "updated_by": "Orchestration.Manager",

"logs": [{"timestamp": 1700667284, "event": "Assignment created."}], "created_at":

1700667284, "updated_at": 1700667284}

INFO:SERRANO.Orchestrator.DriverKubernetes:Bundle for Faas kernel assignment 'b8f7

4a2e-a6fc-456a-94d2-34583b2ab7cb' is activated

INFO:SERRANO.Orchestrator.OrchestrationDriver.ExecutionWrapper:Submit execution re

quest to OpenFaaS service for request_uuid '1465c479-03d7-4123-8329-fac9fa580256'

When the kernel execution is completed, the Orchestration Driver updates the status of the

Kernel and Assignment objects through the exposed REST methods from the Orchestration

API server. At the same time, the OpenFaaS service forwards automatically to the end users

through the Message Broker (Section 4.5.1.2)

Kernel execution in HPC platform

The workflow for the execution of SERRANO accelerated kernels into HPC platform is similar

to the previous case. The difference lays in the final steps where the Orchestration Drivers for

the HPC platforms interacts with the SERRANO HPC Gateway (Section 4.6) instead of the

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 42/173

OpenFaaS service. The HPC Gateway abstracts the interaction with the HPC infrastructure and

the specific batch job scheduler mechanisms that used in this type environments.

When the HPC Orchestration Driver (cluster UUID “b7143497-a168-4c8d-a899-

8c56dccda8ad”) is notified for the kernel execution assignment (UUID “3543bf88-7ca6-45dc-

a259-72001d17484a”), it reads the instructions from the Bundle object. In this case, it is also

responsible for moving the input data from the SERRANO Secure Storage service into the HPC.

This operation utilizes the exposed data endpoints of the SERRANO HPC Gateway (Figure 37).

Then, it requests the execution from the HPC Gateway service, oversees the progress, and

collects detailed monitoring information. Moreover, the HPC Orchestration Driver has to

transfer the results from the HPC platform through the HPC gateway and push them to the

Message Broker to be forwarded automatically to the end users. Next, we present the log

messages from the HPC Orchestration Driver that correspond to the execution of the KMEANS

kernel in the SERRANO HPC infrastructure. Figure 18 summarizes the workflow for executing

a SERRANO accelerated kernel in HPC platforms, highlighting the role of the Orchestration

Driver and its interaction with the SERRANO HPC Gateway.

INFO:SERRANO.Orchestrator.OrchestrationDriver:Assignment event(s) ...

INFO:SERRANO.Orchestrator.OrchestrationDriver:Assignment event for key '/serrano/o
rchestrator/assignments/b7143497-a168-4c8d-a899-8c56dccda8ad/assignment/3543bf88-7
ca6-45dc-a259-72001d17484a'

INFO:SERRANO.Orchestrator.DriverHPC:Handle deployment request ...

INFO:SERRANO.Orchestrator.DriverHPC:Retrieve Bundle 'd0436f18-033d-4db1-befb-c7d82
d6d4d5c'

INFO:SERRANO.Orchestrator.DriverHPC:Bundle for assignment '3543bf88-7ca6-45dc-a259
-72001d17484a' is activated

INFO:SERRANO.Orchestrator.DriverHPC.ExecutionWrapper:Move data from bucket 'e90a23
82-2008-468e-a0fd-4964c19a7331' to HPC Gateway Service

DEBUG:SERRANO.Orchestrator.OrchestrationDriver.ExecutionWrapper:Move object 'posit
ion_input_data' from bucket 'e90a2382-2008-468e-a0fd-4964c19a7331' to HPC Gateway
Service

DEBUG:SERRANO.Orchestrator.DriverHPC.ExecutionWrapper:Format execution request for
HPC Gateway Service

DEBUG:SERRANO.Orchestrator.DriverHPC.ExecutionWrapper: {'services': ['kmean'], 'in
frastructure': 'excess_slurm', 'params': {'read_input_data': '/Init_Data/raw_data_
position/from_s3_position_input_data'}}

INFO:SERRANO.Orchestrator.DriverHPC.ExecutionWrapper:Submit execution request to H
PC Gateway Service for request_uuid '7b7435dd-c9bd-4afa-b399-1b9e3047184a'

INFO:SERRANO.Orchestrator.DriverHPC.ExecutionWrapper: HPC Gateway Service return j
obid '0046313f-2df5-4fbc-81ec-b82880b48ff1' for request_uuid '7b7435dd-c9bd-4afa-
b399-1b9e3047184a'

INFO:SERRANO.Orchestrator.DriverHPC.ExecutionWrapper:Checking the execution status
for request_uuid '7b7435dd-c9bd-4afa-b399-1b9e3047184a'

INFO:SERRANO.Orchestrator.DriverHPC.ExecutionWrapper: request_uuid '7b7435dd-c9bd-
4afa-b399-1b9e3047184a' executed successfully

INFO:SERRANO.Orchestrator.DriverHPC.ExecutionWrapper:Move results from HPC Gateway
Service to bucket 'e90a2382-2008-468e-a0fd-4964c19a7331'

DEBUG:SERRANO.Orchestrator.OrchestrationDriver.ExecutionWrapper:Move results 'serr
ano/data/Output_Data/KMean/KMean_cluster.csv' from HPC Gateway Service to object '
results_7b7435dd-c9bd-4afa-b399-1b9e3047184a' in bucket 'e90a2382-2008-468e-a0fd-4
964c19a7331'

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 43/173

INFO:SERRANO.Orchestrator.DriverHPC.ExecutionWrapper: Forward results from secure
storage service to message broker

Figure 18: SERRANO accelerated kernel execution in HPC platform

4.3 Resource Optimization Toolkit

4.3.1 Description

The Resource Optimization Toolkit (ROT) integrates the designed resource allocation

algorithms in the SERRANO platform, implementing the deciding part at the envisioned

closed-loop control. It supports the SERRANO Resource Orchestrator, providing the logic to

allocate the edge, cloud, and HPC resources to satisfy the applications’ requirements and

support the efficient movement of required data across the selected resources. Figure 19

presents the architecture of the ROT, its main components, and the interactions with other

components within the SERRANO architecture.

Figure 19: Resource Optimization Toolkit architecture and main components

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 44/173

4.3.2 Inner components

The design includes one ROT Controller but multiple Execution Engines, the actual workers.

The overall design and the implementation provide a robust and adaptable cloud-native

application.

The controller includes the Access Interface and Dispatcher components. The former exposes

the interfaces that allow bidirectional communication for exchanging commands, information,

and notifications. The latter manages the execution of the requests and handles the

interaction with the multiple instances of the Execution Engine. It also interacts with the

Central Telemetry Handler to retrieve the characteristics of the resources, their current status,

and the deployed applications.

The Execution Engine, through the Execution Engine Interface, Execution Manager,

and Execution Helper, receives requests from the ROT Controller for starting or terminating

algorithm executions and performs all the required actions. In addition, the Decision

Algorithms is the library of developed orchestration algorithms that include: (i) a simple first-

fit allocation algorithm, (ii) the best-fit heuristic for the security-aware deployment, (iii) the

greedy resource allocation algorithm (GRAA), and (iv) the heuristic for the distributed storage

allocation. Deliverables D5.2 (M15) and D5.4 (M31) provide more details for the overall design

and implementation of the ROT framework along with a thorough analysis of the developed

algorithms in the context of SERRANO.

4.3.3 Integration details and REST APIs

4.3.3.1 Integration details

The ROT is implemented in Python language, using additional frameworks such as Flask 2.0

[4], Pika [6], and PyQt [7], and packaged in container images using the SERRANO CI/CD

services, ensuring a smooth and efficient development workflow. There are separate

container images for the ROT Controller and ROT Execution Engine (Figure 20), accessible

through the official SERRANO Harbor image repository [57]. Moreover, the corresponding

Kubernetes YAML description files were created to facilitate effortless deployment on

Kubernetes platforms. These files enable the automatic deployment and scaling of the ROT

Controller and ROT Execution Engines within Kubernetes. They are also used in SERRANO’s

Jenkins pipeline, leading to the automatic deployment of the ROT services in the SERRANO

testbed infrastructure (Figure 21).

Figure 20: ROT container images into SERRANO Harbor image repository

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 45/173

Figure 21: ROT into Jenkins CI/CD pipeline and deployment in UVT’s K8s cluster

Table 4: Integration details of Resource Optimization Toolkit

IP(s)/Port(s)

ROT Controller:

• https://rot.services.cloud.ict-serrano.eu
Resource Orchestrator:

• https://resource-orchestrator.services.cloud.ict-serrano.eu
Central Telemetry Handler:

• https://central-telemetry.services.cloud.ict-serrano.eu

Publicly
accessible (y/n
and other details)

The service is publicly accessible, but the access has been restricted
though token authentication.

Type of API REST and asynchronous (AMQP)

Associated host
names

https://rot.services.cloud.ict-serrano.eu

API
documentation

https://raw.githubusercontent.com/ict-serrano/Resource-Optimization-
Toolkit/main/ROT_swagger_api_v1.1.yaml

Location of
integration tests

https://raw.githubusercontent.com/ict-serrano/Resource-Optimization-
Toolkit/main/Jenkinsfile

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 46/173

Figure 22: Resource Optimization Toolkit REST API

The ROT exposes two primary sets of interfaces through which external services or

applications can interact to consume the provided capabilities. The first is based on REST APIs,

and the second is an asynchronous messaging interface based on the Advanced Message

Queuing Protocol (AMQP). The former exposes control operations to manipulate and inspect

the execution of deployment algorithms, get information for the available Execution Engines,

and manage end users. The latter offers asynchronous communication between the ROT

Controller and end users for exchanging notification messages and results. A detailed

presentation of these interfaces is available in deliverable D5.4 (M31). Figure 22 summarizes

the final version of the exposed REST API.

A Python API is also available that abstracts the integration with the ROT controller and the

exposed northbound interfaces. This API is part of the SERRANO SDK and is also used by the

Orchestration Manager (Section 4.2.2) to interact with the ROT. The API includes a set of

methods to abstract the interaction with the REST interface and various events to handle the

low-level operations for interacting with the asynchronous communication over the Message

Broker (Section 4.5.1).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 47/173

4.3.3.2 Service functionality

Next, we present the interaction among the ROT components, the Resource Orchestrator, and

the Central Telemetry Handler for executing a resource allocation algorithm in the SERRANO

platform. More specifically, we consider the creation of a SERRANO secure storage policy.

Step 1: Resource Orchestrator and ROT Controller

When the Resource Orchestrator receives the end user request to create a storage policy, it

triggers the ROT decision-making process. To this end, the Orchestration Manager service uses

the provided Python API to request the execution of the appropriate algorithm with the

provided input parameters.

SERRANO Python API:

Parameters:

{"name": "edge-policy","description": "Secure storage policy with only SERRANO edg
e storage locations", "policy_parameters": {"data_size":0, "cost":0, "latency": 1,
"volatility":0, "availability": 1, "lat": 45.7472357, "lng": 21.2316107}}

 Then, the ROT Controller, through its Access Interface, assigns a unique identifier ("bbbc8b87-

d896-4c5b-bdea-570a191a4f10") in the request, validates it, and forwards the request to the

Dispatcher.

{"execution_id": "bbbc8b87-d896-4c5b-bdea-570a191a4f10", "status": "Accepted"}

Step 2: ROT Controller and Central Telemetry Handler

The Dispatcher, among other actions, interacts with the Central Telemetry Handler to retrieve

the required operational and monitoring data. This operation uses the exposed REST methods

by the SERRANO telemetry framework (Section 4.4.3). This example uses the endpoint that

provides detailed information about the available cloud and edge storage locations within the

SERRANO platform, along with their basic characteristics. Other endpoints, such as

"/api/v1/telemetry/central/infrastructure" are used to execute the algorithms that support

the application and the on-demand kernel deployments.

GET /api/v1/telemetry/central/storage_locations

{"cloud_storage":[{"cloud_provider_jurisdiction":"United States","cloud_provider_n
ame":"Microsoft Azure","cloud_provider_url":"https://azure.microsoft.com/","countr
y":"United States","countrycode":"US","download_errors_in_last_12_months":2,"downl
oad_price":0.0,"id":25,"is_gdpr":false,"lat":37.4315734,"lng":-78.6568942,"locatio
n":"Virginia","rtt_download_1B_ms":[116,116,116,115,115,116,116,122,115,115,116,11
6,115,116,116,116,116,116,115,116,122,116,116,116,115,115,116,115,118,120],"rtt_do

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 48/173

wnload_1MB_ms":[1128,1134,1016,1135,1128,1128,1016,1029,1050,1175,1144,1151,1126,1
058,905,1137,1019,1016,1664,1013,1022,1021,1129,1127,1015,1033,1016,1127,1154,1046
],"rtt_upload_1B_ms":[119,119,118,118,119,121,118,119,117,118,118,118,117,119,118,
120,299,118,119,117,127,119,122,124,119,117,119,117,120,129],"rtt_upload_1MB_ms":[
1282,1488,1424,1283,1333,1300,1415,1335,1281,1294,1304,1291,1286,1333,1277,1301,16
17,1296,1279,1274,1430,1391,1476,1316,1440,1426,1403,1554,1303,1315],"storage_pric
e":21.0,"upload_errors_in_last_12_months":2,"upload_price":0}],
"edge_storage":[{"cluster_uuid":"7628b895-3a91-4f0c-b0b7-033eab309891","id":1,"lat
":45.7472357,"lng":21.2316107,"metrics":[{"minio_node_disk_free_bytes":19901820928
.0,"minio_node_disk_total_bytes":31509614592.0,"minio_node_disk_used_bytes":116077
93664.0}],"minio_node_disk_total_bytes":8333520896.0,"name":"edge-storage-devices-
0","node":"serrano-k8s-worker-02"}]}

The response above is indicative since there are many cloud and edge storage locations in

practice, and the actual response will be unreadable.

Step 3: ROT Controller and Execution Engine

After, the controller assigns the execution request to the Execution Engine with the least

workload.

DEBUG:SERRANO.ROT.Dispatcher:Execution "bbbc8b87-d896-4c5b-bdea-570a191a4f10" is a
ssigned to engine: "a6db7225-f759-4805-9b04-13b63fd93ac1"

The selected Execution Engine rexecutes the selected algorithm with the provided input data.

Then, it sends the resource allocation decisions to the controller through the Message Broker.

DEBUG:SERRANO.Orchestrator.ROTInterface: ROT response for execution uuid "bbbc8b87
-d896-4c5b-bdea-570a191a4f10"
DEBUG:SERRANO.Orchestrator.ROTInterface: {"kind": "StoragePolicy", "backends": [],
"edge_devices": [1, 2], "redundant_packets": 1}}

Step 4: ROT Controller and Resource Orchestrator

The ROT API provides a simple and effective event-driven mechanism through which

applications asynchronously receive the ROT controller responses to their requests. The API

provides the appropriate methods (connect() method in the following code snippet) that

enable applications to register for specific events, providing also the corresponding custom

methods that will be executed when each event occurs. The Resource Orchestrator uses this

event-handling mechanism while interacting with the ROT Controller. Under the hood, the

event handling mechanism leverages the functionalities provided by the SERRANO Message

Broker component (Section 4.5.1).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 49/173

When the ROT Controller receives the execution response, it forwards the results to the

appropriate client. Finally, the Resource Orchestrator receives the response from the ROT

regarding the selected parameters for creating the requested secure storage policy.

INFO:SERRANO.Orchestrator.ROTInterface:Receive ROT response for execution uuid 'bb
bc8b87-d896-4c5b-bdea-570a191a4f10'
DEBUG:SERRANO.Orchestrator.ROTInterface:{"kind": "StoragePolicy", "backends": [],
"edge_devices": [1, 2], "redundant_packets": 1}

4.4 SERRANO Telemetry Framework

4.4.1 Description

The SERRANO platform includes a set of resource monitoring and telemetry mechanisms that

provide the sense (detect what is happening) operation in the envisioned closed-loop control.

They collect data that is used to improve orchestration decisions, detect problems, and trigger

the redeployment of applications. The SERRANO telemetry stack consists of four key building

blocks: (a) the Central Telemetry Handler, (b) Enhanced Telemetry Agents, (c) Monitoring

Probes, and (d) Persistent Monitoring Data Storage service.

The Central Telemetry Handler is the root element of the SERRANO hierarchical telemetry

infrastructure. The various Enhanced Telemetry Agents are responsible for a specific set of

Monitoring Probes. The collection and exchange of monitored information is performed

periodically, while the granularity can be adapted, and other telemetry operations can be

activated based on detected events or explicitly by entities at upper layers. The Persistent

Monitoring Data Storage (PMDS) service provides long-term storage for the collected

telemetry data. It operates as a central repository that provides historical data to the

SERRANO orchestration (Sections 4.1 and 4.3) and service assurance mechanisms (Section

4.9). The telemetry functionalities are spread into several layers to meet the scalability

requirement while enabling immediate reaction to events that affect the performance of the

deployed applications at individual parts within the SERRANO platform.

4.4.2 Telemetry framework components

The Central Telemetry Handler and Enhanced Telemetry Agents provide the same core

functions at different scales and views of the infrastructure resources and deployed

applications. They expose RESTful methods that enable the on-demand change of their

current operational configuration. The Central Telemetry Handler manages multiple instances

of Enhance Telemetry Agents, while each agent controls a specific set of Monitoring Probes.

SERRANO’s hierarchical monitoring infrastructure is depicted in Figure 23.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 50/173

Figure 23: SERRANO hierarchical telemetry architecture

Monitoring probes collect valuable information about the infrastructure resources, services,

and deployed applications within the SERRANO platform. SERRANO provides a collection of

specialized probes, each dedicated to monitoring a specific infrastructure type. More

specifically, three different monitoring probes are available: Kubernetes Monitoring Probe,

HPC Monitoring Probe, and SERRANO Edge Devices Monitoring Probe. Finally, the SERRANO

telemetry framework includes the PMDS service for storing the collected timestamped

telemetry data from the various monitoring probes. It is based on InfluxDB [62], an open-

source time-series database. The PMDS exposes methods (Figure 27) that allow end users and

external services to retrieve historical telemetry data.

The SERRANO telemetry framework also includes several operational databases that store

information related to the deployed components of the framework and their configurations,

along with the most up-to-date information for the infrastructure resources, deployed

applications, and executed SERRANO-accelerated kernels. The databases are based on

MongoDB [61]. Deliverables D5.2 (M15) and D5.4 (M31) provide more details for the overall

design and implementation of the Resource Orchestrator and Orchestration Drivers.

4.4.3 Integration details and REST APIs

4.4.3.1 Integration details

The SERRANO telemetry framework has been implemented in Python. The framework’s

services and their corresponding configuration files have been packaged as Python

applications and integrated using the SERRANO CI/CD pipeline. Different container images are

available for the key components such as the Central Telemetry Handler, Enhanced Telemetry

Agent, PMDS, and Monitoring Probes. These components have been seamlessly integrated

into SERRANO’s Jenkins pipeline, facilitating their automatic deployment within the SERRANO

testbed infrastructure. The integration tests of the telemetry framework and the evaluation

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 51/173

of the final SERRANO platform release were performed using the setup that is depicted in

Figure 24.

Figure 24: Setup for the final integration tests of SERRANO telemetry framework

Table 5: Integration details of Resource Optimization Toolkit

IP(s)/Port(s)

Central Telemetry Handler:

• https://central-telemetry.services.cloud.ict-serrano.eu
Enhanced Telemetry Agents:

• https://telemetry-agent.services.cloud.ict-serrano.eu

• http://85.120.206.26:30090
PMDS:

• https://pmds.services.cloud.ict-serrano.eu
Grafana:

• http://85.120.206.26:32000
Monitoring Probes:

• Cloud storage: https://on-premise-storage-gateway.services.cloud.ict-serrano.eu

• Edge storage: https://edge-storage-probe.services.cloud.ict-serrano.eu

• UVT K8s: https://k8s-probe.wp5.services.cloud.ict-serrano.eu

• NBFC K8s: https://serrano.nbfc.io:9080

• IDEKO K8s: https://extranet.danobatgroup.com/serranok8sprobe

• AUTH K8s: https://155.207.169.212:9080

• HPC: https://hpc-interface.services.cloud.ict-serrano.eu

Publicly
accessible (y/n
and other details)

The IPs are publicly accessible, but the access has been restricted though
authentication.

Type of API REST and asynchronous (Stream Handler)

Associated host
names

https://central-telemetry.services.cloud.ict-serrano.eu

API
documentation

https://raw.githubusercontent.com/ict-serrano/Telemetry-
Framework/master/telemetry_rest.yaml

Location of
integration tests

https://raw.githubusercontent.com/ict-serrano/Telemetry-
Framework/master/Jenkinsfile

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 52/173

The following figures summarize the final version of the REST API exposed by the SERRANO

telemetry framework services. The API related to CTH, ETA, and Monitoring Probes

functionality includes methods organized into two main categories. The first category allows

other SERRANO services (such as the AI-Enhanced Service Orchestrator, Event Detection

Engine, Resource Optimization Toolkit, and Resource Orchestrator) to interact with the

telemetry framework. The second category includes methods that support the operation of

telemetry framework services and data exchange among its components.

Figure 25: Telemetry framework REST interfaces – Control and management methods

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 53/173

Figure 26: Telemetry framework REST interfaces – High-level CTH methods

Figure 27: Persistent Monitoring Data Storage (PMDS) RESTful interface

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 54/173

4.4.3.2 Integration with SERRANO services

Enhanced Telemetry Agent and Monitoring Probes

Deliverables D6.3 (M18) and D5.4 (M31) provide a detailed presentation for the integration of

the three developed SERRANO Monitoring Probes, along with their registration and overall

management from the Enhanced Telemetry Agent. It follows an example for the monitoring

data that the Enhanced Telemetry Agent collects from the final version of the probe that

monitors the SERRANO edge storage devices that are deployed in the UVT Kubernetes cluster.

GET /api/v1/telemetry/probe/monitor

{"edge_storage_devices":[{"cluster_uuid":"7628b895-3a91-4f0c-b0b7-033eab309891","m
inio_bucket_usage_object_total":199.0,"minio_bucket_usage_total_bytes":3186080021.
0,"minio_node_disk_free_bytes":18935615488.0,"minio_node_disk_total_bytes":3150961
4592.0,"minio_node_disk_used_bytes":12573999104.0,"minio_s3_requests_total":0,"min
io_s3_requests_waiting_total":0.0,"minio_s3_traffic_received_bytes":3436003534.0,"
minio_s3_traffic_sent_bytes":16726678916.0,"name":"edge-storage-devices-0","node":
"serrano-k8s-worker-02"},{"cluster_uuid":"7628b895-3a91-4f0c-b0b7-033eab309891","m
inio_bucket_usage_object_total":183.0,"minio_bucket_usage_total_bytes":3092835141.
0,"minio_node_disk_free_bytes":18935615488.0,"minio_node_disk_total_bytes":3150961
4592.0,"minio_node_disk_used_bytes":12573999104.0,"minio_s3_requests_total":0,"min
io_s3_requests_waiting_total":0.0,"minio_s3_traffic_received_bytes":3092835377.0,"
minio_s3_traffic_sent_bytes":932.0,"name":"edge-storage-devices-1","node":"serrano
-k8s-worker-02"},{"cluster_uuid":"7628b895-3a91-4f0c-b0b7-033eab309891","minio_buc
ket_usage_object_total":199.0,"minio_bucket_usage_total_bytes":3186080021.0,"minio
_node_disk_free_bytes":18935615488.0,"minio_node_disk_total_bytes":31509614592.0,"
minio_node_disk_used_bytes":12573999104.0,"minio_node_process_cpu_total_seconds":6
017.01,"minio_node_process_resident_memory_bytes":126976000.0,"minio_node_process_
uptime_seconds":3113825.842905024,"minio_s3_requests_errors_total":0,"minio_s3_req
uests_rejected_invalid_total":0,"minio_s3_requests_total":0,"minio_s3_requests_wai
ting_total":0.0,"minio_s3_traffic_received_bytes":3436003467.0,"minio_s3_traffic_s
ent_bytes":16726678782.0,"name":"edge-storage-devices-2","node":"serrano-k8s-worke
r-02"},{"cluster_uuid":"7628b895-3a91-4f0c-b0b7-033eab309891","minio_bucket_usage_
object_total":183.0,"minio_bucket_usage_total_bytes":3092835141.0,"minio_node_disk
_free_bytes":18935615488.0,"minio_node_disk_total_bytes":31509614592.0,"minio_node
_disk_used_bytes":12573999104.0,"minio_s3_requests_total":0,"minio_s3_requests_wai
ting_total":0.0,"minio_s3_traffic_received_bytes":3092835377.0,"minio_s3_traffic_s
ent_bytes":16726678916.0,"name":"edge-storage-devices-3","node":"serrano-k8s-worke
r-02"}],"type":"Probe.EdgeStorage","uuid":"4c1f3be3-9d47-4e5a-9199-cd4a01d6775a"}

Configuration of Enhanced Telemetry Agent and monitoring probes

The framework supports the dynamic configuration of the monitoring probes and Enhanced

Telemetry Agents through their exposed REST methods. An Enhanced Telemetry Agent is able

to configure the operation of its monitoring probes, while it can also be configured from the

Central Telemetry Handler. In the following example, the Central Telemetry Handler changes

the configuration of one of the two Enhanced Telemetry Agents and sets the data retaining

period in its operational database to three minutes and disables the emit of notifications

related to its operation through the SERRANO Stream Handler.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 55/173

POST /api/v1/telemetry/agent

{"data_retain_period": 180, "active_notifications": false}

Similarly, the Enhanced Telemetry Agent can dynamically change the rate at which a

monitoring probe forwards its collected telemetry data. The following example sets the

reporting period to 60 seconds in the probe that collects information from the IDEKO K8s

cluster.

POST /api/v1/telemetry/probe

{"query_interval": 60}

The figure bellow shows the contents of the operational database after the previous two

configurations. As expected, it contains only the last three monitoring samples for the K8s

cluster (UUID “e65c33ac-3109-4a15-9cc2-9f4e90f82c2d”) that monitors the specific probe.

Central Telemetry Handler and SERRANO platform services

The Central Telemetry Handler exposes methods that facilitate the interaction of other core

SERRANO services with the telemetry services. The following GET method lists the cloud-

native applications that are deployed within the SERRANO platform.

GET /api/v1/telemetry/central/deployments

{"deployments":[{"clusters":["7628b895-3a91-4f0c-b0b7-033eab309891"],"deployment_u
uid":"649decae-63ec-40cb-9c5f-eb16f5b93590","timestamp":1695371235},{"clusters":["
7628b895-3a91-4f0c-b0b7-033eab309891"],"deployment_uuid":"d057ad52-8a6d-49b8-9dbc-
b2570e93c079","timestamp":1700827414},{"clusters":["7628b895-3a91-4f0c-b0b7-033eab
309891"],"deployment_uuid":"395fa908-08d5-4317-8805-feecbc93d7c7","timestamp":1700
829240},{"clusters":["7628b895-3a91-4f0c-b0b7-033eab309891","5a075716-7d7d-4b40-95
66-bc1a33ee70c2"],"deployment_uuid":"78ba07f8-713d-42ba-bab2-1725a9402f1d","timest
amp":1700838788}]}

Section 4.2.3.2 includes additional CTH methods used by other services, such as the ROT and

Resource Orchestrator. There is also a method for retrieving monitoring data for a specific

edge, cloud, or HPC infrastructure. It provides the most up-to-date data by querying the

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 56/173

appropriate probe. It also automatically updates the operational database and PMDS service.

Below is an example of getting the monitoring data from the HPC cluster, while the figure

shows the respective contents of the operational database before and after the request. The

previous entries were every 60 seconds but the last one is from the request.

GET /api/v1/telemetry/central/cluster/monitor/b7143497-a168-4c8d-a899-8c56dccda8ad

Automatic monitoring of deployed applications

The telemetry framework provides the autonomous collection of monitoring metrics for the

performance of the deployed applications across the SERRANO heterogeneous and

distributed resources, regardless of the individual platforms that host them. Next, we present

this functionality using the application deployment from Section 4.2.3.2.3 as an example.

During the final steps of the deployment phase, each Orchestration Driver updates the

Orchestration API server for the status of its Assignment object. The Orchestration API server

uses this information to determine if a deployment request has been served successfully.

Then, the Orchestration API server informs the SERRANO telemetry framework to monitor the

deployed application automatically and register the deployed application to the Service

Assurance mechanisms (Section 4.9).

DEBUG:SERRANO.Orchestrator.Dispatcher:Update deployment "fdf45855-1299-47f1-8ea6-9
8be8d89030b" status after assignment "4aae522e-3d56-42a2-b5f7-56d1cc4bef2b" progre
ss update ..

DEBUG:SERRANO.Orchestrator.Dispatcher:Update deployment "fdf45855-1299-47f1-8ea6-9
8be8d89030b" status after assignment "4ea8f80a-8354-433f-8100-5ed8b469f54c " progr
ess update ..

INFO:SERRANO.Orchestrator.Dispatcher:All assignments were successful

DEBUG:SERRANO.Orchestrator.Dispatcher:Now enable monitoring and service assurance
for Deployment "fdf45855-1299-47f1-8ea6-98be8d89030b"

DEBUG:urllib3.connectionpool:http://85.120.206.26:30070 "POST /api/v1/telemetry/ce
ntral/deployments HTTP/1.1" 201 3

The Orchestration API server notifies, through the CTH, the telemetry framework to monitor

the deployed application. For the previous example, it makes the following POST request.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 57/173

POST /api/v1/telemetry/central/deployments

{"deployment_uuid": "fdf45855-1299-47f1-8ea6-98be8d89030b","clusters":["e65c33ac-3
109-4a15-9cc2-9f4e90f82c2d","5a075716-7d7d-4b40-9566-bc1a33ee70c2"],"7628b895-3a91
-4f0c-b0b7-033eab309891":[{"k8s_deployment_name":"acceleration-service-data-manage
r", "k8s_deployment_namespace":"integration","k8s_deployment_uuid":"06802ae3-9e00-
41ae-a7a0-15ffe2505db0"},{"k8s_deployment_name":"acceleration-service-classifier-t
raining", "k8s_deployment_namespace":"integration","k8s_deployment_uuid":"97271b19
-36c0-4458-b534-4736bae470b2"}],"5a075716-7d7d-4b40-9566-bc1a33ee70c2":[{"k8s_depl
oyment_name": "acceleration-service-model-inference", "k8s_deployment_namespace":
"integration", "k8s_deployment_uuid": "e10e05a4-dc11-4cef-bb09-21a9d90c6a5b"}]}

Moreover, the Orchestration API server notifies the Event Detection Engine (EDE) component

of the Service Assurance service to monitor the performance of the newly deployed

application. To this end, it makes the following PUT request.

PUT /api/v1/config/connector

{

 "Deployment_id": "fdf45855-1299-47f1-8ea6-98be8d89030b",

 "Groups": ["general", "cpu", "memory", "network", "storage"]

}

After the successful execution of the previous configurations the collected telemetry data are

automatically stored in the corresponding operational database and PMDS service. Finally, the

information is available from the CTH through the following request.

GET /api/v1/telemetry/central/deployments/fdf45855-1299-47f1-8ea6-98be8d89030b

{"metrics":[{"cluster_uuid":"7628b895-3a91-4f0c-b0b7-033eab309891","creation_times
tamp":1700838818,"deployment_uuid":"fdf45855-1299-47f1-8ea6-98be8d89030b","group_i
d":"s1","host_ip":"192.168.12.110","name":"acceleration-service-data-manager-475b4
c6b85-k89b5","namespace":"integration","node":"serrano3","phase":"Running","pod_ip
":"192.168.213.61","restarts":0,"start_time":1700838818,"timestamp":1700838850,"us
age":{"cpu":"1002310835n","memory":"150672Ki"}},{"cluster_uuid":"5a075716-7d7d-4b4
0-9566-bc1a33ee70c2","creation_timestamp":1700838818,"deployment_uuid":"fdf45855-1
299-47f1-8ea6-98be8d89030b","group_id":"s2","host_ip":"192.168.8.117","name":"acce
leration-service-model-inference-5b4c6b4785-g7jb5","namespace":"integration","node
":"bf","phase":"Running","pod_ip":"192.168.231.40","restarts":0,"start_time":17008
38818,"timestamp":1700838850,"usage":{"cpu":"1006083037n","memory":"175124Ki"}},{"
cluster_uuid":"7628b895-3a91-4f0c-b0b7-033eab309891","creation_timestamp":17008388
18,"deployment_uuid":"fdf45855-1299-47f1-8ea6-98be8d89030b","group_id":"s3","host_
ip":"192.168.12.110","name":"acceleration-service-classifier-training-21a9d90c6a-5
b4c6","namespace":"integration","node":"serrano3","phase":"Running","pod_ip":"192.
168.231.118","restarts":0,"start_time":1700838818,"timestamp":1700838850,"usage":{
"cpu":"1004769336n","memory":"204008Ki"}}]}

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 58/173

Automatic monitoring of SERRANO accelerated kernels

The telemetry mechanisms also dynamically collect performance metrics for the on-demand

execution of the SERRANO-accelerated kernels. The telemetry data are collected from the

Orchestration Drivers based on the provided detailed performance metrics from the vAccel

(Section 4.7) and SERRANO HPC Gateway (Section 4.6). An Orchestration Driver forwards the

collected data to the Enhanced Telemetry Agent that manages the corresponding part of the

infrastructure. Next is an example of collected metrics after executing the SERRANO

hardware-accelerated version of the KNN kernel.

INFO:SERRANO.Orchestrator.DriverKubernetes:Handler deployment request ...
INFO:SERRANO.Orchestrator.DriverKubernetes:Bundle for Faas kernel assignment '765c
0781-e78e-448c-b1f4-707e1b224135' is activated
INFO:SERRANO.Orchestrator.OrchestrationDriver.ExecutionWrapper:Submit execution re
quest to OpenFaaS service for request_uuid '35923a24-8ee1-4fdd-ad12-82ce97b9fcbf'
DEBUG:SERRANO.Orchestrator.DriverKubernetes:__post_metric_log_data
DEBUG:SERRANO.Orchestrator.DriverKubernetes:[{"uuid":"35923a24-8ee1-4fdd-ad12-82ce
97b9fcbf","kind":"KernelMetrics","deployment_mode":"FaaS","cluster_uuid":"5a075716
-7d7d-4b40-9566-bc1a33ee70c2","kernel_name":"knn","input_total_size_MB":66.15,"dep
loyed_at":1701423250,"completed_at":1701423285,"kernel_mode":"gpu","metrics":{"loa
d_vaccel_libs_ms":1074,"load_model_libs_ms":21999,"read_input_from_backend_ms":322
9,"parse_model_ms": 4134,"parse_input_ms":37,"setup_vaccel_args_ms":1,"run_kernel_
ms":1237,"push_output_to_backend_ms":323,"total_ms":33387}, "status": 1}]

We can get the monitoring data for the on-demand executions of a SERRANO-accelerated

kernel using the following request:

GET /api/v1/telemetry/central/kernels_metrics?kernel_name=knn

{"metrics":[{"cluster_uuid":"3984f92a-21a0-4ce5-85a4-7febd261b794","completed_at":
1700469441,"deployed_at":1700469431,"deployment_mode":"FaaS","input_total_size_MB"
:66.15,"kernel_mode":"gpu","kernel_name":"knn","kind":"KernelMetrics","metrics":{"
load_model_libs_ms":1330,"load_vaccel_libs_ms":53,"output_ms":0,"parse_input_ms":6
,"parse_model_ms":1457,"push_output_to_backend_ms":117,"read_input_from_backend_ms
":6390,"run_kernel_ms":226,"setup_vaccel_args_ms":0,"total_ms":9678},"uuid":"5133c
bbb-f4ab-4e7f-8947-a180e0bbc373"},{"cluster_uuid":"5a075716-7d7d-4b40-9566-bc1a33e
e70c2","completed_at":1701177150,"deployed_at":1701177137,"deployment_mode":"FaaS"
,"input_total_size_MB":66.15,"kernel_mode":"gpu","kernel_name":"knn","kind":"Kerne
lMetrics","metrics":{"load_model_libs_ms":3960,"load_vaccel_libs_ms":221,"output_m
s":0,"parse_input_ms":22,"parse_model_ms":3734,"push_output_to_backend_ms":111,"re
ad_input_from_backend_ms":3357,"run_kernel_ms":509,"setup_vaccel_args_ms":1,"total
_ms":12226},"status":1,"uuid":"f581bf77-53e2-4012-98d0-ad56be3a2be1"},{"cluster_uu
id":"5a075716-7d7d-4b40-9566-bc1a33ee70c2","completed_at":1701423285,"deployed_at"
:1701423250,"deployment_mode":"FaaS","input_total_size_MB":66.15,"kernel_mode":"gp
u","kernel_name":"knn","kind":"KernelMetrics","metrics":{"load_model_libs_ms":2199
9,"load_vaccel_libs_ms":1074,"output_ms":0,"parse_input_ms":37,"parse_model_ms":41
34,"push_output_to_backend_ms":323,"read_input_from_backend_ms":3229,"run_kernel_m
s":1237,"setup_vaccel_args_ms":1,"total_ms":33387},"status":1,"uuid":"35923a24-8ee
1-4fdd-ad12-82ce97b9fcbf"}]}

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 59/173

Interaction with the Persistent Monitoring Data Storage service

Apart from the exposed REST methods from the PMDS, there is also available a Python API

that facilitates the interaction with the services by offering abstractions and a range of filtering

parameters. The following example queries the service to retrieve historical data about the

memory usage the last 2 minutes for a specific worker node ("nuc5”) within the SERRANO

NBFC K8s cluster.

NBFC = “5a075716-7d7d-4b40-9566-bc1a33ee70c2”
pmds_service_query_nodes(NBFC, group="memory", node_name="nuc5", start="-2m")

{'nuc5': [{'node_memory_MemAvailable_bytes': 59249152000.0, 'node_memory_MemFree_b
ytes': 18508849152.0, 'node_memory_MemTotal_bytes': 67436380160.0, 'node_memory_Me
mUsed_bytes': 48927531008.0, 'node_memory_usage_percentage': 72.55, 'time': '2023-
11-30T14:50:04.520099+00:00'}, {'node_memory_MemAvailable_bytes': 59316523008.0, '
node_memory_MemFree_bytes': 18575515648.0, 'node_memory_MemTotal_bytes': 674363801
60.0, 'node_memory_MemUsed_bytes': 48860864512.0, 'time': '2023-11-30T14:50:34.567
482+00:00'}, {'node_memory_MemAvailable_bytes': 59296083968.0, 'node_memory_MemFre
e_bytes': 18554392576.0, 'node_memory_MemTotal_bytes': 67436380160.0, 'node_memory
_MemUsed_bytes': 48881987584.0, 'node_memory_usage_percentage': 72.49, 'time': '20
23-11-30T14:51:04.348757+00:00'}, {'node_memory_MemAvailable_bytes': 59292823552.0
, 'node_memory_MemFree_bytes': 18550431744.0, 'node_memory_MemTotal_bytes': 674363
80160.0, 'node_memory_MemUsed_bytes': 48885948416.0, 'node_memory_usage_percentage
': 72.49, 'time': '2023-11-30T14:51:34.669745+00:00'}]}

Moreover, the next example retrieves historical telemetry data for the application

deployment with UUID “649decae-63ec-40cb-9c5f-eb16f5b93590” for the last 48 hours. Note

that we only present part of the provided data by the PMDS service.

pmds_service_query_serrano_deployments("649decae-63ec-40cb-9c5f-eb16f5b93590", for
mat="compact", start="-2d")

{'position-service-classifier-training-699448bc9d-6gv5d': [{'cpu_usage': '188567n'
, 'group_id': 's3', 'memory_usage': '257776Ki', 'phase': 'Running', 'restarts': 1,
'time': '2023-11-30T14:42:34.149451+00:00'}, {'cpu_usage': '163545n', 'group_id':
's3', 'memory_usage': '257776Ki', 'phase': 'Running', 'restarts': 1, 'time': '2023
-11-30T14:43:04.101261+00:00'}, {'cpu_usage': '206514n', 'group_id': 's3', 'memory
_usage': '257776Ki', 'phase': 'Running', 'restarts': 1, 'time': '2023-11-30T14:43:
34.078419+00:00'}], 'position-service-data-manager-b87ccb677-t89bp': [{'cpu_usage'
: '1006358704n', 'group_id': 's1', 'memory_usage': '207200Ki', 'phase': 'Running',
'restarts': 0, 'time': '2023-11-30T14:42:34.154989+00:00'}, {'cpu_usage': '1010958
535n', 'group_id': 's1', 'memory_usage': '218944Ki', 'phase': 'Running', 'restarts
': 0, 'time': '2023-11-30T14:43:04.106991+00:00'}, {'cpu_usage': '1004959533n', 'g
roup_id': 's1', 'memory_usage': '207196Ki', 'phase': 'Running', 'restarts': 0, 'ti
me': '2023-11-30T14:43:34.084241+00:00'}], 'position-service-model-inference-84ddd
49947-66ztp': [{'cpu_usage': '1030650398n', 'group_id': 's2', 'memory_usage': '498
816Ki', 'phase': 'Running', 'restarts': 0, 'time': '2023-11-30T14:42:34.160566+00:
00'}, {'cpu_usage': '1880507280n', 'group_id': 's2', 'memory_usage': '621636Ki', '
phase': 'Running', 'restarts': 0, 'time': '2023-11-30T14:43:34.089212+00:00'}]}

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 60/173

Streaming telemetry

The SERRANO telemetry framework supports the collection of measurements based on the

streaming telemetry approach, where continuous measurements are sent at a rate much

shorter than the typical monitoring approach. The operation is activated from the Central

Telemetry Handler (CTH) or Enhanced Telemetry Agents (ETA) and is implemented based on

gRPC [64], which also supports streaming RPCs.

In the following example, the framework has been notified by the Event Detection Engine

(EDE) component of the Service Assurance service for anomalous performance in a worker

node within the UVT K8s cluster. Hence, the CTH instructed the corresponding ETA to start the

streaming telemetry operation with the appropriate monitoring probe. The ETA initiates a

streaming session by requesting detailed telemetry data every 5 seconds regarding the CPU

and memory performance at the worker node of interest.

POST /api/v1/telemetry/agent/streaming

{"cluster_uuid": "7628b895-3a91-4f0c-b0b7-033eab309891", "action": "start", "repor
ting_rate": 5, "nodes": ["serrano-k8s-worker-02"], "metrics": ["cpu","memory"]}

The ETA and monitoring probe use the client-streaming RPC approach where the monitoring

probe sends a stream of messages to the ETA. Next are some indicative log messages from the

operation of the Kubernetes monitoring probe in the UVT cluster and the ETA.

INFO:SERRANO.TelemetryProbe.StreamingTelemetry:Streaming telemetry activated at ti
mestamp '1701548446'
DEBUG:SERRANO.TelemetryProbe.StreamingTelemetry:Streaming telemetry parameters: {"
cluster_uuid": "7628b895-3a91-4f0c-b0b7-033eab309891", "action": "start", "request
": "streaming", "reporting_rate": 5, "nodes": ["serrano-k8s-worker-02"], "metrics"
: ["cpu", "memory"]}
DEBUG:SERRANO.TelemetryProbe.StreamingTelemetry:Forward streaming telemetry metric
s at Enhanced Telemetry Agent - timestamp: 1701548447
DEBUG:SERRANO.TelemetryProbe.StreamingTelemetry:Forward streaming telemetry metric
s at Enhanced Telemetry Agent - timestamp: 1701548452
DEBUG:SERRANO.TelemetryProbe.StreamingTelemetry:Forward streaming telemetry metric
s at Enhanced Telemetry Agent - timestamp: 1701548457
DEBUG:SERRANO.TelemetryProbe.StreamingTelemetry:Forward streaming telemetry metric
s at Enhanced Telemetry Agent - timestamp: 1701548462

INFO:SERRANO.EnhancedTelemetryAgent.StreamTelemetry:Get streaming telemetry data

DEBUG:SERRANO.EnhancedTelemetryAgent.StreamTelemetry:{'serrano-k8s-worker-02': {'t
imestamp':1701548447,'node_cpus':[{'idle':508444.15,'used':24175.47,'label':'0'},{
'idle':508469.32,'used':23973.739999999998,'label':'1'},{'idle':508393.15,'used':2
3790.52,'label':'2'},{'idle':508454.94,'used':23825.629999999997,'label':'3'}],'me
mory':{'node_memory_MemAvailable_bytes':6750740480,'node_memory_MemFree_bytes':335
2383488,'node_memory_MemTotal_bytes':8331374592,'node_memory_MemUsed_bytes':497899
1104,'node_memory_usage_percentage':59.76}}}

INFO:SERRANO.EnhancedTelemetryAgent.PMDSInterface:Store streaming telemetry for cl
uster '7628b895-3a91-4f0c-b0b7-033eab309891'

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 61/173

INFO:SERRANO.EnhancedTelemetryAgent.StreamTelemetry:Get streaming telemetry data

INFO:SERRANO.EnhancedTelemetryAgent.StreamingTelemetry:{'serrano-k8s-worker-02':{'
timestamp':1701548452,'node_cpus':[{'idle':508449.01,'used':24175.8,'label':'0'},{
'idle':508474.37,'used':23973.88,'label':'1'},{'idle':508398.16,'used':23790.72,'l
abel':'2'},{'idle':508459.95,'used':23825.82,'label':'3'}],'memory':{'node_memory_
MemAvailable_bytes':6751502336,'node_memory_MemFree_bytes':3353116672.0,'node_memo
ry_MemTotal_bytes':8331374592,'node_memory_MemUsed_bytes':4978257920,'node_memory_
usage_percentage':59.75}}}

INFO:SERRANO.EnhancedTelemetryAgent.PMDSInterface:Store streaming telemetry for cl
uster '7628b895-3a91-4f0c-b0b7-033eab309891'

Figure 28 illustrates the different granularity of collected telemetry data regarding the

memory performance of the worker node ‘serrano-k8s-worker-02’ in the UVT K8s cluster. The

left chart corresponds to data collected from the typical operation of the telemetry

framework, and the right from the streaming telemetry.

Figure 28: Memory performance monitoring data: (a) typical operation of telemetry framework, (b)

streaming telemetry

Telemetry data visualization

Several custom Grafana [63] dashboards were created for visualizing the collected telemetry

and to support the operation and evaluation of the final release of the SERRANO platform.

Deliverable D6.8 (M38) provides additional information for the available Grafana dashboards.

4.5 Data Broker

4.5.1 Message Broker

4.5.1.1 Description

The SERRANO architecture includes the Data Broker service that provides the appropriate

communication mechanisms to interconnect the individual components and enable the

exchange of messages and events within the distributed SERRANO platform. The Data Broker

includes two components, Message Broker and Stream Handler.

The Message Broker provides message brokering functionalities enabling the asynchronous

communication and data transfer between the SERRANO platform components and the

deployed applications. It is based on the RabbitMQ [58] that supports different transport and

messaging protocols, such as the different versions of Advanced Message Queuing Protocol

(AMQP) and MQ Telemetry Transport (MQTT) [59]. The SERRANO services and end users

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 62/173

interact with the Message Broker using the well-known and opensource Pika [6] and Paho [60]

Python libraries.

4.5.1.2 Integration details

Table 6: Integration details of Message Broker

IP(s)/Port(s)
Message Broker (AMQP): 85.120.206.30:5672
Message Broker (MQTT): 85.120.206.30:1883

Publicly
accessible (y/n
and other details)

The service is publicly accessible, but the access has been restricted
though user authentication.

Type of API Python API

Associated host
names

N/A

Resource Optimization Toolkit

The ROT is one of the SERRANO components that uses the Message Broker functionalities to

enable asynchronous communication between its components (Section 4.3.2). Additional

details for using the Message Broker in the context of the ROT are available in deliverables

D5.3 (M15) and D5.4 (M31). Moreover, D6.3 (M18) provided several integration examples

related to the operation of the ROT.

The functionality of the Message Broker is also used internally by the developed Python API

for implementing the asynchronous delivery of the ROT responses to the end users. For this

operation, the ROT uses the “direct” exchange type with the routing key the “client_uuid”. An

example of a response for successful execution of the Storage Policy algorithm follows below

for a client with the identifier “42f534cf-1ec5-46a7-8f80-ed8d2f8dc7d2”.

{"execution_id": "9eecb659-299f-43e5-bb53-00890deea309", "status": 2,

 "client_uuid": "42f534cf1ec5-46a7-8f80-ed8d2f8dc7d2", "timestamp": 1700246732,

 "results": {"kind": "StoragePolicy", "backends": [], "edge_devices": [1, 2],

 "redundant_packets": 1}}

Seamless execution of SERRANO accelerated kernels

The SERRANO SDK abstracts the interaction with the various SERRANO platform services to

enable the seamless execution of SERRANO HW/SW accelerated kernels, as described in

Section 4.2.3.2.4. The Message Broker provides the data handling operations to enable the

transparent input data movement from the end-user to the selected platform with

accelerated resources and provide results back to users. Figure 29 illustrates the related

functionalities, focusing on the first and last steps of the overall workflow for the kernel

execution within the SERRANO platform.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 63/173

Figure 29: Message Broker and execution of SERRANO accelerated kernels

Next is an example of the information returned by the method that pushes the input data for

the KNN kernel execution. This data description is then forwarded to the SERRANO

orchestration and deployment mechanisms, which they use to retrieve all the required input

data.

{"queue_id": "0ead8e8f-75af-45dc-8582-f4f3e955d85f", "arguments": ["position",

 "labels", "input_data"], "uuid": "61e75310-d826-4541-a638-a08d5b9bb44e",

 "total_size_MB": 66.1, "cluster_uuid": "3984f92a-21a0-4ce5-85a4-7febd261b794",

 "storage": "broker"}

Anomaly Detection in Manufacturing Settings

As described in Section 4.12, this use case developed a Data Processing Application to analyse

real-time signals from the ball-screw sensors and check for anomalies, detecting anomalous

behaviours that may affect the part quality and predicting imminent failures. The application

includes several microservices that, among others, exchange information through a MQTT

broker. The Message Broker component of the SERRANO platform provides the required

functionality. Below, there is an example from the position-model-inference microservice that

is registered to specific topics (“data/+/+/position/cycle”) and received data from machine3

(“/data/machine3/x_axis/position/cycle”) for further analysis.

2023-11-17 07:32:42,019 - subscriber - INFO - Sending SUBSCRIBE (d0, m545) [(b'dat
a/+/+/position/cycle', 0)]
2023-11-17 07:32:42,030 - subscriber - INFO - Received SUBACK
2023-11-17 07:32:42,040 - subscriber - INFO - Subscribed: 545 (0,)
2023-11-17 07:32:45,163 - subscriber - INFO - Received PUBLISH (d0, q0, r0, m0), '
data/machine3/x_axis/position/cycle', ... (40814 bytes)

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 64/173

4.5.2 Stream Handler

For completeness, some subsections that existed in D6.3 have been repeated in the contents
of this section. The below information has been updated according to the current status.

4.5.2.1 Description

SERRANO’s distributed streaming platform allows publishing and subscribing to streams of

records. This part of the messaging infrastructure supports high throughput and high-velocity

data streams through a scalable, fault-tolerant communication-efficient framework. This

approach allows asynchronous communication between SERRANO platform components as

well as deployed applications.

Figure 30: Stream Handler and possible integrations with data sources and other infrastructure

The implementation of Stream Handler is based on existing and well-known software

platforms that support critical features like the loose coupling of components, increased

scalability, and security. Figure 30 shows the key building blocks and their interactions with

other SERRANO components.

4.5.2.2 Inner components

4.5.2.2.1 Streaming Component (Kafka Cluster)

A Kafka [11] broker is a server running in a Kafka cluster (or, put another way: a Kafka cluster

is made up of a number of brokers). Typically, multiple brokers work in concert to form the

Kafka cluster and achieve load balancing and reliable redundancy and failover.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 65/173

Brokers utilize Apache ZooKeeper [12] to manage and coordinate the cluster. Each broker

instance is capable of handling read and write quantities reaching to hundreds of thousands

each second without any impact on performance. Each broker has a unique ID and can be

responsible for partitions of one or more topic logs. Connecting to any broker will bootstrap a

client to the full Kafka cluster. To achieve reliable failover, a minimum of three brokers should

be utilized —with greater numbers of brokers comes increased reliability in the Zookeeper

Quorum, the number of server nodes that are available for client requests and guarantee a

consistent view of the system.

4.5.2.2.2 Connect Component (Kafka Connect)

Kafka connect is built on top of Kafka core components. The Kafka connect includes a bunch

of ready to use off the shelf Kafka connectors that one can use to move data between Kafka

broker and other applications. For using Kafka connectors, there is no need to write code or

make changes to the applications. Kafka connectors are purely based on configurations.

The Kafka Connect also offers a framework that allows developing one’s own custom Source

and Sink connectors quickly. If there is not a ready to use connector for the system, one can

leverage the Kafka connect framework to develop one’s own connectors.

4.5.2.2.3 REST Proxy (Connector)

Some applications might want to leverage RESTful HTTP protocol for producing and consuming

messages to and from Kafka brokers. The Kafka REST Proxy provides a RESTful interface to a

Kafka cluster. It makes it easy to produce and consume messages, view the state of the cluster,

and perform administrative actions without using the native Kafka protocol or clients.

4.5.2.2.4 Schema Registry

The Schema Registry allows the definition and storage of data models describing the data. It

stores a versioned history of all schemas, provides multiple compatibility settings and allows

evolution of schemas according to the configured compatibility settings. The Schema Registry

is implemented through a Kafka add-on, the Confluent Schema Registry that exposes a RESTful

interface for storing and retrieving schemas.

4.5.2.3 Supported Integrations

Integration with the following components is supported:

Data sources and Data stores represent data streams and data sources, both in a structured

or unstructured format that can be made available and potentially be connected to the Big

data platform, generated by any IoT device and/or gateway on the edge. Similarly, and

according to the requirements, appropriate persistent storage can be used, as depicted in the

input/output data components (Figure 31). The described data sources are seamlessly

integrated with processing components through integration connectors (Connectors). The Big

data platform can efficiently interoperate with all the modern data storage technologies of a

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 66/173

Big data ecosystem such as RDBMS, NoSQL, HDFS [13], Apache HBASE [14], etc. as well as

other persistence approaches such as Mongo [15], MySQL [16], etc.

Data analytics and Data Visualization represent the applications that perform the data

processing and analytics. These are dependent on the exact use cases that are implemented

through the use of the INTRA’s Stream Handler Platform and can be implemented in any

programming language typically preferred for data science (such as Python, Java, R and Scala)

or any native programming language (e.g., C/C++, Haskel, etc.).

Processing and Machine Learning (ML)/ Deep learning (DL) Infrastructure. The underlying

infrastructure spans multiple VMs and provides all the necessary technologies and

components that enable the storage and analysis of the data involved and further allow the

usage of any technology agnostic algorithms, by providing a distributed computing

environment that enables the above. Apache Spark [17], Hadoop [18], Kafka Streams [19],

Spark Streaming [20] are included, among others. Moreover ML/DL Infrastructure provides all

the necessary components for the analysis of the data in order to build analytics models using

open-source frameworks like TensorFlow [21], DeepLearning4J [22], or H2O.ai [23].

4.5.2.4 Integration details and REST APIs

The SERRANO platform relies on a message broker-based interface to collect and forward

asynchronously the appropriate messages and events from the various distributed

components. This interface is provided by the Data Broker.

4.5.2.4.1 Resource Orchestrator and Central Telemetry Handler

The Notification Engine of the Central Telemetry Handler publishes messages related to

telemetry events that need to be consumed by other components within the telemetry

framework or external services. More specifically, the Notification Engine posts messages to

topics having a predefined name, such as “serrano_notification_messages”. Other

components can subscribe to these topics without limits in the number of subscribers. The

content of each notification message is described in JSON format using a common syntax.

Table 7 describes the notification messages exposed by the SERRANO telemetry framework.

Table 7: Telemetry notification messages

Notification Type Event Identifier Event payload description

General Information
• message: event related information

• timestamp: Unix time stamp

Telemetry Agent

• entity_id: agent unique identifier

• status: “UP” or “DOWN”

• timestamp: Unix time stamp

Telemetry Probe

• entity_id: probe unique identifier

• status: “UP” or “DOWN”

• timestamp: Unix time stamp

Resources Status

• entity_id: resource unique identifier

• event: Detected event

• timestamp: Unix time stamp

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 67/173

Below there is an example of a notification message concerning a monitoring probe status.

{"entity_id": "ddced532-2c76-4557-9be1-2be622cbdcee", "status": "DOWN", "type":
 "Probe", "timestamp": 1654612649}

Figure 31: Resource Orchestrator Interaction with Stream Handler

Figure 32: Telemetry Agent Interaction with Stream Handler

 User employs the Resource Orchestrator

 Resource Orchestrator employs the Notification

 Engine to submit

 event notification

 Message for event

 in the format: notification is added

 resource_id (string) to topic “resources” Notification

 event (string) subscribers receive

 timestamp (integer) the message

 Acceptance receipt asynchronously

 returned to

 Event notification Notification Engine

 Possible user acceptance receipt

 feedback is forwarded returned to Resource

 to user Orchestrator

 User employs the Resource Orchestrator

 Resource Orchestrator employs the Notification

 Engine to submit

 event notification

 Message for event

 in the format: notification is added

 agent_id (string) to topic “telemetry” Notification

 event (string) subscribers receive

 timestamp (integer) the message

 Acceptance receipt asynchronously

 returned to

 Event notification Notification Engine

 Possible user acceptance receipt

 feedback is forwarded returned to Telemetry

 to user Agent

User Resource

Orchestrator

Notification

Engine

Stream

Handler
Notification

Subscriber

User Telemetry

Agent

Notification

Engine

Stream

Handler
Notification

Subscriber

 User employs the Resource Orchestrator

 Resource Orchestrator employs the Notification

 Engine to submit

 event notification

 Message for event

 in the format: notification is added

 resource_id (string) to topic “resources” Notification

 event (string) subscribers receive

 timestamp (integer) the message

 Acceptance receipt asynchronously

 returned to

 Event notification Notification Engine

 Possible user acceptance receipt

 feedback is forwarded returned to Resource

 to user Orchestrator

 User employs the Resource Orchestrator

 Resource Orchestrator employs the Notification

 Engine to submit

 event notification

 Message for event

 in the format: notification is added

 agent_id (string) to topic “telemetry” Notification

 event (string) subscribers receive

 timestamp (integer) the message

 Acceptance receipt asynchronously

 returned to

 Event notification Notification Engine

 Possible user acceptance receipt

 feedback is forwarded returned to Telemetry

 to user Agent

User Resource

Orchestrator

Notification

Engine
Stream

Handler
Notification

Subscriber

User Telemetry

Agent

Notification

Engine

Stream

Handler
Notification

Subscriber

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 68/173

4.5.2.4.2 Service Assurance

As described in more detail in Section 4.9.1, when an event anomaly is detected by the Event

Detection Engine (EDE) component of service assurance (specifically by its prediction sub-

component), it is necessary to notify the SERRANO components in charge of orchestration,

scheduling, or remediation. Thus, the service assurance mechanisms publish the detected

anomalous event to a particular Kafka topic in the SERRANO Stream Handler to which other

SERRANO components can subscribe. This communication is covered in more detail by the

sequence diagram contained in Figure 54.

4.5.2.4.3 Integration details

Table 8: Integration details of Stream Handler

IP(s)/Port(s)
• Kafka protocol over TCP: 88.198.124.99:9092

• Rest-proxy: 88.198.124.99:8082

• Schema-registry: 88.198.124.99:8081

Publicly accessible (y/n and
other details)

The IP is publicly accessible, but the access has been restricted
to specific IPs through the firewall configuration. More IPs that
correspond to SEERANO components or partners can be added
to this whitelist.

Type of API Kafka protocol, REST

Associated host names static.88-198-124-99.clients.your-server.de

API documentation

https://github.com/ict-
serrano/streamhandler/blob/develop/rest_proxy.yaml

https://github.com/ict-
serrano/streamhandler/blob/develop/schema_registry.yaml

Location of integration tests
https://github.com/ict-
serrano/streamhandler/blob/develop/Jenkinsfile

The REST APIs exposed by the REST proxy and the Schema Registry are shown in the following

two figures.

https://github.com/ict-serrano/streamhandler/blob/develop/rest_proxy.yaml
https://github.com/ict-serrano/streamhandler/blob/develop/rest_proxy.yaml
https://github.com/ict-serrano/streamhandler/blob/develop/schema_registry.yaml
https://github.com/ict-serrano/streamhandler/blob/develop/schema_registry.yaml
https://github.com/ict-serrano/streamhandler/blob/develop/Jenkinsfile
https://github.com/ict-serrano/streamhandler/blob/develop/Jenkinsfile

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 69/173

Figure 33: REST Endpoints exposed by Streaming Core Platform (through the REST Proxy)

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 70/173

Figure 34: Schema Registry REST API

4.5.2.4.4 Sample requests and responses

Kafka protocol

The integration using the Kafka protocol can be demonstrated using a consumer and producer

that publish and subscribe to a Kafka topic, respectively. For simplicity, the example presented

in Figure 35 does not involve communication encryption which is enabled when transferring

data that are relevant to the SERRANO platform operations.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 71/173

Figure 35: Stream Handler example on a Jupyter notebook

REST

The Rest-proxy API which is described in the Open API Spec YAML that can be found in Table

8 provides full functionality over the Streaming Component. For example, we can create a new

Kafka topic ‘test1’ with the following commands:

KAFKA_CLUSTER_ID=$(curl -X GET \
 "http://static.88-198-124-99.clients.your-server.de:8080/v3/clusters/" | jq -
r ".data[0].cluster_id")

curl -X POST \
 -H "Content-Type: application/json" \
 -d "{\"topic_name\":\"test1\",\"partitions_count\":6,\"configs\":[]}" \
 "http://static.88-198-124-99.clients.your-server.de:8080/v3/clusters/${KAFKA_
CLUSTER_ID}/topics" | jq .

Then we can produce a few messages that will be stored in this topic with the following

command:

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 72/173

curl -X POST \
 -H "Content-Type: application/vnd.kafka.json.v2+json" \
 -H "Accept: application/vnd.kafka.v2+json" \
 --data '{"records":[{"key":"jane","value":{"count":0}},{"key":"john","value":
{"count":1}}]}' \
 "http:// static.88-198-124-99.clients.your-server.de:8080/topics/test1" | jq .

The response should look similar to the below:

{
 "offsets": [
 {
 "partition": 0,
 "offset": 0,
 "error_code": null,
 "error": null
 },
 {
 "partition": 0,
 "offset": 1,
 "error_code": null,
 "error": null
 }
],
 "key_schema_id": null,
 "value_schema_id": null
}

4.6 HPC System Hardware Interface

The HPC System Hardware Interface, or HPC Gateway, is the intermediate component

between the SERRANO's HPC services (WP4), the Intelligent Service and Resource

Orchestration Layer (WP5) and the HPC infrastructure. The HPC Gateway supports popular

batch jobs schedulers, such as Slurm and PBS-based (e.g., TORQUE, OpenPBS). Further

information can be found in deliverable D4.2 [87].

Due to security restrictions and isolation imposed on the compute nodes of HPC clusters, only

the front-end (or login) nodes of the clusters are usually used as the access point, where a

user or automation tool can login via SSH, prepare software environments and workspaces,

build applications and submit HPC jobs. The job submission commands are specific to the

resource manager. For example, Slurm uses sbatch commands for job submission, whereas

for PBS-based resource managers, the qsub command is used. Additionally, the job status can

be monitored via scontrol and qstat commands of Slurm and PBS, respectively.

Similarly, the information about the partitions of the HPC system can be obtained via

scheduler specific commands. For Slurm, sinfo and squeue commands are common to

determine the state of the partitions, whereas pbsnodes and qstat -Q commands are used in

PBS.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 73/173

Therefore, SERRANO HPC Gateway communicates with the front-end (login) nodes via SSH

and uses commands specific to the resource managers under use in order to prepare a batch

job script for submission (i.e., to select the appropriate header), submit the job, and monitor

the status of the job and the partitions, as shown in Figure 36. Moreover, SERRANO HPC

Gateway provides endpoints for remote (HTTP, S3) file transfers into HPC infrastructure, as

well as transferring results from HPC into S3.

Figure 36: Interaction between HPC Gateway and HPC infrastructure

4.6.1 Integration details and REST APIs

4.6.1.1 Integration details

The HPC System Hardware Interface (HPC Gateway) is integrated with the SERRANO platform.

It exposes REST API endpoints (Figure 37) needed for the Resource Orchestrator and

Telemetry Framework for executing HPC services (or HPC kernels) and monitoring the state of

the HPC infrastructure. Clients can utilise data endpoints of the HPC Gateway to transfer data

from HTTP and S3 endpoints, such as the SERRANO Secure Storage service (WP3), into HPC

and move the results data back to S3. The HPC Gateway is implemented as a service and

interacts with the target HPC infrastructure using SSH protocol (Figure 36). The administrator

maintains SSH keys that are used for authentication with the infrastructure.

Furthermore, the API calls that require a longer time to process, e.g., submission of jobs, file

transfers, are non-blocking and return the ID of the operation immediately. A client then can

monitor the respective state of the operation until the operation is finished, either successfully

or with failures.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 74/173

Table 9: Integration details of SERRANO HPC System Hardware Interface

Host name(s)/Port(s) https://hpc-interface.services.cloud.ict-serrano.eu

Publicly accessible
(y/n and other
details)

The IP is publicly accessible

Type of API REST API

API documentation
https://github.com/ict-serrano/hpc-interface/blob/main/openapi-
spec.yaml

Location of
integration tests

https://github.com/ict-serrano/hpc-interface/blob/main/Jenkinsfile

Figure 37: REST API endpoints exposed by HPC system hardware interface.

4.6.1.2 Sample requests and responses

List of available HPC services

Using the following request, the list of available HPC services and kernels is returned. The list

is being updated, once the service is deployed on the target HPC system. In this sample,

Kalman, FFT, Min-Max, Savitzky-Golay filters and k-Means and k-NN kernels are returned.

GET /services

[
 { "name": "kalman" },
 { "name": "fft" },
 { "name": "min_max" },
 { "name": "savitzky_golay" },

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 75/173

 { "name": "kmean" },
 { "name": "knn" }
]

HPC infrastructure management and telemetry

An administrator can provide infrastructure details to the HPC Gateway, which include a

unique name, hostname, scheduler type, and SSH authentication. The Gateway will then

access the HPC infrastructure using this information.

POST /infrastructure
Body:
{
 "host": "A.B.C.D",
 "hostname": "infrastructure.example.com",
 "name": "cluster_name",
 "scheduler": "slurm",
 "ssh_key": {
 "password": "password",
 "path": "/path/to/private/key",
 "type": "ssh-ed25519"
 },
 "username": "username"
}

Response:
{
 "host": "A.B.C.D",
 "hostname": "infrastructure.example.com",
 "name": "cluster_name",
 "scheduler": "slurm"
}

The unique name of the infrastructure can then be used to retrieve the telemetry information

about the HPC infrastructure and its partitions (also known as queues). Some metrics include

the total and available number of nodes, CPUs, and number of running and queued jobs in the

particular partition.

GET /infrastructure/cluster_name/telemetry

Response:
{
 "host": "A.B.C.D",
 "hostname": "infrastructure.example.com",
 "name": "cluster_name",
 "partitions": [
 {
 "avail_cpus": 158,
 "avail_nodes": 1,

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 76/173

 "name": "profile",
 "queued_jobs": 0,
 "running_jobs": 1,
 "total_cpus": 160,
 "total_nodes": 2
 }
],
 "scheduler": "slurm"
}

Job submission and retrieval

HPC Gateway exposes endpoints for the execution of the HPC services as batch jobs as well as

monitoring the status of the job, whether it is still queued, running, or completed.

POST /job
Body:
{
 "infrastructure": "cluster_name",
 "services": ["kalman", "fft"]
 "params": {
 "read_input_data": "/path/to/input/data"
 }
}

Response:
{
 "id": "6f67b9b4-1821-41df-991f-c7fbdfc7f959",
 "infrastructure": "cluster_name",
 "scheduler_id": "1732",
 "status": "queued"
}

GET /job/6f67b9b4-1821-41df-991f-c7fbdfc7f959

Response:
{
 "id": "6f67b9b4-1821-41df-991f-c7fbdfc7f959",
 "infrastructure": "cluster_name",
 "scheduler_id": "1732",
 "status": "running"
}

File transfer into HPC infrastructure

Two endpoints are available for file transfer from a source to a destination in an HPC

infrastructure: from an HTTP source (/data) and an S3 (/s3_data) source. In each case, the file

transfer status shall be monitored until the completion or failure states are reached.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 77/173

POST /data
Body:
{
 "infrastructure": "cluster_name",
 "src": "https://example.com/some-file.csv",
 "dst": "/tmp/some-file.csv",
}

Response:
{
 "id": "6f67b9b4-1821-41df-991f-c7fbdfc7f959",
 "infrastructure": "cluster_name",
 "src": "https://example.com/some-file.csv",
 "dst": "/tmp/some-file.csv",
 "status": "transferring",
 "reason": ""
}

GET /data/6f67b9b4-1821-41df-991f-c7fbdfc7f959

Response:
{
 "id": "6f67b9b4-1821-41df-991f-c7fbdfc7f959",
 "infrastructure": "cluster_name",
 "src": "https://example.com/some-file.csv",
 "dst": "/tmp/some-file.csv",
 "status": "completed" | "failed",
 "reason": "" | "error description"
}

POST /s3_data
Body:
{
 "infrastructure": "cluster_name",
 "endpoint": "https://on-premise-storage-gateway.services.cloud.ict-
serrano.eu/s3",
 "bucket": "bucket-name",
 "object": "object-name",
 "region": "local",
 "access_key": "access_key",
 "secret_key": "secret_key",
 "dst": "/tmp/some-file.csv",
}

Response:
{
 "id": "6f67b9b4-1821-41df-991f-c7fbdfc7f959",
 "infrastructure": "cluster_name",
 "endpoint": "...",

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 78/173

 "bucket": "bucket-name",
 "object": "object-name",
 "region": "local",
 "dst": "/tmp/some-file.csv",
 "status": "transferring",
 "reason": ""
}

GET /s3_data/6f67b9b4-1821-41df-991f-c7fbdfc7f959

Response:
{
 "id": "6f67b9b4-1821-41df-991f-c7fbdfc7f959",
 "infrastructure": "cluster_name",
 "endpoint": "...",
 "bucket": "bucket-name",
 "object": "object-name",
 "region": "local",
 "dst": "/tmp/some-file.csv",
 "status": "completed" | "failed",
 "reason": "" | "error description"
}

Results retrieval from HPC infrastructure

The HPC Gateway provides an endpoint for transferring the results available after an HPC job

execution from an HPC infrastructure into an S3 storage. The results transfer status shall also

be monitored until the completion or failure states are reached.

POST /s3_result
Body:
{
 "endpoint": "https://on-premise-storage-gateway.services.cloud.ict-
serrano.eu/s3",
 "bucket": "results-bucket",
 "object": "results.csv",
 "region": "local",
 "access_key": "access_key",
 "secret_key": "secret_key",
 "src": "/path/to/results",
 "infrastructure": "cluster_name"
}

Response:
{
 "id": "6f67b9b4-1821-41df-991f-c7fbdfc7f959",
 "infrastructure": "cluster_name",
 "endpoint": "...",
 "bucket": "bucket-name",
 "object": "object-name",
 "region": "local",

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 79/173

 "src": "/path/to/results",
 "status": "transferring",
 "reason": ""
}

GET /s3_result/6f67b9b4-1821-41df-991f-c7fbdfc7f959

Response:
{
 "id": "6f67b9b4-1821-41df-991f-c7fbdfc7f959",
 "infrastructure": "cluster_name",
 "endpoint": "...",
 "bucket": "bucket-name",
 "object": "object-name",
 "region": "local",
 "src": "/path/to/results",
 "status": "completed" | "failed",
 "reason": "" | "error description"

}

4.7 HW Acceleration Abstractions and Trusted Execution

4.7.1 HW Acceleration Abstractions

In SERRANO, we enable flexible and interoperable hardware acceleration through vAccel, a

hardware acceleration framework that decouples the function call from the hardware-specific

implementation. In this section, we briefly go through the vAccel framework (extensively

described in D2.3 [83], D4.3 [88], and D4.4 [89]), present the integration done with sandboxed

container runtimes (D5.4 [92]) and describe an end-to-end FaaS execution example triggered

by the SERRANO Resource Orchestrator.

4.7.1.1 The vAccel framework

In SERRANO, we introduce vAccel [65], a framework that enables virtualized workloads to

access hardware accelerators securely and efficiently. vAccel is addressing this situation in two

ways. Firstly, it enables the development of hardware independent applications by logically

separating an application into two parts: (i) the user code which is part of the application logic

itself and (ii) the hardware specific code which is the part of the application that runs on a

hardware accelerator. Second, it enables hardware acceleration within virtualized guests by

employing an efficient API remoting approach at the granularity of function calls to delegate

accelerable code in a vAccel agent on the host system.

The vAccel software framework has been described in detail in D4.3 [87]. Additionally,

OpenFaaS is also described in the deliverable above. In the following sections, we provide a

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 80/173

brief overview of the software stack, along with the developments of porting the various

SERRANO kernels to vAccel and OpenFaaS.

4.7.1.1.1 vAccel

vAccel enables workloads to enjoy hardware acceleration while running on environments that

do not have direct (physical) access to acceleration devices.

The design goals of vAccel are:

1. Portability: vAccel applications can be deployed in machines with different hardware

accelerators without re-writing or re-compilation.

2. Security: A vAccel application can be deployed, as is, in a VM to ensure isolation in

multi-tenant environments. QEMU [66], AWS Firecracker [67], and Cloud

Hypervisor [68] are currently supported.

3. Compatibility: vAccel supports the OCI container format through integration with

the Kata containers [69] framework.

4. Low-overhead: vAccel uses a very efficient transport layer for offloading "accelerate-

able" functions from inside the VM to the host, incurring minimum overhead.

5. Scalability: Integration with k8s allows the deployment of vAccel applications at scale.

Figure 38: vAccel software stack

The core component of vAccel is the vAccel runtime library (vAccelRT). vAccelRT is designed

in a modular way: the core runtime exposes the vAccel API to user applications and dispatches

requests to one of many backend plugins, which implement the glue code between the vAccel

API operations on a particular hardware accelerator.

The user application links against the core runtime library and the plugin modules are loaded

at runtime. This workflow decouples the application from the hardware accelerator-specific

parts of the stack, allowing for seamless migration of the same binary to different platforms

with different accelerator capabilities, without the need to recompile user code.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 81/173

4.7.1.1.1.1 Virtualization Abstraction

Hardware acceleration for virtualized guests is, still, a real challenge. Typical solutions involve

device pass-through or paravirtual drivers that expose hardware semantics inside the guest.

vAccel differentiates itself from these approaches by exposing coarse-grain "accelerate-able"

functions in the guest over a generic transport layer.

The semantics of the transport layer are hidden from the programmer. A vAccel application

that runs on baremetal with an Nvidia GPU can run as is inside a VM using our

appropriate VirtIO backend plugin.

We have implemented the necessary parts for our VirtIO driver in our forks of QEMU [70]

and Firecracker [71] hypervisors.

Additionally, we have designed the above transport protocol over sockets, allowing vAccel

applications to use any backend, if there is a socket interface installed between the two peers.

Existing implementations include VSOCK and TCP sockets. Any hypervisor supporting virtio-

vsock can support vAccel.

4.7.1.1.1.2 Container Runtime Integration

To facilitate the deployment of vAccel-enabled applications, we integrate vAccel to a popular

container runtime, kata-containers [69].

Figure 39: vAccel integration with container runtimes

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 82/173

Kata Containers enable containers to be seamlessly executed in sandbox Virtual Machines.

Kata Containers are as light and fast as containers and integrate with the container

management layers, while also delivering the security advantages of VMs. Kata Containers is

the result of merging two existing open-source projects: Intel Clear Containers and Hyper

runV.

vAccel integration to kata comes in both modes: virtio and vsock. An overview of the software

stack is shown in Figure 39.

Our current, downstream implementation for Kata-containers v3 includes support for both

the AWS Firecracker sandbox and their custom, tailor-made Dragonball backend, using

the vsock mode of vAccel.

4.7.1.1.1.3 Framework and Language Bindings

To facilitate the use of vAccel, we provide bindings for popular languages apart from C.

Essentially, the vAccel C API can be called from any language that interacts with C libraries.

Building on this, we provide support for Python [72] and Rust while working on extending

support for various other high- or low-level languages. In SERRANO, the serverless function

implementation for all kernels is implemented using the vAccel Python bindings.

Additionally, we have implemented a subset of Tensorflow [73] and PyTorch APIs in a way that

the user can execute an application written for those frameworks over vAccel with minimal

and/or no changes.

4.7.1.1.1.4 SERRANO Kernels on vAccel

We focused on hardware interoperability and ease-of-deployment to port the SERRANO

hardware accelerated kernels on vAccel.

Interoperability

One of the key merits of the vAccel framework is the fact that users write their code using the

vAccel API and the underlying plugin executes this code in the respective accelerator device.

This enables hardware interoperability as the user does not need to rewrite or even re-

compile their code if they want to run on a different hardware accelerator. This greatly

facilitates the scaling of hardware-accelerated applications throughout the cloud-edge

continuum, as the user builds a container image with their vAccel API code, deploys it in the

SERRANO platform and this code can use hardware accelerators in the Cloud (Generic, NVIDIA

GPUs), at the Edge (Jetson GPUs, Orin/Xavier/Nano), or even CPUs when there is no hardware

accelerator available (e.g., on a RPi4).

With this in mind, we ported KNN, K-MEANS, Black-Scholes, and SavGol to vAccel, developing

plugin implementations for CPU, GPU, and FPGA hardware accelerators. In the following

sections, we briefly elaborate on the porting methodology and the performance implications

this integration imposes.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 83/173

Libification

The primary way of allowing applications to run on the vAccel framework is by separating the

part we want to abstract away from the core I/O part of the application. Since the actual

application is essentially the kernel to be abstracted, nearly all the code from the kernel

resides in the plugin part of the vAccel stack. Instead of developing separate API calls and

plugins for all the available kernels and execution modes, we chose to abstract this

functionality to a simple exec operation: we “libify” the hardware-accelerated part of the

application and build it using the same methods as the generic kernel (e.g., for GPU code, we

use nvcc, and the output binary is a shared library, e.g., libknn_app_gpu.so, exposing the

symbol of the kernel we are porting, e.g., knn_app).

We followed the above method for all kernels. The summary of kernels and libraries available

is shown in Table 10.

Table 10: SERRANO kernels ported to vAccel

Kernel Symbol Library Hardware

k-NN knn_app

libknn_app_cpu.so CPU

libknn_app_gpu.so GPU

libknn_app_fpga.so FPGA

k-MEANS kmeans_app

libkmeans_app_cpu.so CPU

libkmeans_app_gpu.so GPU

libkmeans_app_fpga.so FPGA

BS bs_app
libbs_app_cpu.so CPU

libbs_app_fpga.so FPGA

SAVGOL savgol_app

libsavgol_app_cpu.so CPU

libsavgol_app_gpu.so GPU

libsavgol_app_fpga.so FPGA

Essentially, to port the kernels to vAccel, we followed the steps below:

- Step 1: We used the host application as the “frontend” and replaced the call to the

relevant function with a library call implemented by all execution modes for the

specified kernel. We implemented “plugin” libraries for each of the core code versions

(CPU, GPU, FPGA) and verified the execution is exactly the same as the original code.

- Step 2: We replaced this library call with a vAccel-specific call. This library, essentially,

the “frontend library”, enabled us to set up the necessary data structures to ensure

input and output consistency. Afterwards, using the same plugin libraries as before,

we were able to specify which plugin library we want to use for each execution

example: as we used the vaccel-exec operation, all we needed to do is provide the

frontend with the shared object to be executed on the host, and a symbol (summarised

in Table 10).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 84/173

Figure 40: Libification of original kernel

Figure 41: vAccel port

Figure 40 and Figure 41 illustrate the above process as steps 1 and 2.

To assess the overhead imposed by this process on the specific kernels, we performed an

initial evaluation on a Jetson Xavier AGX system (CPU and GPU execution). We measured

execution time with the identical input provided by the partners that developed the kernels.

Figure 42: Performance overhead of vAccel on local execution (library overhead)

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 85/173

Figure 42 presents the absolute execution time (in ms) for the GPU version of each of the three

SERRANO hardware-accelerated kernels studied: k-NN, k-Means, and SAVGOL. The blue bars

present the execution time of the stock kernels provided by the partners vs the vAccel-ported

ones. Figure 42 shows that running the kernels via vAccel on the same host imposes negligible

overhead.

Figure 43: Performance overhead of vAccel for VM execution

Figure 43 shows the normalised execution time of the k-Means kernel to native execution

when running on the host (vAccel-GPU, blue bars) and on a virtual machine (vAccel-GPU-VM,

red bars). We are investigating the source of the overhead imposed on the VM execution. Part

of this is accounted to the data transfer between the VM and the host.

4.7.1.1.2 OpenFaaS

In SERRANO, we build on OpenFaaS [75] to provide short-lived task execution functionality.

OpenFaaS is a serverless framework that allows users to deploy functions written in any

language to a Kubernetes cluster or standalone VM inside containers. It provides auto-scaling

and metrics for the deployed functions. It abstracts the underlying infrastructure and allows

users to deploy their services using a high-level CLI tool or Web UI.

Porting the SERRANO Kernels to Serverless Functions

To accommodate the diverse input/output modes of the kernels, as well as the various modes

of execution, we used the vAccel python bindings to facilitate the process of porting the

kernels to serverless functions.

Essentially, the logic of the execution remains the same; the only thing that changes is the way

we get the input, and we provide the output.

Since the plugin libraries for executing different algorithms are the same as described in

Subsection “Libification”, we can use them over the vAccel API by executing the

exec_with_resource function. We have developed tests to ensure the proper interaction and

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 86/173

integration between the algorithm and the plugin library, through vAccel which enables them

to interact efficiently.

4.7.1.1.2.1 k-NN

For the k-NN, after loading the necessary libraries for the interaction with vAccel, we must

convert the .csv files that will be processed into a format suitable for execution. We establish

the appropriate casting for the input and output parameters and pack them appropriately.

Since the arguments are in the required format, we execute the exec_with_resource function

with the necessary input arguments:

● object: libknn_app library

● symbol: The symbol that implements the k-NN algorithm in the context of the plugin,

eg: knn_app

● arg_read: The converted read arguments we have packed appropriately.

● arg_write: The converted write arguments we have packed appropriately.

4.7.1.1.2.2 k-Means

For the k-Means, we are working again in a similar way. After loading the necessary libraries

for the interaction with vAccel, we convert the .csv files that will be processed into the format

we want. After that, we establish the appropriate casting for the input and output parameters

and pack them appropriately. Since the arguments are in the required format, we execute the

exec_with_resource function with the necessary input arguments:

● object: lib_kmeans_app library

● symbol: The symbol that implements the k-Means algorithm in the context of the

plugin, eg: kmeans_app

● arg_read: The converted read arguments we have packed appropriately.

● arg_write: The converted write arguments we have packed appropriately.

4.7.1.1.2.3 KALMAN

For the KALMAN, we are working again in a similar way. After loading the necessary libraries

for the interaction with vAccel, we convert the .csv file that will be processed into the format

we want. Next, we establish the appropriate casting for the input and output parameters and

pack them appropriately. Since the arguments are in the required format, we execute the

exec_with_resource function with the necessary input arguments:

● object: kalman_app library

● symbol: The identifier of Kalman library

● arg_read: The converted read arguments we have packed appropriately.

● arg_write: The converted write arguments we have packed appropriately.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 87/173

An example Python program that calls the k-MEANS kernel using vAccel is shown in Table 11.

Table 11: Example python snippet that implements the k-MEANS execution over Python vAccel

def k-NN_vAccel(INPUT_PATH, LABELS_PATH, MODE, iterations):

 t0 = time.time_ns() // 1_000_000

 # Setup input

 start = time.time()

 timeseries= transformed_time_series(INPUT_PATH).astype(np.float32).flatten()

 print('Time for dataset read + transform: ', round(time.time() - start,3), 's')

 labels = load_labels(LABELS_PATH).astype(np.int32)

 golden_labels = labels.copy()

 nr_iter = iterations

 w = 200

 # Setup shared object (plugin) CPU/GPU/FPGA

 obj = "libkmeans_app_%s.so" % MODE

 t1 = time.time_ns() // 1_000_000

 c1 = timeseries[:N_FEATURES]

 c2 = timeseries[N_FEATURES+1:2*N_FEATURES]

 # Setup vAccel parameters

 pa = ffi.cast(f"float[{len(timeseries)}]", ffi.from_buffer(timeseries))

 pc1 = ffi.cast(f"float[{len(c1)}]", ffi.from_buffer(c1))

 pc2 = ffi.cast(f"float[{len(c2)}]", ffi.from_buffer(c2))

 pc = ffi.cast(f"int [{len(labels)}]", ffi.from_buffer(labels))

 # Pack arguments

 arg_read_local = [pa, nr_iter, w, pc1, pc2]

 arg_write = [pc]

 t2 = time.time_ns() // 1_000_000

 # Execute command

 res = Exec_with_resource.exec_with_resource(obj, "kmeans_app",

arg_read=arg_read_local, arg_write=arg_write)

 t3 = time.time_ns() // 1_000_000

 labels_new = ffi.unpack(arg_write[0],len(arg_write[0]))

 total_elements = len(labels_new)

 matching_elements = sum(a == b for a, b in zip(golden_labels, labels_new))

 convergence_percentage = (matching_elements / total_elements) * 100

 t4 = time.time_ns() // 1_000_000

 print(convergence_percentage)

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 88/173

Figure 44: Performance overhead of end-to-end operation with sandboxed OpenFaaS container and vAccel

Figure 44 presents the end-to-end execution time (in ms) for k-NN and k-MEANS when called

as serverless functions. To perform this test, we built a serverless function that receives a JSON

object as input in the format of the Table 12.

Table 12: Input format for the serverless function

Parameter Description

queue_id A random UUID, acting as the identifier for the storage backend

arguments

position input data

labels input data

input file input data

uuid a unique id, acting as the identifier for the kernel execution

mode the accelerator to be used (CPU, GPU, or FPGA)

storage the storage backend to be used (data broker or s3)

creds

ip IP address of the storage backend

user username for the storage backend

pass password for the storage backend

The integration with the SERRANO Resource Orchestrator is through the SERRANO SDK. The

JSON object is constructed using information from the SERRANO orchestration and

deployment mechanisms, and upon request from a specific UC application, the function gets

invoked and spawned/scaled accordingly. The results flow back through the storage backend

(broker or S3) to the requested application to continue its execution.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 89/173

4.7.2 Multi-tenant Isolation and Trusted Execution

In the context of the SERRANO project, multi-tenant isolation has been achieved using

lightweight virtualization mechanisms. Trusted execution is realized by establishing the root

of trust during the early boot stages of a node and by providing attestation mechanisms for

the workloads running on the node. This deliverable contains the final update of the material

published in D6.3 (M18). Most of the additions revolve around features that have been

integrated and implemented during the second iteration of implementation (M19-M36) to

satisfy the requirements of the three use cases. This includes integrating the policy controller,

the signing mechanism for container images, and the finalization of the SERRANO security

tiers. Isolation and trusted execution mechanisms have been described in greater detail in

D3.4 [84]. Next, we briefly describe the mechanisms and present the integration results.

4.7.2.1 Multi-tenant isolation

In SERRANO, we achieve multi-tenant isolation on shared resources via lightweight

virtualization mechanisms. We have extensively described sandboxed container runtimes,

namely kata-containers, in the context of D5.4 [92] and D3.4 [84]. The integration of these

sandboxed container runtimes that are able to spawn containers in microVMs has been

achieved through Kubernetes (K8s) Runtime Class functionality. Workloads in the context of

SERRANO, depending on their security requirements, are spawned as either generic

containers (no further isolation), as sandboxed containers (microVM / virtualization isolation),

or as unikernels (reduced attack surface and virtualization isolation). To enable the integration

of all these types of execution modes in K8s we have developed customized container

runtimes (D5.4). The deployment of workloads in these execution modes is identical to any

other type of workload, with the addition of an extra flag that specifies the runtime class (e.g.,

kata, kata-vaccel, urunc, etc.).

4.7.2.2 Trusted Execution

Security has long been one of the key goals of systems design2. Cryptography has enabled the

safe storage (at rest) and transmission (in flight) of important data. However, there is still a

situation when data can be vulnerable. The applications decrypt the data in order to save

them; therefore, the decrypted version of data is stored in RAM, CPU caches, and registers. In

recent years, a high number of memory scraping and CPU side-channel attacks have been

reported. Under these circumstances, the wide adoption of cloud and edge computing, where

users cannot control the underlying infrastructure, raises significant concerns regarding the

security of data in use. In that context, the user cannot trust any parts of the system stack that

cannot control such as the host Operating System and the hypervisor.

The encryption and signing keys that are used from a Trusted Execution Environment (TEE)

should be saved in a hardware module. That module can be the starting point, Root of Trust

(RoT) and should be trustworthy. Except for encryption and signing keys, the RoT might

2 L. Smith, "Architectures for secure computing systems," MITRE CORP BEDFORD MASS, 1975.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 90/173

contain other root secrets and a set of functions needed for the encryption or validation of

data. The code and data (keys) of a RoT are usually stored in a read-only memory (ROM),

restricting any modifications. Trusted Platform Modules (TPMs) described in D3.4 [84] are

examples of RoT that can generate cryptographic keys and protect critical information such as

cryptographic and signing keys, and passwords.

Using the RoT platforms can secure the underlying firmware and extend the trust to higher

levels of the software stack. A verified firmware can verify the OS boot loader, which can verify

the Operating System and extend the trust to the hypervisor and/or container engine. The

process of extending the trust from a RoT to higher levels of the software stack is called a

Chain of Trust (CoT).

Apart from the isolation, a TEE should be able to verify the integrity of an application code.

Even if the code inside a TEE is isolated and cannot be changed, there is still the danger of

someone tweaking that code before it is launched inside a TEE. To be able to verify that the

workload running on the hardware node is indeed the one intended by the system, we use

attestation: through attestation, the workload tenant can verify that the workload is running

on a genuine, authenticated platform and that the initial software stack is the expected one.

4.7.2.2.1 Workload attestation

To securely sign, verify, and provide attestable metadata to containers that will be deployed

on a cluster, we are using the Sigstore3 project. Sigstore is an open-source project that

provides digital signing and verification of container images. Within the container image

supply chain, it establishes confidence and maintains the image's integrity by utilizing

cryptographic digital signatures and transparency log technologies.

Sigstore consists of a set of tools:

• Cosign (signing, verification, and storage for containers and other artifacts)

• Fulcio (root certificate authority)

• Rekor (transparency log)

• OpenID Connect (means of authentication)

• policy-controller (enforcing container orchestration policy)

Cosign: Tool for signing/verifying containers (and other artifacts) that ties the rest of Sigstore

together, making signatures invisible infrastructure. It includes storage in an Open Container

Initiative (OCI) registry.

Fulcio: A free root certification authority, issuing temporary certificates to an authorized

identity and publishing them in the Rekor transparency log.

Rekor: A built-in transparency and timestamping service, Rekor records signed metadata to a

ledger that can be searched but cannot be tampered with.

3 Sigstore - https://www.sigstore.dev

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 91/173

OpenID Connect: An identity layer that checks if you're who you say you are. It lets clients

request and receive information about authenticated sessions and users.

Policy Controller: An admission controller for Kubernetes for enforcing policy on containers

allowed to run.

How Sigstore works

We are using cosign to sign and verify software artifacts, such as container images and blobs.

Cosign operates in two different modes: key pair mode and keyless mode. We have chosen

the keyless mode as our preferred option to simplify the process and avoid the burdensome

task of securely managing and distributing keys. In keyless mode, the Sigstore associates

identities, rather than keys, with an artifact signature. To do that, it utilizes Fulcio to issue

short-lived certificates, binding an ephemeral key to an OpenID Connect (OIDC) identity. Fulcio

uses OIDC tokens to authenticate requests. Subject-related claims from the OIDC token are

extracted and included in issued certificates. Signing events are logged in Rekor, a signature

transparency log, providing an auditable record of when a signature was created.

Verifying identity and signing the artifact

The process of verifying identity and signing the artifact is the following:

• An in-memory public/private key pair is created.

• The identity token is retrieved.

• Sigstore's certificate authority verifies the identity token of the user signing the artifact

and issues a certificate attesting to their identity. The identity is bound to the public

key. Decrypting with the public key will prove the identity of the private key holder.

• For security, the private key is destroyed shortly after, and the short-lived identity

certificate expires.

Users wishing to verify the software will use the transparency log entry rather than relying on

the signer to safely store and manage the private key.

Recording signing event

To create the transparency log entry, a Sigstore client creates an object containing information

allowing signature verification without the (destroyed) private key. The object contains the

hash of the artifact, the public key, and the signature. Crucially, this object is timestamped.

The Rekor transparency log "witnesses" the signing event by entering a timestamped entry

into the records that attests that the secure signing process has occurred. Clients upload

signing events to the transparency log so that the events are publicly auditable. Artifact

owners should monitor the log for their identity to verify each occurrence. The software

creator publishes the timestamped object, including the hash of the artifact, public key, and

signature.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 92/173

Verifying the signed artifact

When a software consumer wants to verify the software’s signature, Sigstore compares a

tuple of signature, key/certificate, and artifact from the timestamped object against the

timestamped Rekor entry. If they match, it confirms that the signature is valid because the

user knows that the expected software creator, whose identity was certified when signing,

published the software artifact in their possession. The entry in Rekor’s immutable

transparency log means that the signer will monitor the log for occurrences of their identity

and will know if there is an unexpected signing event.

4.7.2.2.2 Incorporating Sigstore in SERRANO

Signing

A set of steps is required to enable image signing using the Sigstore (Figure 45).

Figure 45: Image and signature creation4

First, the image building process is automated using GitHub Action workflows. This approach

grants us access to a GitHub Workflow identity token, which GitHub provides for each

workflow run. This identity is specifically associated with the corresponding GitHub Action

workflow. It includes additional metadata that helps identify the GitHub repository of the

workflow, the workflow name, and more.

Using this OpenID Connect token available in the workflow's environment, we can sign the

produced image using cosign. Acting as a Sigstore client, cosign will generate an in-memory

public/private key pair and request a new short-lived certificate from Fulcio using the OIDC

token and the key pair.

Fulcio then provides the certificate to sign the image. Fulcio will append the certificate to an

immutable, append-only, cryptographically verifiable certificate transparency (CT) log,

allowing for publicly auditable issuance.

4 Source: RedHat

https://cloud.redhat.com/blog/signing-and-verifying-container-images

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 93/173

Given the certificate, cosign will sign the image using the provided certificate and push the

signature to the OCI Image Registry, where the image is stored.

The signing event is recorded in a transparency log entry. To achieve this, cosign creates an

object containing information allowing signature verification without the (destroyed) private

key. The object contains the hash of the artifact, the public key, and the signature. Crucially,

this object is timestamped.

The Rekor transparency log "witnesses" the signing event by entering a timestamped entry

into the records that attests that the secure signing process has occurred.

Verifying

When a software consumer wants to verify the software’s signature, Sigstore compares a

tuple of signature, key/certificate, and artifact from the timestamped object against the

timestamped Rekor entry.

If they match, it confirms that the signature is valid because the user knows that the expected

software creator, whose identity was certified when signing, published the software artifact

in their possession.

The entry in Rekor’s immutable transparency log means that the signer will be monitoring the

log for occurrences of their identity and will know if there is an unexpected signing event.

Consuming verified containers

To ensure that only legitimate container images are deployed in our Kubernetes (k8s) cluster,

we can utilize Sigstore's policy controller admission controller. This controller is responsible

for enforcing policies that validate the proper signing of images and the presence of verifiable

supply-chain metadata. Additionally, the policy controller resolves the image tags to ensure

that the image being executed is identical to the one initially admitted.

By verifying each image against the workflow that created it, the policy controller can validate

that the image was signed by a workflow deployed by a specific entity and within a specific

GitHub repository. This verification process guarantees that the image has not been tampered

with since its creation, providing an added layer of security.

4.7.2.2.3 Policy Controller

The policy controller admission controller5 can enforce policy on a Kubernetes cluster based

on verifiable supply-chain metadata from cosign6. It also resolves the image tags to ensure the

image being deployed is not different from when it was admitted.

By default, the policy controller admission controller will only validate resources in

namespaces chosen to opt-in. This can be done by adding the label policy.sigstore.dev/include:

"true" to the namespace resource.

5 https://docs.sigstore.dev/policy-controller/overview/
6 https://github.com/sigstore/cosign

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 94/173

An image is admitted after it has been validated against all ClusterImagePolicy that matched

the image’s digest and that there was at least one passing authority in each of the matched

ClusterImagePolicy. Hence, each ClusterImagePolicy that matches is AND for admission, and

within each ClusterImagePolicy authorities are OR.

In addition, the policy controller offers a configurable behaviour defining whether to allow,

deny or warn whenever an image does not match a policy. This behaviour can be configured

using the config-policy-controller ConfigMap created under the release namespace (by default

cosign-system), and by adding an entry with the property no-match-policy and its value

warn|allow|deny. By default, any image that does not match a policy is rejected whenever

no-match-policy is not configured in the ConfigMap.

4.7.2.2.4 ImagePolicyWebhook

The ImagePolicyWebhook admission controller is an alternative method to statically attest

images pulled to the specific node. It is a Kubernetes feature that allows us to enforce policies

for image verification at runtime by calling an external webhook that can verify the digital

signature of container images.

To use ImagePolicyWebhook, we follow these steps:

• Create a webhook service that can verify the digital signature of container images. The

webhook service should be able to receive a request from the ImagePolicyWebhook

admission controller and return a response indicating whether the image should be

allowed or denied.

• Deploy the webhook service on the cluster.

• Configure the ImagePolicyWebhook admission controller to call the webhook service

for image verification. This can be done by adding the ImagePolicyWebhook admission

controller to the list of admission controllers in the Kubernetes API server

configuration file and specifying the URL for the webhook service.

As mentioned earlier, we use the cosign tool to provide attestable metadata to containers, in

order to be used by the ImagePolicy admission controller. Cosign, Image Signing, and

ImagePolicy Verification are the three components that make up the Attestation Mechanism

for SERRANO.

ImagePolicy Admission Controller

The ImagePolicy admission controller acts as a gatekeeper for deploying container images

inside our k8s clusters. It does this by enforcing regulations that specify which container

images are permitted to operate and are therefore considered genuine.

When a container image is presented for deployment, the ImagePolicy admission controller

validates the image by carrying out the following procedures to ensure that it is authentic7:

7 https://cloud.redhat.com/blog/signing-and-verifying-container-images

https://cloud.redhat.com/blog/signing-and-verifying-container-images

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 95/173

a. Image Retrieval: The admission controller is responsible for retrieving the container

image from the registry or repository that has been defined.

b. Validation of the Signature: The Admission Controller makes use of Cosign in order to

validate the embedded cryptographic signature that is contained within the image

information. It compares the signature to the associated public key to confirm that the

image has not been tampered with and came from a reliable source. This is done to

ensure that the signature is valid.

c. Policy Evaluation: The admission controller examines the image in light of previously

established policies. These policies may take into consideration aspects such as the

image's provenance, the findings of vulnerability scanning, and the requirements for

compliance. Our organization's security requirements and industry best practices

served as the basis for establishing these rules.

d. Decision Making: After the findings of the signature validation and policy evaluation

have been analyzed, the ImagePolicy admission controller will either decide to accept

or refuse the deployment of the container image. If the image meets all of the

requirements and is able to pass verification, it will be recognized as valid and will be

granted permission to run inside of the cluster. In that case, it is rejected, which

eliminates any potential threats to security.

We ensure that only trusted and certified container images are deployed in our cluster by

using the Cosign software attestation mechanism and combining it with the ImagePolicy

admission controller. This strategy improves the safety and integrity of our containerized

programs and reduces the likelihood that those applications would run corrupt or modified

image files.

Figure 46: Signature Verification Process8

We use GitHub’s OpenID to provide a third-party authentication service for cosign’s keyless

mode. Below, we elaborate on how a serverless function is built, packaged as a container,

signed, deployed, and verified in the SERRANO platform on a securely booted device.

8 Image Source: AWS

https://d2908q01vomqb2.cloudfront.net/fe2ef495a1152561572949784c16bf23abb28057/2022/06/22/crypto-2.jpg

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 96/173

The example is based on the k-NN function.

Build container image

To build the k-NN function we use OpenFaaS template and include vAccel Python bindings and

the actual code that calls the k-NN kernel.

FROM ghcr.io/openfaas/classic-watchdog:latest as watchdog
FROM harbor.nbfc.io/nubificus/serrano/knn-fpga:x86_64
COPY --from=watchdog /fwatchdog /usr/bin/fwatchdog
RUN chmod +x /usr/bin/fwatchdog
EXPOSE 8080
HEALTHCHECK --interval=3s CMD [-e /tmp/.lock] || exit 1

function
COPY fetch.py /app/fetch.py
workaround to reduce runtime latency
COPY test.py /app/test.py
RUN python3 test.py

ENV write_debug="true"
ENV debug_headers="true"
ENV marshal_request="true"

ENTRYPOINT ["fwatchdog"]

The “harbor.nbfc.io/nubificus/serrano/knn-fpga:x86_64” base image is, essentially, a

container image with the vAccel frontend library installed, vAccel’s Python bindings and the

shared objects, including the FPGA, GPU, and CPU plugin code for the k-NN kernel. The

function (fetch.py) contains helper functions to parse input, fetch data from the storage

backends, and trigger the execution of the kernel. Snippets from this file are shown below:

def knn_vaccel(position, labels, input_file, mode):

 timeseries = transformed_time_series(position).astype(np.float32).flatten()
 labels = load_labels(labels).astype(np.int32)
 k = 3
 w = 200
 obj = "libknn_app_%s.so" % mode

 b = np.genfromtxt(io.BytesIO(input_file),delimiter=';')[1:].astype(np.float32)

 # Setup vAccel exec vars
 pa = ffi.cast(f"float[{len(timeseries)}]", ffi.from_buffer(timeseries))
 pb = ffi.cast(f"float[{len(b)}]", ffi.from_buffer(b))
 pc = ffi.cast(f"int[{len(labels)}]", ffi.from_buffer(labels))
 result = bytes(4)

 # Pack arguments
 arg_read_local = [pa, pb, k, w]
 arg_write = [pc, result]

 # execute command
 res = Exec_with_resource.exec_with_resource(obj, "knn_app",
arg_read=arg_read_local, arg_write=arg_write)
 data = struct.unpack('<I', result[:4])[0]

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 97/173

 return data

if __name__ == "__main__":
 for line in sys.stdin:
 if 'Exit' == line.rstrip():
 break

 try:
 request = json.loads(line)
 raw_data = request['body']['raw']
 string = base64.b64decode(raw_data)
 description = json.loads(string)
 desc = json.loads(description)
 storage = desc["storage"]
 creds = desc["creds"]
 if "broker" in storage:
 position, labels, input_file = fetch_data(creds, desc["queue_id"],
desc["arguments"])
 elif "s3" in storage:
 position, labels, input_file = fetch_data_s3(creds, desc["queue_id"],
desc["arguments"])
 else:
 print("No storage backend specified")
 sys.exit(1)
 uuid = desc["uuid"]
 mode = desc["mode"]
 except Exception as err:
 print("an error occured")
 print(str(err))
 sys.exit(1)
 data = knn_vaccel(position, labels, input_file, mode)
 data = "timeseries,label\n0,%d\n" % data

 if "broker" in storage:
 push_results_to_databroker(creds, uuid, data)
 elif "s3" in storage:
 push_results_to_s3(creds, desc["queue_id"], uuid, data)
 else:
 print("No storage backend specified")
 sys.exit(1)

To build the container image we use a generic command:

docker build -f Dockerfile -t harbor.nbfc.io/nubificus/knn-function:generic .

To sign the container image we use the following:

cosign sign --yes harbor.nbfc.io/nubificus/knn-function@sha256:
72bf63ef9079d7da0dd2e3d4530393bc2316c7370512360108519a3430aae90a\
 -a "ref=60108519a3430aae90a” \
 -a "author=Nubificus LTD"

To facilitate the building, signing, and verification of container images, we use GitHub Actions

to build and sign while taking advantage of GitHub's OpenID functionality. As a result, the

container image is produced using a GitHub Action’s workflow, signed using GitHub’s OpenID,

and verified against GitHub when deployed.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 98/173

The action snippet is show below:

 - name: Build and push
 id: build-and-push
 uses: docker/build-push-action@master
 with:
 context: .
 file: ./Dockerfile
 push: true
 tags: ${{ steps.docker_meta.outputs.tags }}
 - name: Sign the published Docker image
 env:
 COSIGN_EXPERIMENTAL: "true"
 DIGEST: ${{ steps.build-and-push.outputs.digest }}
 TAGS: ${{ steps.docker_meta.outputs.tags }}
 # run: echo "${{ steps.meta.outputs.tags }}" | xargs -I {} cosign sign
{}@${{ steps.build-and-push.outputs.digest }}
 run: |
 cosign sign --yes harbor.nbfc.io/nubificus/knn-function@${{steps.build-
and-push.outputs.digest}} \
 -a "repo=${{github.repository}}" \
 -a "workflow=${{github.workflow}}" \
 -a "ref=${{github.sha}}" \
 -a "author=Nubificus LTD"

To validate the deployed container image, we enable the policy controller in a specific

namespace (serrano-deployments) of our K8s installation:

apiVersion: v1
kind: Namespace
metadata:
 labels:
 policy.sigstore.dev/include: "true"
 kubernetes.io/metadata.name: serrano-deployments
 name: serrano-deployments
spec:
 finalizers:
 - kubernetes

And we add the policy that verifies the produced (signed) container images:

apiVersion: policy.sigstore.dev/v1beta1
kind: ClusterImagePolicy
metadata:
 name: serrano-policy
spec:
 authorities:
 - keyless:
 identities:
 - issuer: https://token.actions.githubusercontent.com
 subjectRegExp: https://github.com/nubificus/.*/.github/workflows/*@*
 url: https://fulcio.sigstore.dev
 name: authority-0
 images:
 - glob: '**'
 mode: enforce

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 99/173

4.8 Secure Storage Service, On-premises Gateway, and TLS

Offloading

4.8.1 Secure Storage Service

The Secure Storage Service, also referred to in other deliverables as SERRANO-enhanced

Storage Service, is the SERRANO platform’s main storage solution. It provides an S3-

compatible storage API that is easy to integrate with existing software.

This deliverable contains the final update of the material previously published in Deliverable

6.3. Most of the additions revolve around features that have been implemented since the

publishing of D6.3 to satisfy the requirements of the three use cases. This includes caching,

support for HTTP Range headers, multipart uploads and authentication based on AWS

Signature V4. The Secure Storage Service has been described in greater detail in Deliverable

2.4 [84] and Deliverable 3.4 [86]. Here, we only include a short excerpt.

The Secure Storage Service is built around SkyFlok, a file storage and sharing solution created

Chocolate Cloud. SkyFlok is an online service that distributes data to several cloud locations

of the user’s choosing. This gives it better reliability, availability, performance and cost-

effectiveness compared to single-cloud solutions. All data is encrypted and erasure coded

before being distributed to the cloud locations. SkyFlok is only accessible through a browser

at www.skyflok.com.

Figure 47: The components of the Secure Storage Service

The Secure Storage Service extends SkyFlok with features aimed at medium-to-large

companies. Firstly, it allows the selection of edge storage locations. This has the potential to

greatly enhance the service’s performance, especially the latency of smaller requests. In

practice, this is achieved by taking advantage of the existing on-premises infrastructure

enterprise customers can deploy or may already have. Secondly, an S3-compatible interface

is introduced that allows for easy integration with existing software. This also makes migration

from Amazon’s AWS or one of the many smaller solutions that support S3 [24] seamlessly.

This also includes on-premises object stores hosted using Ceph [25], Openstack Swift [26] or

MinIO [8]. By supporting the S3 multipart upload and HTTP range query feature, large files can

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 100/173

be more quickly uploaded and downloaded. Thirdly, the introduction of an edge cache further

increases performance.

4.8.1.1 Inner components

An overview of how the core components are connected can be seen on Figure 47.

The On-premises storage gateway (Gateway) is the key

new development of the Secure Storage Service as well

as its most important on-premises component. It is

implemented in Python 3.11 using FastAPI [5], a modern

ASGI framework. The Gateway runs as a containerized application and can be deployed using

the SERRANO orchestration and deployment mechanisms. Because it manages no state

beyond caching some data for performance reasons, multiple instances can be deployed

simultaneously. This makes it possible to tailor the performance of the SERRANO-enhanced

Storage Service to the current workload by scaling horizontally. Its statelessness is a key design

principle meant to ensure that the Gateway does not become a single point of failure or a

performance bottleneck.

An important consideration related to performance is CPU usage. Since all data processing

operations are performed by the Gateway, acceleration techniques developed in Work

Packages 3 and 4 are used to remove some of the burdens from the CPU. These come in effect

if specialised hardware (Nvidia DPU, GPU, FPGA) is available. If they are not available, the

Gateway performs these tasks using the CPU. The Gateway features another performance-

enhancing feature in the form of a local cache. Thus, files that have been accessed recently or

are very popular are kept in their original, uncompressed, unencrypted, non-erasure-coded

form on local, ephemeral storage. Like the other design decisions made when developing the

service, the cache aims to improve performance beyond what a purely cloud-based solution

can achieve.

The SERRANO edge devices provide storage locations at the edge, on the customer’s

premises. Like the storage service itself, they provide an S3 interface. However, the client

applications do nοt access the devices directly. Instead, the Gateway oversees all file uploads

and downloads to both edge and cloud storage locations.

Each SERRANO edge device is a containerized

application deployed into a SERRANO-

managed Kubernetes (K8s) [27] cluster. Each

is a separate instance of MinIO [7], a high-performance, highly customizable object storage

solution. It includes a telemetry agent that is used to provide the Telemetry Service with

information regarding the status of the storage resource in use.

When deployed using K8s, MinIO can make use of a wide range of available storage resources

through K8s Persistent Volumes [28]. All information required to run MinIO, as well as all data

that it stores can be mounted using this technique. Thus, it is easy to tailor MinIO to the

storage resources that are available on the customer’s premises.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 101/173

The Secure Storage Service relies on the software infrastructure of SkyFlok, the Skyflok.com

backend, for a wide range of features. These can be grouped as follows:

● File system management

● Storage location management

● Generating pre-signed upload and download links

● Storage policy management

● File and metadata consistency checking

● Authentication and authorization

● User and team management

SkyFlok is a next-generation file sharing and storage solution for users who care deeply about

privacy and security. It is a multi-cloud platform that distributes data across a wide range of

commercially available clouds. Beyond the big three of Amazon, Google, and Microsoft,

SkyFlok supports most major EU cloud providers and can be configured to be GDPR compliant

(24 out of 59 cloud locations are GDPR-compliant). A key enabler of this is the ability provided

to users to select the cloud providers that will store their data as well as the actual locations -

down to the city level. Internally, SkyFlok’s secret sauce is network coding, an erasure code

that provides reliable service even if a cloud provider becomes unavailable. It also offers

protection from data loss and gives privacy benefits beyond those provided by conventional

encryption.

The monitoring of cloud locations requires the ability to reliably schedule measurements that

ascertain both the availability of each location and its performance characteristics with

regards to uploading and downloading files. The Skyflok.com backend provides the

scheduling, and the Cloud Benchmarker Service performs the measurements and stores the

results. These are exposed through the Gateway’s Cloud Telemetry API. An overview of these

separate responsibilities is shown below on Figure 48.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 102/173

Figure 48: The components of the cloud monitoring features of the SERRANO-enhanced Storage Service.

4.8.1.2 Developer web portal

To enhance the usability of the SERRANO-enhanced Storage Service, we created a web portal

to cater to the needs of the developers who will use the service. The features have been

selected by studying the online interfaces of object storage providers and based on the

project’s requirements with particular emphasis on the use cases. The developer portal will

also play an important role in the exploitation of the project’s outcomes.

Figure 49: Developer portal – second step of the new storage policy creation wizard.

Its features revolve around letting developers manage three core entity types: S3 buckets,

storage policies, and API keys. Compared to the REST APIs, it presents a friendly, graphical

environment suitable for non-technical users as well. Figure 49 shows one frame of the

storage policy creation wizard.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 103/173

4.8.1.3 Integration details and REST APIs

The Secure Storage API provides SERRANO users with a way to store and retrieve files. It is

based on what can be considered the industry standard for object storage: Amazon Web

Services S3. The decision to use a well-known API brings significant benefits, as it allows users

to seamlessly integrate their existing software solutions with the SERRANO platform. There

are S3 client libraries for most programming languages along with countless development

tools for all common operating systems.

Amazon’s S3 service offers object storage. Objects are immutable, versioned entities that have

a key as a unique identifier and may have other metadata associated with them. Objects are

organized into buckets, which have a name that is unique across the system and may also have

metadata associated with them. There are several distinctions between file systems and

object storage solutions. In general, object storage semantics are somewhat less permissive

than those of file systems. Despite this, cloud storage solutions like Dropbox and Google Drive

have shown that it is possible to build a file storage service on top of an object storage system.

Indeed, SkyFlok also follows this schema to offer its users a file system that is built on top of

object storage.

Host names
(s)/Port(s)

https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/s3

Publicly
accessible (y/n
and other details)

The IP is publicly accessible, and authentication is performed using AWS
Signature V4. Chocolate Cloud has made credentials available to all partners
who wished to access the service.

Type of API REST, XML responses, as defined by AWS S3

API
documentation

https://github.com/ict-serrano/On-Premise-Storage-
Gateway/blob/master/openapi.json,
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/docs

Location of
integration tests

https://github.com/ict-serrano/On-Premise-Storage-
Gateway/tree/master/tests

The Secure Storage API supports all major Create, Read, Update, Delete (CRUD) features of

both objects and buckets, with support for both compulsory and most optional parameters. It

also supports all features related to multipart uploads. An API reference can be found on

Amazon’s website [29]. Figure 50 shows the list of supported endpoints, with many URLs

serving more than one S3 feature.

https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/s3
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/openapi.json
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/openapi.json
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/docs
https://github.com/ict-serrano/On-Premise-Storage-Gateway/tree/master/tests
https://github.com/ict-serrano/On-Premise-Storage-Gateway/tree/master/tests

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 104/173

Figure 50: Secure Storage API REST endpoints

Amazon Web Services S3 provides two URL schemas to access buckets and their contents. The

Secure Storage API adopts the first one and may potentially be expanded to support the

second one at a later stage.

● http://{host:port}/s3/[bucket_name]/

● http://[bucket_name].{host:port}/s3

The Secure Storage API uses the same parameters for each endpoint and maintains the error

handling of AWS S3, both in terms of the format of error messages as well as the different

codes that identify the underlying causes.

Finally, the Secure Storage API will continue to be expanded after the end of the SERRANO

project with both new options for the existing endpoints as well as new endpoints. These will

be focused on features like Access Control Lists (ACL), object versioning and others. In all cases,

compatibility with the S3 API will be maintained.

Figure 51: Overview of Amazon AWS Signature Version 4 processError! Bookmark not defined.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 105/173

Authentication is handled through AWS Signature Version 4, though support for Version 3 may

be added in the future if required by our customers. An overview of the process is shown in

Figure 519. The headers and body of incoming HTTPS requests are signed to protect their

integrity using the client’s secret access key. This is also the authentication mechanism of the

S3 service.

The Gateway also exposes further REST APIs to offer services to SERRANO platform

components. The Storage Policy API provides integration with the SERRANO orchestration

mechanisms, while the Telemetry and Resource API provides integration with the Monitoring

service and the Resource Orchestrator of the SERRANO platform. The Gateway is also an

integration point with other platform services and functionalities such as TLS-offloading and

the acceleration of data processing algorithms. These details are described in Section 4.10,

Secure Storage Use Case Integrated Functionality.

4.8.1.4 Sample requests and responses

We provide a sample request-response for listing the objects present in a bucket, which

corresponds to the ListObjectsV2 endpoint.

Request:

GET /s3/{bucket_name}/

Response:

<?xml version="1.0" encoding="UTF-8"?>
<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>PhotoBucket</Name>
 <Prefix/>
 <KeyCount>5</KeyCount>
 <Contents>
 <Key>flowers.bmp</Key>
 <LastModified>2023-12-12T12:22:28.000Z</LastModified>
 <Size>2475410</Size>
 </Contents>
 <Contents>
 ...
 </Contents>
 ...
</ListBucketResult>

9 Source: https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 106/173

4.9 Service Assurance and Remediation

4.9.1 Description

Performance-related anomaly detection in geographically distributed systems is a very active

research topic. It is even more so in the case of edge/cloud heterogeneous systems where

performance-related anomalies have a higher impact. In the following section, we will use the

term events and anomalies seemingly interchangeably. However, we should note that the

methods used for detecting anomalies are applicable in the case of events. The main

difference lies in the fact that anomalies pose an additional level of complexity because of

their sparse nature. Some anomalies might have an occurrence rate well under 0.01%. Event

and anomaly detection can be split up into several categories based on the methods and the

characteristics of the available data. The simplest form of anomalies are point anomalies

which can be characterised by only one metric (feature). These types of anomalies are fairly

easy to detect by applying simple rules (i.e., CPU is above 70%). Other types of anomalies are

more complex but ultimately yield a much deeper understanding about the inner workings of

a monitored exascale system or application. These types of anomalies are fairly common in

complex systems.

Contextual anomalies are extremely interesting in the case of complex systems. These

anomalies happen when a certain constellation of feature values is encountered. In isolation,

these values are not anomalous but when viewed in context they represent an anomaly. These

anomalies represent application bottlenecks, imminent hardware failures, or software

misconfigurations. The last major types of relevant anomalies are temporal or sometimes

sequential anomalies, where a certain event occurs out of order or at the incorrect time. These

anomalies are significant in systems with a strong spatio-temporal relationship between

features, which is very much the case for exascale metrics.

4.9.1.1 Architecture

The Service Assurance and Remediation (SAR) components (Figure 52) are tasked not only

with the detection of any performance-related anomalies but also with the analysis of the root

cause of the anomalous events along with the notification of other SERRANO components,

such as the Resource Orchestrator.

The Event Detection Engine (EDE) is the main component of SAR; it has several sub-

components that are based on lambda-type architecture, where we have a speed, batch, and

serving layer. Because of the heterogeneous nature of most modern computing systems

(including exascale and mesh networks) and the substantial variety of solutions that could

constitute a monitoring service, the data ingestion component must contend with fetching

data from a plethora of systems. Connectors are implemented such that they serve as

adapters for each solution. Furthermore, this component also can load data directly from a

static file (HDF5, CSV, JSON, or even raw format).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 107/173

Figure 52: Service Assurance and Remediation general architecture

This aids in fine-tuning event and anomaly detection methods. We can also see that data

ingestion can be done directly via query from the monitoring solution or streamed directly

from the queuing service (after ETL if necessary), see Figure 53. This ensures that we have the

best chance of reducing the time between the event or anomaly happening and it being

detected.

Figure 53: EDE Architecture

The pre-processing component is in charge of taking the raw data from the data ingestion

component and apply several transformations. It handles data formatting (i.e. one-hot

encoding), analysis (i.e. statistical information), splitter (i.e. splitting the data into training and

validation sets) and finally augmentation (i.e. oversampling and undersampling).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 108/173

The training component (batch layer) is used to instantiate and train methods that can be used

for event and anomaly detection. The end user is able to configure the hyper-parameters of

the selected models as well as run automatic optimization on these (i.e. Random Search,

Bayesian search etc.). Users are not only able to set the parameters to be optimised but to

define the objectives of the optimization. More specifically, users can define what should be

optimised including but not limited to predictive performance, transprecise objectives

(inference time, computational limitations, model size etc.).

Evaluation of the created predictive model on a holdout set is also handled in this component.

Current research and rankings of machine learning competitions show that creating an

ensemble of different methods may yield statistically better results than single model

predictions. Because of this, ensemble capabilities have to be included.

Finally, the trained and validated models have to be saved in such a way that enables them to

be easily instantiated and used in a production environment. Several predictive model formats

have to be supported, such as; PMML, ONNX, HDF5, JSON.

It is important to note at this time that the task of event and anomaly detection can be broadly

split into two main types of machine learning tasks; classification and clustering. Classification

methods such as Random Forest, Gradient Boosting, Decision Trees, Naive Bayes, Neural

Networks, and Deep Neural Networks are widely used in anomaly and event detection. While

in the case of clustering, we have methods such as IsolationForest, DBSCAN, and Spectral

Clustering. Once a predictive model is trained and validated, it is saved inside a model

repository. Each saved model has to have metadata attached to it denoting its performance

on the holdout set as well as other relevant information such as size, throughput etc.

The prediction component (speed layer) is in charge of retrieving the predictive model from

the model repository and feeding metrics from the monitored system. When an event or

anomaly is detected, EDE is responsible for signalling this to both the Monitoring service

reporting component and to other tools such as the Resource Orchestrator or any other

decision support system.

Once inference is complete, EDE will analyse of each prediction using Shapely values. This

allows us to determine the root cause of what features caused any anomalous events. This

information, coupled with the timestamp where anomalous events have been detected, will

be sent via the SERRANO Data Broker to any SERRANO services that require this information

(i.e., Resource Orchestrator).

4.9.2 Integration details and REST APIs

SAR-EDE is designed around the utilisation of a YAML-based configuration scheme. This allows

the complete configuration of the tool by the end user with limited to no intervention in the

source code. It should be mentioned that some of these features are considered unsafe as

they allow the execution of arbitrary code.

The configuration file is split up into several categories:

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 109/173

- Connector - Deals with connection to the data sources

- Mode - Selects the mode of operation for EDE

- Filter - Used for applying filtering on the data

- Augmentation - User defined augmentations on the data

- Training - Settings for training of the selected predictive models

- Detect - Settings for the detection using a pre-trained predictive model

- Point - Settings for point anomaly detection

- Misc - Miscellaneous settings

For the sake of brevity, we will not go into detail about all configuration options. The official

SERRANO repository10 contains a comprehensive user guide. Bellow we can find an example

configuration:

Connector:
 PMDS:
 Endpoint: 'http://pmds.services.cloud.ict-serrano.eu'
 Cluster_id: 7628b895-3a91-4f0c-b0b7-033eab309891
 Start: '-2h'
 End: ''
 Groups:
 - general
 - cpu
 - memory
 - network
 - storage
 Namespace: uvt-aspataru
 Dask:
 SchedulerEndpoint: local
 Scale: 3
 SchedulerPort: 8787
 EnforceCheck: false
 KafkaEndpoint: <Serrano Message Broker>
 KafkaPort: 9092
 KafkaTopic: edetopic
 GrafanaUrl: 'http://85.120.206.26:32000'
 GrafanaToken: <token>
 GrafanaTag: ede_test
 MetricsInterval: 1m
 QSize: 0
 Index: time
 QDelay: 10s
Augmentation:
 Scaler:
 StandardScaler:
 copy: true
Mode:
 Training: true
 Validate: false
 Detect: true
Training:
 Type: clustering

10 https://github.com/ict-serrano/service-assurance-ede

https://github.com/ict-serrano/service-assurance-ede

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 110/173

 Method: isoforest
 Export: sr_isolationforest_1
 MethodSettings:
 n_estimators: 100
 max_samples: 10
 contamination: 0.07
 verbose: true
 bootstrap: true
Detect:
 Method: isoforest
 Type: clustering
 Load: sr_isolationforest_1
 Scaler: StandardScaler
 Analysis:
 Plot: true

The above configuration sets EDE up by defining the PMDS endpoint, query, DataBroker,

Grafana, and Dask Cluster. Next, we select the predictive model training options, including

data augmentation (standard scaler). Once training is complete, the predictive model, trained

using IsolationForest, is instantiated and executed based on user options. The output of the

analysis has the following form:

The above analysis results will be pushed to a particular Kafka topic in the SERRANO Data

Broker, where any other SERRANO service, including the Resource Orchestrator, can consume

it. A complete overview of the integration details can be found in Table 13.

Table 13: Integration details of SAR-EDE

IP(s)/Port(s)
EDE Inference Service:

● https://sar.ede.services.cloud.ict-serrano.eu

Publicly
accessible (y/n
and other details)

The service is publicly accessible when it comes to inference, while
training and validation should be done offline.

Type of API REST and CLI.

Associated host
names

https://sar.ede.services.cloud.ict-serrano.eu

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 111/173

API
documentation

https://github.com/ict-serrano/service-assurance-ede

Location of
integration tests

https://serrano-sonarqube.rid-intrasoft.eu/dashboard?id=service-
assurance-ede

4.9.2.1 REST-API

EDE is also accessible as a REST service. We should note that training is not possible using this

service, only inference. This was done mainly because of the difficulty in training and validating

predictive models for anomaly detection and the requirement for large scale historical data.

The REST service provides the capability to select pre-trained models. It uses a loosely coupled

asynchronous control architecture. Users can start background workers capable of performing

jobs pushed into a distributed queue (currently Redis). Each job represents an EDE instance

running in prediction mode. These instances can be queried via the REST API, where each

background worker connects to the EDE instance and reports the current status. This way,

even if the REST service fails, all background jobs can still run and can be reattached after the

service restart.

In the following paragraphs, we detail the complete REST API of this service as it is the primary

interaction mechanism between SAR-EDE and other SERRANO components.

GET /v1/config

Returns the current version of the configuration file.

PUT /v1/config

Uploads a new configuration file in YAML format. See EDE Configuration11 for more details.

GET /v1/config/augmentation

{

 "Scaler": {

 "StandardScaler": {

 "copy": true,

 "with_mean": true,

 "with_std": true

 }

 }

}

Returns the current augmentation configuration.

11 https://github.com/ict-serrano/service-assurance-ede#utilization

https://github.com/ict-serrano/service-assurance-ede#utilization

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 112/173

PUT /v1/config/augmentation

Modifies the augmentation part of the configuration.

GET /v1/config/connector

{

 "Dask": {

 "EnforceCheck": false,

 "Scale": 3,

 "SchedulerEndpoint": "local",

 "SchedulerPort": 8787

 },

 "Index": "time",

 "KafkaEndpoint": "10.9.8.136",

 "KafkaPort": 9092,

 "KafkaTopic": "edetopic",

 "MPort": 9200,

 "MetricsInterval": "1m",

 "PREndpoint": "194.102.62.155",

 "QDelay": "10s",

 "QSize": 0,

 "Query": {

 "query": "{__name__=~\"node.+\"}[1m]"

 }

}

Returns the current connector configuration.

PUT /v1/config/connector

Modifies connector part of the configuration.

GET /v1/config/filter

{

 "DColumns": {

 "Dlist": "..data/low_variance.yaml"

 },

 "Dropna": true,

 "Fillna": true

}

Returns the current filter configuration.

PUT /v1/config/filter

Modifies the filter part of the configuration.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 113/173

GET /v1/config/inference

{

 "Analysis": {

 "Plot": true

 },

 "Load": "cluster_y2_v3",

 "Method": "IForest",

 "Scaler": "StandardScaler",

 "Type": "clustering"

}

Return current inference configuration.

PUT /v1/config/inference

Modifies inference part of the configuration.

GET /v1/data

{

 "files": [

 "serrano_test_cluster.csv"

]

}

Returns a list of local datafiles. Currently only, txt, csv, xlsx and json files are supported.

GET /v1/data/{data_file}

This resource fetches the datafile denoted by the data_file parameter.

PUT /v1/data/{data_file}

This resource allows external files to be uploaded to the EDE service. Currently only, txt, csv,

xlsx and json files are supported. We should note that the data_file parameter must be the

same as the name of the file being uploaded.

POST /v1/inference

Starts the inference job using EDE based on the current configuration file.

GET /v1/logs

Returns EDE Service logs.

The following REST resources are used to control Redis Queue (RQ) workers that wrap

individual EDE instances. Each EDE instance can use a DASK cluster (local or remote).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 114/173

GET /v1/service/jobs

{

 "failed": [],

 "finished": [

 "a9784914-165c-488a-b5a6-7c58c6b421e6"

],

 "queued": [],

 "started": []

}

Returns information about jobs from the services. It contains the unique ids for 4 types of jobs;

failed, finished, queued, started.

An example response can be seen bellow:

GET /v1/service/jobs/{job_id}

{

 "finished": true,

 "meta": {

 "progress": "Finished inference"

 },

 "status": "finished"

}

Returns information about a specific job denoted by its unique id. Some meta information is

also contained in the response as reported by the background process. This resource can be

used to check the current status of background jobs.

GET /v1/service/jobs/worker

{

 "workers": [

 {

 "id": "e3b0c442-98fc-11e7-8f38-2b66f5e7a637",

 "pid": 1,

 "status": "idle"

 },

]

}

Returns a list of workers from the current service instance. The list also includes workers who

are no longer active; see the status from the response. Other information about the workers

are their unique ID and PID from the operating system.

POST /v1/service/jobs/worker

{

 "status": "workers started"

}

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 115/173

A background worker will be started every time a POST request is issued to this resource. The

maximum number of workers depends on the number of physical CPU cores available and a

modifier set as an environment variable called WORKER_THREASHOLD, which is set to 2 by

default.

If the maximum number of workers has been reached the following response will be given:

{

 "warning": "maximum number of workers active!",

 "workers": 4

}

DELETE /v1/service/jobs/worker

This resource enables the halting of workers. This resource needs to be accessed each time a

worker needs to be stopped.

Figure 54 presents the interaction between SAR and other SERRANO components. A typical

workflow will entail setting up EDE to analyse the monitoring data from the SERRANO

telemetry framework. Each anomalous event detected will be sent to a specialised Kafka topic

inside the Stream Handler.

From there, services such as the Resource Orchestrator can fetch the detected anomalies

together with the root cause analysis results represented by feature ranking computed using

Shapely values. This will allow for remediation actions to be taken as the SERRANO telemetry

framework names each metric/feature in such a way that the exact location can be easily

determined.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 116/173

Figure 54: Sequence Diagram of SAR Interactions

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 117/173

4.10 Secure Storage Use Case Integrated Functionality

The Secure Storage Use Case has been described in detail in Deliverable 2.4. Here, we only

included a brief description extracted from the aforementioned document, focusing on its

integration of SERRANO platform features and services. The material in this section is an

update of the version previously submitted in Deliverable 6.3. The changes from D6.3 are

mostly technical in nature as the general direction of the Use case has not changed. We have

added more details on how the integration with the different SERRANO platform services has

been performed. The evaluation of the use case is presented in Deliverable 6.8.

This UC focuses on providing secure and high-performance storage of files with lower latency

than a purely cloud-based approach. We have achieved this goal by extending SkyFlok with

on-premises edge devices that can act as storage locations. Most of the features showcased

by the UC are provided by the Secure Storage Service (also referred to as the SERRANO-

enhanced Storage Service in other deliverables). Section 4.8.1 describes the main S3-

compatible API offered by the service and briefly describes its interaction with other platform

services. In this section, we focus on the details of these interactions and present two

additional REST APIs.

From a high-level perspective, this UC involves the SERRANO platform’s orchestration and

telemetry services in two meaningful ways. First, the SERRANO telemetry mechanism collects

data from the edge storage locations regarding their status, availability, cost, latency, etc.

Similar data is collected about cloud storage resources, published by the On-premises storage

gateway (Gateway henceforth). Second, the UC relies on the orchestration mechanisms to

deploy the client applications that will utilize the storage services. The SERRANO orchestration

mechanisms receive the user intent, which is then translated into a storage policy describing

how and where the application’s data should be stored. The translation is done using

algorithms implemented by the Resource Optimization Toolkit, utilizing telemetry data

regarding cloud and edge storage locations. The application can then use the automatically

created storage policy when creating an S3 bucket in a manner similar to Amazon Web

Services’ LocationConstraint mechanism.

The Gateway is a performance-critical component, given its role in processing file operations.

Hence, the designed solution uses hardware acceleration for encrypting TLS connections by

leveraging Nvidia Bluefield cards, when available, to provide low-latency access to files for a

large number of concurrent users. This reduces some of the load on the CPU and may increase

the number of concurrently supported connections when the CPU is the bottleneck. In

addition, it uses FPGAs to accelerate erasure coding. This leads to further CPU offloading as

well as a reduction of processing time. We should note that as part of WP4, a GPU-accelerated

version of the encryption algorithm has also been developed. We have not included this in the

Gateway due to its somewhat limited practical benefit.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 118/173

4.10.1 Integration details and REST APIs

The Storage Policy API allows the platform’s users and the SERRANO Resource Orchestrator

to manage storage policies. Figure 55 presents the list of supported endpoints that allow

creating, modifying, deleting, listing, and retrieving storage policies. A storage policy is like a

recipe. It is the result of the translation of an application’s storage task’s requirements to a

concrete storage resource allocation. Storage policies can also be created directly using the

REST API for more advanced service users. Each S3 bucket has a storage policy applied to it.

Thus, application developers can freely create several types of policies and buckets depending

on their requirements. For example, an analytics application that processes a large amount of

ephemeral data may have a non-encrypted, low redundancy fast edge-based policy for its

inputs and an encrypted, cloud-based high redundancy policy for its outputs.

Figure 55: Storage Policy API REST endpoints

The ARDIA framework developed in Work Package 5 contains both the definitions of the

Application Model used to express the intent and the Unified Resource Model used to express

the characteristics of the storage resources.

IP(s)/Port(s)
https://on-premise-storage-gateway.services.cloud.ict-
serrano.eu/storage_policy

Publicly
accessible (y/n
and other details)

The IP is publicly accessible, and authentication is performed using the same
credentials as the Secure Storage API. Chocolate Cloud has made credentials
available to all partners who wished to access the service.

Type of API REST, JSON requests and responses

API
documentation

https://github.com/ict-serrano/On-Premise-Storage-
Gateway/blob/master/openapi.json,
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/docs

Figure 56 presents an example of a storage policy describing which storage locations to use

(referred to in the JSON request as backends for cloud storage locations and edge_devices for

SERRANO edge devices) and what encryption and erasure coding schemas to apply. This

example shows a hybrid policy that utilizes 3 SERRANO edge devices deployed to the UVT K8s

cluster and a single cloud location in a 3+1 erasure-coded configuration. For encryption, AES-

256 is used. Compression is performed using the DEFLATE algorithm at level 7.

https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/storage_policy
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/storage_policy
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/openapi.json
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/openapi.json
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/docs

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 119/173

Figure 56: Sample storage policy file

The Resource and Telemetry API is used to expose information about the storage locations.

This is used by the SERRANO Resource Orchestrator (through the Telemetry Service) as input

when matching storage tasks with storage policies and as input data for creating new storage

policies. It is also used by the Telemetry API to monitor the state of the storage locations as

resources of the SERRANO platform. Figure 57 shows the two endpoints used to list cloud and

edge storage locations.

The parameters exposed for each location include the following static characteristics:

● provider name: Google, Amazon, ….

● geographic location – GPS coordinates

● country/city

● GDPR compliance

● storage cost in $ / GB / month

● ingress cost in $ / GB

● egress cost in $ / GB

storage_policy = {

 "name": "Hybrid-storage-policy",

 "description": "This is a hybrid storage policy that utilizes 3 SERRANO edge
 devices deployed to the UVT K8s cluster and a single cloud location, in a
 3+1 erasure coded configuration. AES-256 encryption and DEFLATE compression
 are configured.",

 "edge_devices": [1,2,3],

 "backends": [144],

 "redundancy": {

 "scheme": "RLNC",
 "redundant_packets": 1
 },

 "compression": {

 "scheme": "DEFLATE”,
 "level": 7
 },

 "encryption": {

 "scheme": "AES",
 "key_size": 256,
 "block_mode": "GCM"
 }
}

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 120/173

Several dynamically measured parameters have also been added:

● upload errors in the last 12 months,

● download errors in the last 12 months,

● time taken to download 1B, used to estimate read latency,

● time taken to upload 1B, used to estimate write latency,

● time taken to download 1MB, used to estimate read throughput

● time taken to upload 1MB, used to estimate write throughput.

The dynamic parameters are measured using a custom solution developed as part of SERRANO

and described in greater detail in Section 4.8.1.1. The measurement results are the same as

those published to the general public on Chocolate Cloud’s website

https://www.skyflok.com/backend-performance/.

Figure 57: Resource and Telemetry API (exposed by On-premises Storage Gateway) REST endpoints

A second endpoint lists the static characteristics of SERRANO edge devices. These are used by

the AI-enhanced Service Orchestrator and Resource Orchestrator to distinguish between the

different SERRANO edge devices they manage in the K8s clusters they are deployed in:

● unique identifier used in storage policies,

● name,

● description,

● cluster identifier,

● storage URL of S3 endpoints,

● team identifier,

● S3 region.

IP(s)/Port(s) https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/

Publicly
accessible (y/n
and other details)

The IP is publicly accessible, no authentication is performed.

Type of API REST, JSON requests and responses

API
documentation

https://github.com/ict-serrano/On-Premise-Storage-
Gateway/blob/master/openapi.json,
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/docs

https://www.skyflok.com/backend-performance/
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/storage_policy
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/openapi.json
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/openapi.json
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/docs

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 121/173

The SERRANO telemetry framework monitors the dynamic characteristics of these edge

resources. The custom MinIO instances that run the SERRANO edge devices expose these

characteristics through a Prometheus-compatible API. A wide range of metrics are collected,

including free capacity, storage use, number of objects stored, health metrics, and error rates.

It is also possible to set up alerts whenever an abnormal event occurs.

4.10.1.1 Sample requests and responses

We provide a sample request-response for listing the storage policies defined for an account.

Request:

GET /storage_policy/

[
 {
 “redundancy”: {
 “redundant_packets”: 1,
 “scheme”: “RLNC”
 },
 “description”: “Used to run measurements for D6.5. Edge-only.”,
 “team_id”: 535,
 “compression”: null,
 “encryption”: {
 “block_mode”: “GCM”,
 “key_size”: 256,
 “scheme”: “AES”
 },
 “edge_devices”: [
 4,
 6,
 7,
 8
],
 “name”: “measurements-edge-only”,
 “id”: 6216908948897792
 },

IP(s)/Port(s)
Accessed withing K8s cluster through a domain name that is specified by a StatefulSet.
A suffix of /minio/metrics/v2 is used.

Publicly
accessible (y/n

and other
details)

The MinIO instances are only accessible within the K8S cluster. Monitoring information
is available to all services within the cluster but can easily be restricted as needed.

Type of API
REST, JSON requests and responses. Message format defined by Prometheus:
https://prometheus.io/docs/prometheus/latest/querying/api/

API
documentation

https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-
prometheus.html

https://github.com/minio/minio/blob/master/docs/metrics/prometheus/README.md

https://prometheus.io/docs/prometheus/latest/querying/api/
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-prometheus.html
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-prometheus.html
https://github.com/minio/minio/blob/master/docs/metrics/prometheus/README.md

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 122/173

 {
 “redundancy”: {
 “redundant_packets”: 1,
 “scheme”: “RLNC”
 },
 “description”: “Used to run measurements for D6.5. Cloud-only.”,
 “team_id”: 535,
 “compression”: null,
 “encryption”: {
 “block_mode”: “GCM”,
 “key_size”: 256,
 “scheme”: “AES”
 },
 “backends”: [
 22,
 112,
 39,
 125
],
 “name”: “measurements-cloud-only”,
 “id”: 6238940956721152
 }
…
]

We also provide a sample for fetching the cloud locations.

Request:

GET /cloud_locations/

[
 {
 “location”:”Iowa”,
 “country”:”United States”,
 “countrycode”:”US”,
 “is_gdpr”:false,
 “storage_price”:20.0,
 “download_price”:120.0,
 “upload_price”:0,
 “lat”:41.8780025,
 “lng”:-93.097702,
 “cloud_provider_name”:”Google Cloud Platform”,
 “cloud_provider_jurisdiction”:”United States”,
 “cloud_provider_url”:https://cloud.google.com/,
 “upload_errors_in_last_12_months”: 0,
 “download_errors_in_last_12_months”: 0,
 “rtt_upload_1B_ms”: [252, 248, … 230],
 “rtt_upload_1MB_ms”: [1556, 2167, …1474],
 “rtt_download_1B_ms”: [618, 652, … 626],
 “rtt_download_1MB_ms”: [1160, 1214, … 1162]
 },
 …
 {
 “location”:”Marchtrenk”,

https://cloud.google.com/

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 123/173

 “country”:”Austria”,
 “countrycode”:”AT”,
 “is_gdpr”:true,
 “storage_price”:null,
 “download_price”:null,
 “upload_price”:0,
 “lat”:48.1969259,
 “lng”:14.0833296,
 “cloud_provider_name”:”Ventus Cloud”,
 “cloud_provider_jurisdiction”:”Switzerland”,
 “cloud_provider_url”:https://ventuscloud.eu/,
 “upload_errors_in_last_12_months”: 0,
 “download_errors_in_last_12_months”: 0,
 “rtt_upload_1B_ms”: [112, 108, … 209],
 “rtt_upload_1MB_ms”: [450, 595, … 694],
 “rtt_download_1B_ms”: [100, 117, … 139],
 “rtt_download_1MB_ms”: [248, 252, … 349]
 }
]

4.10.1.2 Integration with acceleration features developed in WP3 and WP4

Whenever a Nvidia Data Processing Unit (DPU) is available, the On-premises Storage Gateway

can perform the TLS encryption directly on this resource for outgoing connections. This CPU-

offloading technique increases the Secure Storage Service’s performance in scenarios with a

CPU bottleneck. Integration has been achieved by building a custom version of the OpenSSL

3.0.0 library. This library is loaded into the container and automatically detects the available

HW resources. If an appropriate DPU is detected and HW TLS offloading is enabled,

computations related to TLS encryption are performed on the DPU. To more accurately

measure and better separate CPU load associated with TLS encryption, the OpenSSL library is

loaded by nginx, rather than the Gateway’s Python application. Nginx acts as a TLS termination

proxy, forwarding incoming HTTPS requests to the Python application as HTTP requests

through the host's loopback interface.

Figure 58 shows an overview of the deployment used to evaluate the integration. Host

machine 512 has the Gateway in two flavours: one with SSL and a baseline one with no SSL,

both running inside Docker containers12. Host machine 513 represents the clients and is able

to simulate a large number of parallel requests. Both machines are equipped with an Nvidia

DPU.

12 Dockerfiles used to run the Gateway with TLS offloading and without: https://github.com/ict-serrano/On-
Premise-Storage-Gateway/blob/master/Dockerfile_custom_openssl_kTLS
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/Dockerfile_custom_openssl_noTLS

https://ventuscloud.eu/
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/Dockerfile_custom_openssl_kTLS
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/Dockerfile_custom_openssl_kTLS
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/Dockerfile_custom_openssl_noTLS

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 124/173

Figure 58: Overview of the integration of TLS offloading into the On-premises Storage Gateway

The integration of the TLS encryption is done by utilizing the DOCA DPU software development

kit (SDK), which enables fast and reliable integration of the TLS offloading processes into the

DPU. As a result, the specific technical details of the TLS system remain irrelevant to the

developer, who, simply by employing the provided libraries, can leverage the advantages of

TLS offloading.

Figure 59: DOCA DPU utilization in SERRANO

The use case involves the movement of a large amount of data, in the form of uploaded and

downloaded files. The Gateway needs to compress, encrypt, and erasure code the files to

preserve their privacy and reliability in a cost-effective manner. To avoid these data processing

tasks becoming a performance bottleneck, the use case employs the techniques developed as

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 125/173

part of Work Package 4. The integration of FPGA-accelerated erasure coding has been

achieved through a pluggable dynamically loaded software library13. To be able to call the

library from the Gateway’s Python code, a set of bindings has been developed using ctypes14.

This provides a very efficient solution that avoids unnecessary copying of data between the

two language environments by using C compatible data types. Given the technical limitations

of the Xilinx runtime, we have created a custom Docker image15.

The task of encrypting and decrypting data is performed by the AES-GCM encryption and

decryption algorithms. Moreover, these two algorithms are accelerated in cloud (NVIDIA Tesla

T4) and edge (NVIDIA AGX Xavier) GPU devices, leading to an execution time speedup up to

229x.

The erasure code tasks of encoding and decoding the encrypted and decrypted data have been

accelerated in cloud (Xilinx Alveo U50) and edge (Xilinx ZCU102 MPSoC) FPGA devices, leading

to an execution time speedup up to 35.9x. The execution of the corresponding algorithm on

cloud or edge devices is determined by the SERRANO orchestration mechanisms based on the

user requirements for energy efficiency and performance as well as based on the availability

of the devices deployed in the SERRANO’s infrastructure. Additional details regarding the

acceleration of the algorithms of this use case can be found in D4.1. GPU-accelerated

encryption algorithms have not been integrated with the Gateway. Given that the UC is I/O

heavy and modern CPUs have dedicated functionality related to AES encryption, they have

limited practical benefit in the specific context of the UC.

4.10.1.3 Interfaces created to aid in evaluating the use case

Throughout the development of the use case, we strived to make its features work seamlessly

and transparently for the end user. However, to aid in the automation of measurements and

to provide low-level remote control of features such as TLS offloading, we have also added a

set of REST endpoints, as shown in Figure 60. The Gateway’s code has been instrumented to

measure the time taken by different processes in the file upload and download workflows. It

also interacts with the underlying OS through a series of Bash scripts that make it possible, for

example, to change the number of nginx workers, write and read measurement data to and

from local storage, change whether the kernel TLS HW TLS-offloading is enabled on the

Network Interface Card. We have also added a pair of endpoints to select whether a CPU-

based or an FPGA-based erasure coded library should be loaded dynamically.

13 FPGA-accelerated erasure coding library used by the Gateway: https://github.com/ict-serrano/On-Premise-
Storage-Gateway/tree/master/auth_erasure_coding_library
14 Python bindings using ctypes: https://docs.python.org/3/library/ctypes.html
15 Dockerfile used to run the Gateway with FPGA-accelerated erasure coding: https://github.com/ict-serrano/On-
Premise-Storage-Gateway/blob/master/Dockerfile_AUTH

IP(s)/Port(s) https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/

Publicly
accessible (y/n
and other details)

The IP is publicly accessible, no authentication is performed.

https://github.com/ict-serrano/On-Premise-Storage-Gateway/tree/master/auth_erasure_coding_library
https://github.com/ict-serrano/On-Premise-Storage-Gateway/tree/master/auth_erasure_coding_library
https://docs.python.org/3/library/ctypes.html
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/Dockerfile_AUTH
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/Dockerfile_AUTH
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/storage_policy

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 126/173

Figure 60: List of REST endpoints used in the evaluation of the Secure Storage Use Case

Results of the integrations as well as a detailed description of the measurement setups can

be found in Deliverable 6.8 (M36).

We provide a sample request-response for retrieving the CPU time utilized by the nginx

workers.

Request:

GET /storage_policy/

Response:

9647 (nginx) S 40 40 40 0 -1 4194624 237 0 0 0 0 0 0 0 0 -20 1 0 650130789 1123532
8 781 18446744073709551615 94616585252864 94616589957457 140732034551456 0 0 0 0 1
073745920 402745863 1 0 0 17 13 0 0 0 0 0 94616590894512 94616591263776 9461662130
5856 140732034554756 140732034554762 140732034554762 140732034555881 0
9646 (nginx) S 40 40 40 0 -1 4194624 378 0 0 0 2 12 0 0 0 -20 1 0 650130789 112353
28 1563 18446744073709551615 94616585252864 94616589957457 140732034551456 0 0 0 0
1073745920 402745863 1 0 0 17 19 0 0 0 0 0 94616590894512 94616591263776 946166213
05856 140732034554756 140732034554762 140732034554762 140732034555881 0
9645 (nginx) S 40 40 40 0 -1 4194624 237 0 0 0 0 0 0 0 0 -20 1 0 650130789 1123532
8 781 18446744073709551615 94616585252864 94616589957457 140732034551456 0 0 0 0 1
073745920 402745863 1 0 0 17 14 0 0 0 0 0 94616590894512 94616591263776 9461662130
5856 140732034554756 140732034554762 140732034554762 140732034555881 0
9644 (nginx) S 40 40 40 0 -1 4194624 451 0 0 0 16 47 0 0 0 -20 1 0 650130789 11526
144 1774 18446744073709551615 94616585252864 94616589957457 140732034551456 0 0 0

Type of API
REST, simple text-based requests and responses, some measurement results
as CSV files

API
documentation

https://github.com/ict-serrano/On-Premise-Storage-
Gateway/blob/master/openapi.json,
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/docs

https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/openapi.json
https://github.com/ict-serrano/On-Premise-Storage-Gateway/blob/master/openapi.json
https://on-premise-storage-gateway.services.cloud.ict-serrano.eu/docs

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 127/173

0 1073745920 402745863 1 0 0 17 26 0 0 0 0 0 94616590894512 94616591263776 9461662
1305856 140732034554756 140732034554762 140732034554762 140732034555881 0
9647 (nginx) S 40 40 40 0 -1 4194624 239 0 0 0 0 0 0 0 0 -20 1 0 650130789 1123532
8 781 18446744073709551615 94616585252864 94616589957457 140732034551456 0 0 0 0 1
073745920 402745863 1 0 0 17 13 0 0 0 0 0 94616590894512 94616591263776 9461662130
5856 140732034554756 140732034554762 140732034554762 140732034555881 0
9646 (nginx) S 40 40 40 0 -1 4194624 378 0 0 0 2 12 0 0 0 -20 1 0 650130789 112353
28 1563 18446744073709551615 94616585252864 94616589957457 140732034551456 0 0 0 0
1073745920 402745863 1 0 0 17 50 0 0 0 0 0 94616590894512 94616591263776 946166213
05856 140732034554756 140732034554762 140732034554762 140732034555881 0
9645 (nginx) S 40 40 40 0 -1 4194624 239 0 0 0 0 0 0 0 0 -20 1 0 650130789 1123532
8 781 18446744073709551615 94616585252864 94616589957457 140732034551456 0 0 0 0 1
073745920 402745863 1 0 0 17 46 0 0 0 0 0 94616590894512 94616591263776 9461662130
5856 140732034554756 140732034554762 140732034554762 140732034555881 0
9644 (nginx) S 40 40 40 0 -1 4194624 470 0 0 0 34 125 0 0 0 -20 1 0 650130789 1155
8912 1820 18446744073709551615 94616585252864 94616589957457 140732034551456 0 0 0
0 1073745920 402745863 1 0 0 17 59 0 0 0 0 0 94616590894512 94616591263776 9461662
1305856 140732034554756 140732034554762 140732034554762 140732034555881 0

The response contains the recorded stats of all nginx worker processes as provided by the

Linux kernel in /proc/{PID}/stat. For each process, there is a pair of entries corresponding to

the time right before and right after a measurement cycle. The example shows four processes.

4.11 Fintech Analysis Use Case Integrated Functionality

The specifics of this use case are thoroughly outlined in deliverables D2.4 (M16) and D6.3

(M18). Here, a concise synopsis is provided, emphasizing the incorporation of SERRANO

platform features and services.

InbestMe (INB) creates automated investment portfolios utilizing financial instruments like

stocks, ETFs, and bonds. The asset allocation in these portfolios is informed by a blend of

historical and current market data, aiming to meet specific investment goals within a set

timeframe.

The Fintech use case (UC) showcases InbestMe's Dynamic Portfolio Optimization (DPO)

application, where investment profiles are dynamically adjusted. This optimization hinges on

comprehensive market analysis paired with strategic investment planning to determine the

precise distribution of assets.

The SERRANO project serves as a cornerstone in enhancing the investment management UC,

offering a robust framework that greatly eases the deployment, management, and monitoring

of DPO applications. Through SERRANO, the complexities of DPO are streamlined, facilitating

a more efficient and user-friendly experience for investment managers. Moreover, SERRANO's

contribution is pivotal in transforming investment management into a service (SaaS),

particularly with its secure storage extension designed to safeguard third-party data. This

security feature ensures that all client information is protected, fostering trust and reliability

in the system. Furthermore, the UC stands to gain from SERRANO's ability to expedite a variety

of computationally demanding tasks through cloud-based acceleration. This not only

enhances performance but also optimizes the responsiveness of the DPO process, thereby

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 128/173

underscoring the invaluable support that SERRANO provides in the sophisticated realm of

investment management.

Furthermore, the SERRANO platform is a key advantage for InbestMe, as it will cut cloud costs

and boost the quality of services provided. With SERRANO, InbestMe can easily set up multiple

versions of its investment management platform on various cloud resources. This capability

not only saves money but also simplifies operations.

Additionally, SERRANO enables more precise analysis, which is crucial for building investment

portfolios with less risk and more potential for profit. At present, InbestMe faces challenges

in analysing all the available data thoroughly. With SERRANO, InbestMe can look into more

data and use algorithms for prediction and forecasting, namely Savitzky–Golay and Kalman

filter, Wavelet transform, and Black–Scholes model with improved precision and accuracy,

thus making better-informed decisions for portfolio management.

The following Figure 61 illustrates how the DPO application is integrated with select SERRANO

components to meet the objectives and requirements of the use case as detailed in

Deliverable 2.4.

Figure 61: DPO application structure and integration with SERRANO components

4.11.1 Integration details and REST APIs

The DPO service utilizes the SERRANO SDK for implementation, encapsulating the application

within containers. This is supported by a Jenkins pipeline for continuous integration and

delivery, all hosted on the Kubernetes server:

UVT_KUBERNETES_PUBLIC_ADDRESS= k8s.serrano.cs.uvt.ro'

To ensure smooth deployment and oversight of services/microservices, the necessary details

of execution prerequisites are conveyed to the AI-enhanced Service Orchestrator using the

Application Model, complemented by the deployment description in YAML format. The

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 129/173

orchestration tools within SERRANO, namely the AI-enhanced Service Orchestrator and the

Resource Orchestrator, will interpret these specifications into runtime parameters tailored for

the SERRANO infrastructure and align them with the optimal resources via the Resource

Optimization Toolkit.

Moreover, the developed DPO services use the SERRANO acceleration mechanisms in

edge/cloud and HPC environments, facilitating access to SERRANO's accelerated kernels over

heterogeneous computational resources. These mechanisms provide enhanced performance

and optimization of the kernels used by the UC (Savgol, Wavelet, Kalman, Black Scholes).

Additionally, the Secure Storage service, compatible with S3, is utilized for storing essential

data such as historical asset prices, investment profile details, strategy rules, and asset class

information. This approach ensures third-party data protection and simplifies access to large

datasets.

The DPO features a single API which is publicly accessible via the provided link:

https://dpoapp.services.cloud.ict-serrano.eu/api/v1/dpoapp/

By navigating to the provided link, users are directed to the DPO's cloud service, where they

can initiate the application by entering the required information in JSON format into the

Content box, as depicted in Figure 62. Descriptions for each input value are provided below in

the box.

Figure 62: DPO Landing Page and example input

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 130/173

Input JSON
{
 end_date: DateTime
 investment_profiles: Url1ToSkyFlokStorage: String
 asset_classes: Url2ToSkyFlokStorage: String
 strategy_rules: Url3ToSkyFlokStorage: String
 historical_prices: Url4ToSkyFlokStorage: String
 kernel: String
}

- EndDate: Historical Asset Data look up to date

- investment_profiles: Path to Historical Asset Data file stored in SkyFlock
cloud storage

- asset_classes: Path to Asset Classes Data file stored in SkyFlock cloud
storage

- strategy_rules: Path to Strategy Rules Data file stored in SkyFlock cloud
storage

- historical_prices: Path to Historical Price Data file stored in SkyFlock
cloud storage

- kernel: kernel construct portfolios of DPO – [all, wavelet, savgol, kalman,
blackscholes]

Once the "POST" button is clicked with all the required information filled in the Content box,

the DPO application begins its operation. Upon completion, the user is presented with a page

that includes a link to download a zip folder. This folder contains three distinct files, each

offering valuable insights: Backtesting Results, Asset Distributions for each Investment Profile,

and Different scenarios for each profile with corresponding asset recommendations.

Additionally, the results page provides detailed execution information, such as which

computational kernel was utilized, the number of assets analyzed, and the total duration of

the execution process.

4.12 Anomaly Detection in Manufacturing Settings

Integrated Functionality

This use case has been described in detail in Deliverable 2.4. This section includes a brief

description, extracted from the aforementioned document, focusing on its integration of

SERRANO platform features and services.

The UC is developing a Data Processing Application (Figure 63) to analyse real-time signals

from the ball-screw sensors and check for anomalies, detect anomalous behaviours that may

affect the part quality, and predict imminent failures. The application has been divided into

two different services that analyse the data coming from the position sensors and the data

from the acceleration sensors of the ball screw.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 131/173

• Position Processor Service: Classifies the difference between the expected and the

actual position during a time interval as normal or anomalous. The system adapts to

the expected degradation of the component during its useful life. Data is gathered

from position sensors (linear and angular).

• Acceleration Processor service: Classifies the vibration signal as normal or anomalous.

The system adapts to the expected degradation of the component during its useful life.

Data is gathered from acceleration sensors (vibration data).

Figure 63: Developed Data Processing application

For an effective integration with the SERRANO project, both services are divided into three

different microservices.

• Model Inference: Loads the trained classifier model and classifies the new incoming

stream data, predicting whether the data is anomalous or not.

• Data Manager: Manages the streaming data from the ball screw sensors and the

predictions that the Model Inference microservice makes. The application ensures that

a limited number of data and predictions are stored as historical data.

• Classifier Training: Re-trains the model when the ball screw conditions change, which

is used for classification by the Model Inference application. This re-train is done using

the historical data managed by the Data Manager service.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 132/173

In addition, in order to obtain streaming data from real machines, at IDEKO's facilities, a test

bench has been built with two sensorized ball screws simulating data from machines in a real

scenario (Machine ball screw simulator).

The following image shows an integration view of the data processing application (purple

squares) developed at IDEKO to detect anomalies in the ball screw, with the integration of

some of the components available in SERRANO (green squares) to achieve the use case

requirements and goals (described in detail in Deliverable 2.4 [84]).

Figure 64: Interactions between the use case developed services and core components of the SERRANO

platform

The services developed by IDEKO for anomaly detection have been deployed in container-

based applications on the SERRANO platform through the Allien4Cloud platform Error!

Reference source not found., more specifically using the SERRANO Orchestrator plugin

developed to interpret the TOSCA [80] language and interact with the SERRANO framework.

The SERRANO extension to the TOSCA specification models Application intent elements (part

of the ARDIA framework), and IDEKO describes the services’ constraints, high-level

requirements, and the deployment configuration of the services/microservices (aka

deployment descriptor YAML). Static deployment descriptors have been provided during the

project, and this information has been abstracted in the SERRANO TOSCA extension. The

Orchestrator plugin can dynamically generate these descriptors based on the selected

location. For example, configuration parameters are generated based on which instance of a

Data Broker is used (a local one or the SERRANO-provided instance). The plugin allows for

deployment using either a vanilla Kubernetes cluster (for example, during the development

phase) or the SERRANO continuum (during the operations phase). When deploying on the

SERRANO Continuum, the Orchestrator plugin prepares the intent for the AI-enhanced Service

Orchestrator (AISO), which uses historical telemetry data and machine learning models to

select and rank different placements for the services and provides this ranking to the Resource

Orchestrator. The latter, along with the Resource Optimization Toolkit (ROT), allocates the

platform resources so that they can satisfy the services’ requirements. The Orchestration

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 133/173

Driver handles the actual deployment of the application in the selected platform based on the

high-level deployment description from the Resource Orchestrator.

The streaming data integration with the SERRANO platform is done through the Data Broker

component (detailed in Section 4.4). Data Broker provides an interface based on the MQTT

protocol to facilitate the publication and consumption of the data generated from the

simulated machines’ ball screws to use case applications/services and other SERRANO

components.

In addition, the developed anomaly detection services leverage the SERRANO SDK to facilitate

their seamless access to the SERRANO accelerated kernels. The SDK abstracts the integration

with the SERRANO hardware acceleration mechanisms in edge/cloud (Section 4.7) and HPC

(Section 4.6). These SERRANO developments provide better performance and optimization of

the highly computational intensive kernels used (e.g., DTW, KMeans, KNN, or FTT) by the

Model Inference and Classifier Training services. Moreover, the S3-compatible Secure Storage

(detailed in Section 4.9) interface is used to store the last N streaming data received through

the Data Broker. This way, the required data is stored and accessible by all SERRANO

components and the use case services.

The idea is to reduce the classifier training time and the needed time to make a new prediction

through the streaming data. This enables the early detection of possible imminent failures of

the ball screw, eliminating also their occurrence. In addition, it will provide greater control of

the health status of the ball screw in real-time. The SERRANO platform is needed since the

current techniques and resources available at the edge cannot support the above operations.

4.12.1 Integration details and REST APIs

In order to execute the developed services/microservices and obtain the ball-screws’ status

assessment without stopping the machine in real time scenarios, this use case capitalizes on

several SERRANO platform services (Figure 65). This approach ensures service quality in terms

of latency, constantly adapting to the current demand of resources.

The Machine Ball Screw Simulator that is deployed at IDEKO’s facilities collects the sensor

data, transform it, and then publishes it to the Data Broker via the MQTT protocol. At this

point, all the subscribed elements to the cycle batch data topics (the Model Inference and the

Data Manager) receive this data.

Thus, before starting the analysis of the streaming data sent through the Machine Ball Screw

Simulators, the Position and Acceleration Processor Service microservices must be subscribed

to their corresponding topics for every ball screw of every machine. To this end, MQTT

wildcards are used to subscribe to all topics that match the necessary pattern.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 134/173

Figure 65: Integration with SERRANO components

On the one hand, the Model Inference microservice subscribes to three topics: “training flag”,

“model uploaded flag”, and “cycle batch data”. On the other hand, Classifier Training

subscribes just to the “training flag” topic. Last but not least, the Data Manager subscribes to

“prediction” and “cycle batch data” topics. To achieve this, they subscribe to specific MQTT

topic patterns, where the special character ‘+’ represents anything. These subscriptions are

designed to identify a specific machine and ball screw. In order to differentiate between topics

related to the Position and Acceleration Processor Services, the topic patterns specify the

nature of data using the placeholder {nature of data}. The previously mentioned topics are

translated into the following topic patterns:

● Training flag: data/+/+/ {nature of data} /training/flag

● Model uploaded flag: data/+/+/ {nature of data} /training/model_upload

● Cycle batch data: data/+/+/ {nature of data} /cycle

● Prediction: data/+/+/ {nature of data} /inference/prediction

The Data Manager, which is subscribed to the Data Broker, receives the data batch and saves

it as a CSV file in a volume. If this file exists, it is opened, and the latest data received is inserted

as a new column. The application ensures that a limited number of data is stored as historical

data in columns. This limited number of columns is defined in the microservice’s configuration

file. Thus, at the end, a sliding window of the last N number of data is stored. So, depending

on the available data columns in the file, if necessary, the oldest column is removed before

appending the new data. The CSV file in the volume is uploaded into the secure storage

through the following method of the SERRNO SDK, replacing the previous file if it exists, when

a new model needs to be trained. This happens when the percentage of anomalous signals

exceeds the configured threshold.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 135/173

// SERRANO's Secure Storage mechanism (Store data into a defined bucket)

result =secureStorage.upload_object(bucket_name, file_with_abs_path, data)

At the same time, the Model Inference microservice, also subscribed to the MQTT Broker,

reads streaming data (input_file) and loads the classifier model (position and labels) from a

known path. Using that pre-trained model classifies the data as anomalous or normal. Before

the service can request the on-demand execution of SERRANO-accelerated kernels, it has to

describe the required input data to the SERRANO platform services. To this end, the SERRANO

SDK provides a set of methods that facilitate the seamless move of input data to SERRANO

storage services. The following example shows the corresponding method for describing the

input data for the SERRANO-accelerated KNN kernel.

// SERRANO's acceleration mechanisms
// Provide required input data for the SERRANO-accelerated KNN kernel

payload = serrano_kernels.knn_pack_data(position = dataset_file,

 labels = labels_file,

 input_file = parsed_data)

The Model Inference service can classify either using typical edge resources or by leveraging

the SERRANO's acceleration mechanisms through their exposed API to reduce execution time.

In the latter case, it uses the SERRANO SDK method to request the on-demand execution of a

SERRANO accelerated kernel. For this operation, it provides the name of the kernel (e.g.,

kernelNames.SERRANO_KERNEL_KNN) along with the input data description that was

returned from the previous method (e.g., payload). Next, the service calls the

serrano_faas_kernel_results() method to retrieve the results.

// SERRANO's acceleration mechanisms
// Request the execution of the SERRANO-accelerated KNN Kernel
req = serrano_kernels.serrano_faas_kernel(kernelNames.SERRANO_KERNEL_KNN,
 payload)

// Get the prediction result from the kernel execution
result = json.loads(serrano_kernels.serrano_faas_kernel_results(req["uuid"]))

After making the classification (result), the service publishes the prediction to the Data Broker,

and the Data Manager service saves that prediction. As it happens with the cycle batch data,

the Data Manager stores a sliding window of the last N number predictions. At this point, the

Model Inference microservice also publishes performance metrics (the time needed to make

the prediction) that is then displayed on the internal statistics Grafana Dashboard (Figure 68).

After saving the prediction, the Data Manager checks if the anomalous percentage value

exceeds 80% of the last number of predictions. If not, it repeats the described process, but if

it is, the data manager uploads the sliding window of the last N number of data to the secure

storage and publishes a retrain flag in the Data Broker.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 136/173

// SERRANO's Secure Storage mechanism (Store data into a defined bucket)

result = secureStorage.upload_object(bucket_name, file_with_abs_path, data)

Moreover, the Data Manager microservice also publishes performance metrics, such as the

percentage of the anomalous and normal cycle batches, that is then displayed on the use case

Dashboard. The Classifier Training, which is subscribed to the training flag, receives a “1” as a

flag value that triggers the training pipeline. During this training pipeline, the acceleration

mechanisms at the selected resources retrieve the label data (labels) using the corresponding

Secure Storage service methods provided by the SERRANO SDK. Also, the acceleration

mechanism retrieves the last stored filename in S3 (position).

// SERRANO's Secure Storage mechanism (Get data into a defined bucket)

position = secureStorage.get_object(bucket_name, file_with_abs_path)

// SERRANO's Secure Storage mechanism (Get data into a defined bucket)

labels = secureStorage.get_object(bucket_name, file_with_abs_path)

// SERRANO's acceleration mechanisms (Retrieve data from S3 secure storage)

payload = serrano_kernels.kmeans_pack_data(position=file_path,labels=labels_file)

The Secure Storage returns the historical data and the acceleration mechanisms label the

retrieved data (payload), training a cluster using KMEANS based on DTW metric accelerated

kernel (kernelNames.SERRANO_KERNEL_KMEANS).

// SERRANO acceleration mechanisms (training a cluster using KMEANS based on DTW)

d_labels = serrano_kernels.serrano_faas_kernel(kernelNames.SERRANO_KERNEL_KMEANS,
 payload)

After labelling the data, the service securely stores the computed labels in the Secure Storage

service and publishes performance metrics to the Data Broker.

// SERRANO Secure Storage mechanism (Store data into a defined bucket)

Result = secureStorage.upload_object(bucket_name, file_with_abs_path, d_labels)

// SERRANO acceleration mechanisms (Publish results in Data Broker)

results = serrano_kernels.serrano_faas_kernel_results(req["request_uuid"])

Upon completion of model training and evaluation, the model upload flag is published. At this

point, the Classifier Training microservice also publishes relevant performance data, such as

the time required for model training), which is then presented on the internal Dashboard.

 The Model Inference, subscribed to the model upload flag, receives a “1” as a flag value, which

triggers the initiation of a new model creation process. To achieve this, the service downloads

the historical data and labels from the Secure Storage service, utilizing the provided methods.

The retrieved data are then utilized to build up the KNN classifier.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 137/173

// SERRANO's Secure Storage mechanism (Get data into a defined bucket)

labels = secureStorage.get_object(bucket_name, file_with_abs_path)

Figure 66 shows a detailed workflow for integrating the use case services within the SERRANO

platform components.

Figure 66: Integration workflow

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 138/173

As an example of the tests carried out internally at IDEKO, the topics generated for

communication between the microservices are shown through the MQTT Broker (Figure 67),

as well as the published and received data from the streaming data generated in the test

bench.

Figure 67: Internal topics generated for communication between the microservices through the MQTT Broker

In addition, a Grafana Dashboard (Figure 68) for aggregated results and statistics (e.g.,

inference time, classifier time, predictions, classifier training accuracy, etc.) is developed to

visualize the status of the ball screw in real time.

Figure 68: Internal website Dashboard for aggregated results and stats

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 139/173

4.12.2 UC Integration with Data Broker

The use case leverages the capabilities of the Data Broker component through the exposed

publish-subscribe interface (Figure 69). More specifically, it uses the MQTT protocol (i.e., the

standard for IoT messaging) to forward the data generated by the use case machines to the

services deployed within the SERRANO platform. To this end, a connector has been created in

the machine ball screw simulation application that publishes the data in the SERRANO Data

Broker component, from where the services/components consume the data through the

corresponding subscriptions, as explained in the previous Section 4.12.1.

The results (e.g., predictions, time, data, etc.) also are exchanged through the MQTT protocol

provided by the Data Broker to be stored internally and then used by a dedicated Grafana

Dashboard (in order to visualize and check the status of the ball screw in real time.

Figure 69: Communication between the sending of streaming data through the MQTT protocol (Data Broker)

to the SERRANO platform and how the results obtained are stored in an internal Dashboard

Below, some examples of the subscriptions of the different microservices to the topics

generated within the Data Broker are represented.

● Model Inference (Position Processor Service):

// Subscribed to the data topic to receive the streaming data and then classify
// them as anomalous or not

def on_connect(mqttc, obj, flags, rc):
 mqttc.subscribe("data/+/position/cycle", 0)

def on_message(mqttc, obj, msg):
 classify(msg.topic, msg.payload, mqttc)

● Data Manager (Position Processor Service):

// Subscribed to the data and prediction topics to receive the streaming data
// and predictions, managing data and predictions

def on_connect(mqttc, obj, flags, rc):
 mqttc.subscribe("data/+/position/cycle", 0)
 mqttc.subscribe("data/+/position/inference/prediction")

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 140/173

def on_message(mqttc, obj, msg):
 if msg.topic == "data/machine1/position/cycle":
 file_manager(msg.topic, msg.payload)
 elif msg.topic == "data/machine1/position/inference/prediction":
 prediction_manager(msg.topic, msg.payload)

● Classifier Training (Position Processor Service):

// Subscribed to the training flag topic to re-train and create new classifier
// model

def on_connect(mqttc, obj, flags, rc):
 mqttc.subscribe("data/+/position/training/flag", 0)

def on_message(mqttc, obj, msg):
 training(msg.topic, msg.payload, mqttc)

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 141/173

5 Development and Integration Environment

For completeness, some sections that existed in D6.3 have been repeated in the contents of
this chapter. The below information has been updated according to the current status.

SERRANO adopts and applies the Continuous Integration and Continuous

Delivery/Deployment (CI/CD) practices to set up a standardized process for developing and

releasing the software components of the SERRANO platform. In Continuous Integration

development environments, team members frequently integrate their new or changed code

with the mainline codebase. The CI/CD pipeline, which implements the underlying

methodology, includes methods and principles that enable development teams to deliver

high-quality code more frequently and reliably. This is accomplished by automating both

building and testing and by testing code locally, prior to testing the integration with mainline.

Therefore, Continuous Integration facilitates the release process in terms of speed, debugging,

and development cycle optimization.

Continuous Delivery is the next step in the CI/CD pipeline as an extension of Continuous

Integration. Continuous Delivery is the ability to transmit changes of all types, including new

features, configuration changes, bug fixes, and experiments, into production safely and

quickly in a sustainable way. In the Delivery phase, automated build tools are executed to

generate an artifact that will be delivered to the end-users. As a result, this step enables

frequent releases automatically and accelerates delivering high-quality software while

minimizing the risks associated with releasing software.

Continuous Deployment goes one step further than Continuous Delivery. The deployment

phase ensures that every change committed is applied in production automatically and

distributed to the end-users. This process utilizes the validated features in a staging

environment and deploys them into the production environment. Continuous Deployment

aim to release applications to end users faster and more cost-effectively by managing small,

incremental software changes which pass through the entire pipeline.

At a high level, all the described phases are techniques that implement the DevSecOps ideals.

DevSecOps is a set of practices that combines software development (Dev), security (Sec), and

IT operations (Ops) to improve communication and collaboration and automate the

integration of security at every phase of the software development lifecycle. Moreover, it aims

to shorten the systems’ development life cycle and provide continuous delivery with high

software quality, security, speed and efficiency based on the Agile methodology.

5.1 DevSecOps and Continuous integration/Continuous

Delivery practices

The following sub-sections contain the description of the practices that are part of the usual

development process that begins with the code being written on the developer’s IDE and ends

with the delivery of the application, which is packaged in a container image. The information

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 142/173

that is produced by Static Application Security Testing (SAST), Source Composition Analysis

(SCA), and Container Image Scanning in the CI/CD server(s) is used as input by vulnerability

management tools that facilitate the security assessment of applications.

Figure 70: Vulnerability management in CI/CD

5.1.1 Static Application Security Testing (SAST)

Static application security testing (SAST) is used to secure software by reviewing the source

code of the software to identify sources of vulnerabilities. SAST tools can check for quality

issues and there are cases that they can offer architectural testing as well. The earlier a

vulnerability is fixed in the SDLC, the cheaper it is to fix. However, early integration of SAST

generates many bugs, which might distract developers from features and delivery.

SAST is particularly useful for weeding out low-hanging fruits like SQL-Injection and Cross-Site

Scripting (XSS). Among the results, someone can find many false-positives that need manual

oversight to be managed.

Figure 71: SAST by SonarQube

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 143/173

SAST tools such as SonarQube [34] can be deployed locally as well as at a central location,

from where the scan results can be obtained. Other SAST tools such as SonarLint [35] can just

be installed on the IDE and provide real-time feedback and remediation guidance.

5.1.2 Software Composition Analysis (SCA)

Software Composition Analysis (SCA) is the process of identifying the components that

comprise a given piece of software. This is an essential part in identifying and reducing risk in

the software supply chain. This identification process begins from the production of a

Software Bill of Materials (SBOM), which can follow a standard such as OWASP CycloneDX

[36].

Figure 72: SBOM Operations using Dependency-Track

An example of the operations that the SBOM is involved, is visible in Figure 72. The most

important stages and components that appear in this example are the following:

• SBOM Production: CycloneDX Software Bill of Materials created during CI/CD or

acquired from suppliers

• SBOM Ingestion: SBOMs published to Dependency-Track [47] via REST, Jenkins plugin,

or uploaded through web interface

• SBOM Analysis: Analyzes components for security, operational, and license risk

• Continuous Monitoring: Continuously analyzes portfolio for risk and policy compliance

• Intelligence Streams: Produces real-time analysis and security events delivering

actionable findings to external systems

• Intelligent Response: Events delivered via webhooks, or chat-ops and findings

published to risk management and vulnerability aggregation platforms

SCA performs checks to identify vulnerable or outdated 3rd party libraries. Most software

nowadays is built on frameworks which causes the resulting software to comprise mostly of

third-party libraries. For example, software that uses Jackson can inherit the vulnerabilities of

this library, which need to be assessed to make important decisions.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 144/173

Figure 73: Severity assessment of Jackson vulnerabilities

5.1.3 Container Image Scanning

Image Scanning tools belong to Dynamic Application Security Testing (DAST) category of tools

and cannot provide a complete picture of vulnerabilities in an application but can detect

critical security vulnerabilities originating from various parts of the containerized service, such

as the application itself or the operating system. One such service that is used in SERRANO is

Trivy [43], which is described in Section 5.2.6.1.

5.1.4 Vulnerability Management

Vulnerability management is the "cyclical practice of identifying, classifying, prioritizing,

remediating, and mitigating" software vulnerabilities. Vulnerability management is integral to

computer security and network security and must not be confused with vulnerability

assessment.

In SERRANO, vulnerability management is facilitated through Jenkins plugins that integrate

the scan results of SonarQube (Section 5.2.4) and Dependency-Track (Section 5.2.7).

5.2 SERRANO Continuous Integration/Continuous Delivery

stack

The SERRANO Continuous Integration/Continuous Delivery stack is a collection of open-source

software components, which collectively aim to create an automated build system capable of

integrating changes performed by developers working on individual components.

The software components that comprise the SERRANO Continuous Integration/Continuous

Deployment platform have been deployed as Kubernetes pods on a Kubernetes cluster, as

depicted in Figure 74.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 145/173

Figure 74: SERRANO CI/CD components

5.2.1 Version Control System – GitLab

Version control, also known as source control, is the practice of tracking and managing

changes to software code. Version control systems (VCS) are software tools that help software

teams manage changes to source code over time. VCS keeps track of every modification to the

code in a special kind of database. It is a remote repository of files that comprise the source

code of a software application. If a mistake is made, developers can compare earlier versions

of the code to help fix the mistake while minimizing disruption to all team members. Git is one

of the most popular free and open-source distributed version control systems.

GitHub [37] is a software that provides remote access to Git repositories. It offers a web-based

graphical interface with several built-in features, such as version control, issue tracking, code

review, wiki, etc. Multiple developers can concurrently create, merge and delete parts of the

code they are working on independently, at their local system before applying the changes to

the shared GitHub repository.

For the needs of the SERRANO project, a dedicated and private GitHub organization named

“SERRANO” has been built, as depicted in Figure 75. Under this group, whose URL is

https://github.com/ict-serrrano, the code owners can create multiple repositories for the

SERRANO components. Each partner has the appropriate access rights, permissions, and

restrictions to create repositories, organize users in teams and upload their source code.

https://github.com/ict-serrrano

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 146/173

Figure 75: The SERRANO GitHub organization and its contents

Several GitHub user teams were generated to control access to the source code and scripts

related to the SERRANO software components. Each team has read/write access to

repositories that are named after the SERRANO individual tools. Each of these repositories

contains files that are used for the execution of the Continuous Integration and Continuous

Deployment tests. Such files are the following:

• Jenkinsfile: A text file that contains the definition of a Jenkins Pipeline, including the

steps that will be followed during the CI/CD process.

• Dockerfile: A text-based script of instructions that is used to create a container image.

• build.yaml: A YAML file that contains the definition of the Kubernetes Pod that will be

used in the Jenkins pipeline in the steps of building the tool.

Additionally, there is usually a folder that contain the helm charts to be used for deploying the

component. In case of a tool, such as a library, that can be imported or dynamically linked, a

HELM [51] chart is not generally applicable.

GitHub [37] provides native VCS features such as branches. Branching is the practice of

creating copies of programs or objects in development to work in parallel versions, retaining

the original and working on the branch or making different changes to each. In most

circumstances, a repository has one main, or master, branch from which each developer

working on a particular feature or bug patch produces a separate, divergent branch. When

the developers are finished with their source code changes, they merge their side branch back

into the main branch.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 147/173

Figure 76: Structure of a SERRANO component on GitHub

5.2.2 Continuous Integration – Jenkins

Jenkins [38] was selected as the Continuous Integration server of the CI/CD stack for

SERRANO. It operates as a Kubernetes deployment upon Kubernetes workers running on

dedicated servers on Hetzner [39] infrastructure and its URL https://serrano-jenkins.rid-

intrasoft.eu.

Continuous Integration is a software development practice where developers, as members of

a team, regularly merge their code changes into a central repository, leading to multiple

integrations per day. Continuous Integration process automates the integration of code

changes from multiple contributors into a single software project. Each integration cycle

introduces automated builds and unit tests on the latest code changes to immediately surface

any errors. The key goals of continuous integration are to find and address bugs quicker,

improve software quality and reduce the time it takes to validate and release new software

updates.

The steps in the Continuous Integration process are as follows:

• On their local repository, software engineers make changes to the source code.

• They commit the modifications to the shared repository after that.

• As changes are made, a notification is sent to the Continuous Integration server.

• The Continuous Integration server downloads the most recent source code, builds
the application, and runs unit and integration tests.

https://serrano-jenkins.rid-intrasoft.eu/
https://serrano-jenkins.rid-intrasoft.eu/

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 148/173

• The server also provides testable deployable artifacts.

• The Continuous Integration server gives the version of code it just built a build tag.

• The Continuous Integration server provides the development team with reports on
successful builds and tests, as well as notifications if a build or test fails.

• The issues will be resolved as soon as feasible by the team.

• Throughout the duration of the project, the server continues to integrate and
execute tests.

Figure 77: Jenkins Dashboard

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 149/173

A Jenkins pipeline is a set of events, workflows, or jobs that are connected in a certain order

within Jenkins Continuous Integration. These actions or tasks are connected to the

construction, testing, packaging, deployment, and storage functions. Moreover, Jenkins’s

pipeline contains a set of modules or plugins that enable the creation and integration of

Continuous Delivery pipelines within Jenkins along with other functionalities and integrations

with external tools. For the needs of the SERRANO software components several plugins have

been installed and configured accordingly such as Kubernetes, SonarQube and OWASP

Dependency-Track.

The repositories existing under the SERRANO organization in GitHub, are connected to a

Jenkins Pipeline job, like the ones depicted in the Figure 77 above. The Jenkins Dashboard is a

list of the folders and individual projects that logged in users have access to view and manage

accordingly. Each Pipeline is usually described in a specific file called Jenkinsfile. Every event

that occurs as a result of source code changes on the GitHub repositories (e.g., commit, merge,

pull request, tag, etc.) triggers a new build to the respective pipeline on Jenkins. The Pipeline

includes compilation, build and test stages as shown in the figure above. The stages are the

ones declared into the Jenkins file and each build step consists of these stages. A successful

stage is coloured with green and a failure with red colour.

5.2.3 Docker

Docker [40] is a free and open platform for building, deploying, and operating applications.

Docker allows you to decouple your applications from your infrastructure, allowing you to

swiftly release software. You can manage your infrastructure in the same way that you control

your applications with Docker. You may drastically minimize the time between writing code

and executing it in production by utilizing Docker's approaches for shipping, testing, and

deploying code quickly.

Docker allows to bundle and run an application in a container, which is a loosely isolated

environment. Because of the isolation and security, multiple containers may operate on the

same host at the same time. Containers are small and include everything needed to operate

an application, so there is no need to rely on what's already on the host. Docker provides tools

and a respective platform for managing container lifecycles.

Docker is built on a client-server model. The Docker client communicates with the Docker

daemon, which handles the construction, execution, and distribution of your Docker

containers. Figure 78 represents the basic parts of the Docker architecture.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 150/173

Figure 78: Basic parts of the Docker architecture

The Docker client and daemon can be both executed on the same machine, or a Docker client

can be linked to a Docker daemon that is located elsewhere. A REST API, UNIX sockets, or a

network interface are used by the Docker client and daemon to communicate. Docker

Compose is another Docker client that allows to interact with applications made up of many

containers.

5.2.4 SonarQube

SonarQube [34] collects and analyses source code, measuring quality and providing reports

and metrics and information on the key findings. It combines static and dynamic analysis tools

and enables quality to be measured continuously over time. Everything that affects the code

base, from minor styling details to critical design errors, is inspected and evaluated by

SonarQube, thereby enabling developers to access and track code analysis data ranging from

styling errors, potential bugs, and code defects to design inefficiencies, code duplication, lack

of test coverage, and excess complexity.

SonarQube supports many languages through built-in rulesets and can also be extended with

various plugins. It can be fully integrated into Jenkins pipelines. In SERRANO, SonarQube

performs both security and quality assurance tests. The URL to the SonarQube service in

SERRANO is the following:

• https://serrano-sonarqube.rid-intrasoft.eu/

https://serrano-sonarqube.rid-intrasoft.eu/

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 151/173

Figure 79: SonarQube in SERRANO CI/CD

Figure 80: SonarQube scan results overview

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 152/173

5.2.5 NGINX

A reverse proxy server is a type of proxy server that typically sits behind the firewall in a private

network and directs client requests to the appropriate backend server. NGINX [42] has been

chosen to be deployed as a reverse proxy in front of SERRANO CI/CD services. As depicted in

Figure 74, NGINX is located in front of the services that run inside the Kubernetes cluster.

Specifically, it runs as part of the Ingress NGINX controller of the cluster.

5.2.6 Harbor

Harbor [41] is an open-source registry that secures artifacts with policies and role-based

access control, ensures images are scanned and free from vulnerabilities, and signs images as

trusted. Harbor delivers compliance, performance, and interoperability towards securely

managing artifacts across cloud native compute platforms like Kubernetes and Docker. The

URL to the harbor service in SERRANO is the following:

• https://serrano-harbor.rid-intrasoft.eu/

5.2.6.1 Trivy

Within Harbor, Trivy [43] has been configured as the vulnerability scanning engine for Docker

containers that are pushed to the Docker registry. Trivy is a simple and comprehensive

vulnerability/misconfiguration/secret scanner for containers and other artifacts. Trivy detects

vulnerabilities of OS packages (Alpine [44], RHEL [45], CentOS [46], etc.) and language-specific

packages (Bundler, Composer, npm, yarn, etc.). In addition, Trivy scans Infrastructure as Code

(IaC) files such as Terraform and Kubernetes, to detect potential configuration issues that

expose your deployments to the risk of attack. Trivy also scans hardcoded secrets like

passwords, API keys and tokens.

As depicted in Figure 81 and Figure 82, Trivy automatically scans the artifacts that are pushed

to the registry and produces a report which lists all vulnerabilities detected in the Docker

image as well as details for each one. Additionally, the severity of each vulnerability and the

version of the package that each vulnerability was fixed are included.

https://serrano-harbor.rid-intrasoft.eu/

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 153/173

Figure 81: Trivy scan result overview on Harbor

Figure 82: Trivy scan result details on Harbor

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 154/173

5.2.7 Dependency-Track

Dependency-Track [47] is an intelligent Component Analysis platform that allows

organizations to identify and reduce risk in the software supply chain. Dependency-Track takes

a unique and highly beneficial approach by leveraging the capabilities of Software Bill of

Materials (SBOM). This approach provides capabilities that traditional Software Composition

Analysis (SCA) solutions cannot achieve.

Dependency-Track monitors component usage across all versions of every application in its

portfolio in order to proactively identify risk across an organization. The platform has an API-

first design and is ideal for use in CI/CD environments.

The URL to the Dependency-Track service in SERRANO is:

• https://serrano-dependency-track.rid-intrasoft.eu/

Figure 83: Dependency-Track in SERRANO CI/CD

5.2.8 Kubernetes

Kubernetes [49], also known as K8s, is an open-source system for managing containerized

applications across multiple hosts. It provides basic mechanisms for deployment,

maintenance, and scaling of applications.

Kubernetes builds upon a decade and a half of experience at Google running production

workloads at scale using a system called Borg, combined with best-of-breed ideas and

practices from the community.

Kubernetes is hosted by the Cloud Native Computing Foundation [50] (CNCF).

https://serrano-dependency-track.rid-intrasoft.eu/

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 155/173

Figure 84: Kubernetes Dashboard in SERRANO CI/CD

5.2.8.1 Helm

Helm [51] is a tool for managing Charts. Charts are packages of pre-configured Kubernetes

resources.

Helm can be used to:

• Find and use popular software packaged as Helm Charts to run in Kubernetes.

• Share your own applications as Helm Charts.

• Create reproducible builds of your Kubernetes applications.

• Intelligently manage your Kubernetes manifest files.

• Manage releases of Helm packages.

Helm is a graduated project in the CNCF and is maintained by the Helm community.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 156/173

Figure 85: Helm charts in SERRANO on GitHub

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 157/173

6 Software Deployment Specifications and

Validation

6.1 Continuous Integration/Continuous Deployment

Processes

Figure 86 represents the procedure followed for developing and releasing the software

components of the SERRANO platform. The typical CI/CD steps for a consortium partner

(represented by one or more developers/software engineers) include committing the owning

source code to GitHub, which triggers the Jenkins server to build the Docker image and push

it to the Docker registry in Harbor. Finally, utilizing the Docker images, the generated

containers are deployed to the K8s clusters of the integration and operational environments.

Figure 86: Procedure for developing and releasing the software components

A more extensive description of the steps that a developer of a component of the SERRANO

platform should follow to successfully develop, document and deploy it to the operational

environment has been shared. This description is the following:

• Step 1: Develop component

• Step 2: Create OpenAPI YAML or JSON and validate on https://editor.swagger.io/

• Step 3: Commit and push code and Swagger to GitHub https://github.com/ict-

serrano

• Step 4: Check Unit Test execution and below reports on Jenkins https://serrano-

jenkins.rid-intrasoft.eu/

https://editor.swagger.io/
https://github.com/ict-serrano
https://github.com/ict-serrano
https://serrano-jenkins.rid-intrasoft.eu/
https://serrano-jenkins.rid-intrasoft.eu/

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 158/173

• Step 5: Check SonarQube report for security vulnerabilities on https://serrano-

sonarqube.rid-intrasoft.eu/

• Step 6: Check Dependency-Track report for dependency vulnerabilities

https://serrano-dependency-track.rid-intrasoft.eu/

• Step 7: Build new docker image

• Step 8: Check image scanning report coming from Trivy on Harbor https://serrano-

harbor.rid-intrasoft.eu/

• Step 9: Deploy component to integration environment

o Sample helm charts are available in https://github.com/ict-serrano/k8s-

jenkins-python-example/tree/main/helm and https://github.com/ict-

serrano/k8s-jenkins-example/tree/master/helm

o Helm charts can be converted to equivalent Kubernetes YAML/JSON files that

can be applied directly by kubectl using the commands:

o $ helm repo add hashicorp

https://helm.releases.hashicorp.com

o $ helm template vault hashicorp/vault --output-dir

vault-manifests/helm-manifests

o Special caution should be taken in properly defining the liveness and readiness

probes in deployment.yaml (e.g., https://github.com/ict-serrano/k8s-jenkins-

example/blob/master/helm/templates/deployment.yaml)

o Endpoints will be internally exposed at the location

http://${COMPONENT_NAME}.integration:${PORT}

• Step 10: Check integration tests execution in integration environment.

o These can be included in the Jenkinsfile as curl commands (e.g.

https://github.com/ict-serrano/k8s-jenkins-

example/blob/master/Jenkinsfile#L103) or in a separate script/mechanism

with corresponding descriptions above each test.

• Step 11: Deploy in the Kubernetes cluster of the operational environment.

o Similar Helm charts can be used to deploy in another Kubernetes cluster. The

two examples on GitHub include a deployment step to the UVT K8s cluster that

exposes the component to an internally resolvable domain name.

o Cert-manager for let’s encrypt certificates is available and components can be

externally exposed to *.services.cloud.ict-serrano.eu.

Also, similar instructions are provided to partners that do not intend to push the source of

their solutions to the SERRANO GitHub repository. These can be found below:

• Step 1: Develop component

• Step 2: Build new docker image

https://serrano-sonarqube.rid-intrasoft.eu/
https://serrano-sonarqube.rid-intrasoft.eu/
https://serrano-dependency-track.rid-intrasoft.eu/
https://serrano-harbor.rid-intrasoft.eu/
https://serrano-harbor.rid-intrasoft.eu/
https://github.com/ict-serrano/k8s-jenkins-python-example/tree/main/helm
https://github.com/ict-serrano/k8s-jenkins-python-example/tree/main/helm
https://github.com/ict-serrano/k8s-jenkins-example/tree/master/helm
https://github.com/ict-serrano/k8s-jenkins-example/tree/master/helm
https://github.com/ict-serrano/k8s-jenkins-example/blob/master/helm/templates/deployment.yaml
https://github.com/ict-serrano/k8s-jenkins-example/blob/master/helm/templates/deployment.yaml
https://github.com/ict-serrano/k8s-jenkins-example/blob/master/Jenkinsfile#L103
https://github.com/ict-serrano/k8s-jenkins-example/blob/master/Jenkinsfile#L103

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 159/173

• Step 3: Push image to Docker registry

• Step 4: Create OpenAPI YAML or JSON and validate on https://editor.swagger.io/

• Step 5: Commit and push Jenkinsfile and Swagger (and other files) to GitHub

https://github.com/ict-serrano

• Step 6: Check image scanning report coming from Trivy on Harbor https://serrano-

harbor.rid-intrasoft.eu/

• Step 7: Deploy component to integration environment

o Sample helm charts are available in https://github.com/ict-serrano/k8s-

jenkins-python-example/tree/main/helm and https://github.com/ict-

serrano/k8s-jenkins-example/tree/master/helm

o Helm charts can be converted to equivalent Kubernetes YAML/JSON files that

can be applied directly by kubectl using the commands:

o $ helm repo add hashicorp

https://helm.releases.hashicorp.com

o $ helm template vault hashicorp/vault --output-dir

vault-manifests/helm-manifests

o Special caution should be taken in properly defining the liveness and

readiness probes in deployment.yaml (e.g. https://github.com/ict-

serrano/k8s-jenkins-

example/blob/master/helm/templates/deployment.yaml)

o Endpoints will be internally exposed at the location

http://${COMPONENT_NAME}.integration:${PORT}

• Step 8: Check integration tests execution in integration environment.

o These can be included in the Jenkinsfile as curl commands (e.g.

https://github.com/ict-serrano/k8s-jenkins-

example/blob/master/Jenkinsfile#L103) or in a separate script/mechanism

with corresponding descriptions above each test.

• Step 9: Deploy in UVT (or other) Kubernetes cluster.

o The same Helm charts can be used to deploy in another Kubernetes cluster.

The two examples on GitHub include a deployment step to the UVT K8s

cluster that exposes the component to an internally resolvable domain name.

Cert-manager for let’s encrypt certificates is available and components can be externally

exposed to *.services.cloud.ict-serrano.eu using the relevant annotations.

https://editor.swagger.io/
https://github.com/ict-serrano
https://serrano-harbor.rid-intrasoft.eu/
https://serrano-harbor.rid-intrasoft.eu/
https://github.com/ict-serrano/k8s-jenkins-python-example/tree/main/helm
https://github.com/ict-serrano/k8s-jenkins-python-example/tree/main/helm
https://github.com/ict-serrano/k8s-jenkins-example/tree/master/helm
https://github.com/ict-serrano/k8s-jenkins-example/tree/master/helm
https://github.com/ict-serrano/k8s-jenkins-example/blob/master/helm/templates/deployment.yaml
https://github.com/ict-serrano/k8s-jenkins-example/blob/master/helm/templates/deployment.yaml
https://github.com/ict-serrano/k8s-jenkins-example/blob/master/helm/templates/deployment.yaml
https://github.com/ict-serrano/k8s-jenkins-example/blob/master/Jenkinsfile#L103
https://github.com/ict-serrano/k8s-jenkins-example/blob/master/Jenkinsfile#L103

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 160/173

6.2 Integration plan

The integration plan is built around the concepts described in the following sections. In the

first stages of the Software Development Life Cycle (SDLC), the common specification

approach is based around the OpenAPI specification that is defined as part of the design of

applications. In the implementation phase, two important aspects are identified, code version

control and containerization. In the next stages of testing, integration and maintenance of the

resulting software, a testing approach using unit, integration, and security tests is followed in

addition to an approach that verifies code quality and security through automated tools.

6.2.1 Common API specification approach

Established and widely accepted good practices in the field of API specification are used. For

example, for REST APIs proper path names, error codes and response types should be used.

In addition, the decision in the consortium is to prefer JSON preferred over XML and other

formats.

Open-source formats for describing the APIs should be used. For example, OpenAPI 3.0 (3.0.3

is the current latest) is an open-source format for describing and documenting APIs that

partners are strongly encouraged to use for the description of REST APIs and the

documentation of endpoints and used data schemas. There are many online tools that

facilitate the process of creating, extending and updating the Open API specifications, such as

Swagger Editor (https://editor.swagger.io/). Also, it can convert various OpenAPI specification

versions to the latest one.

Other tools can be used to facilitate the visualization and interactions with the API’s resources

in a user-friendly way. Swagger UI [52] is one such tool, which can automatically generate a

user interface (UI) from the OpenAPI specification.

Developers in the SERRANO easily communicate through exchanging usage examples of the

API in the form of Postman [53] or Insomnia [54] collections. These tools also provided the

ability to exchange full request examples in addition to Swagger.

6.2.2 Development using containers

Components developed or used in SERRANO that require a runtime environment for their

execution provide a Docker image for their deployment. Libraries and other components that

can be dynamically imported usually do not require the creation of a container, but they can

be stored in suitable repositories, such as PyPI [55].

The Docker images can be used in the definition of Kubernetes Pods using Kubernetes YAMLs

or Helm. In each pod, Docker images can be used to run one or more containers.

https://editor.swagger.io/

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 161/173

Figure 87: Containers in Kubernetes pods

6.2.3 Code and Deployment configuration on GitHub

GitHub is the code repository of choice for every component. The code is placed in the

repositories of “ict-serrano” project, as shown in Figure 88.

Figure 88: GitHub repositories

6.2.4 Unit, integration, and security tests

Adequate unit, integration, and security tests should be available for platform component

versions that are considered stable. In addition, the earlier version should also contain a

number of unit and integration tests that prevent developers from breaking functionality that

worked in the last version before new changes were introduced.

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 162/173

Automated unit, integration, and functional security tests were executed as part of the Jenkins

CI/CD pipeline. An example of the build stages that run the unit and integration tests on

Jenkins (security tests can be implemented similar to unit or integration tests) is the following:

stage('Unit tests') {
 steps {
 container('python') {
 sh 'python -m unittest composeexample.utils'
 }
 }
}
stage('Integration Tests') {
 steps {
 container('java') {
 script {
 echo 'Run your Integration Tests here'
 try {
 String testName = "1. Check that app is running - 200 response code"
 String url =
 "http://${COMPONENT_NAME}.integration:8000/api/v1/puppies"
 String responseCode = sh(label: testName, script: "curl -m 10 -sL -w
'%{http_code}' $url -o /dev/null", returnStdout: true)

 if (responseCode != '200') {
 error("$testName: Returned status code = $responseCode when calling $url")
 }

 testName = '2. Create record - 201 response code'
 url =
 "http://${COMPONENT_NAME}.integration:8000/api/v1/puppies/"
 responseCode = sh(label: testName, script: """curl -m 10 -s -w
'%{http_code}' --request POST $url --header 'Content-Type: application/json' --data-
raw '{"name":"Jack","age":3,"breed":"shepherd","color":"brown"}' -o /dev/null""",
returnStdout: true)

 if (responseCode != '201') {
 error("$testName: Returned status code = $responseCode when calling $url")
 }

 testName = '3. Validate stored records'
 url =
 "http://${COMPONENT_NAME}.integration:8000/api/v1/puppies"
 String responseBody = sh(label: testName, script: """curl -m 10 -sL
$url""", returnStdout: true)

 if (responseBody !=
'[{"name":"Jack","age":3,"breed":"shepherd","color":"brown"}]') {
 error("$testName: Unexpected response body = $responseBody when calling
$url")
 }
 } catch (ignored) {
 currentBuild.result = 'FAILURE'
 echo "Integration Tests failed"
 }
 }
 }
 }
}

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 163/173

6.2.5 Code Quality and Security

As described in Sections 5.1.1 and 5.2.4, SonarLint and SonarQube are part of the

development and integration plan. These tools can ensure code quality and security in the

platform components as part of the DevSecOps approac. Special focus is put on the capability

of SonarQube to analyse source code, ensure code quality and find security vulnerabilities that

make SERRANO platform components susceptible to attacks. Therefore, all security

vulnerabilities identified by SonarQube should be fixed as early as possible. Other findings,

such as code smells and other flagged vulnerabilities, should be checked to ensure no major

impact is expected.

6.3 Verification and Validation Results

All SERRANO components that are part of the platform or the use cases have been tested. In

the below table, we have summarized two types of tests for each component.

Component Unit or Functional Tests: Each component has several tests that assess its

functionality, which can be unit tests that examine a specific unit of code as part of the

development of the component or functional tests that validate the correct behaviour of the

component without a specific reference to the source code.

Component Integration Tests: Platform components have points of integration, which might

allow integration with other internal or external components, external services, user

interfaces, etc. These should all be tested at a level that ensures their correct integration in a

way that end-to-end flows can be executed properly.

Table 14: Verification and Validation Results on Platform Components

Platform
Components

Component Unit or Functional
Tests

Component Integration Tests

Tested Functionalities Number
of tests

Tested Interfaces Number of
tests

Resource
Orchestrator

● Enable and disable
watch functionality
over Datastore

● Components receive
notifications

● Setup execution
requests for ROT

● Handle ROT
response

● Preparation of
deployments

● Orchestration
Manager and
Orchestration
Drivers interaction

48

● Orchestration
Controller REST

● Orchestration
Manager REST

● Orchestration
Drivers REST

● ROT REST
● Telemetry REST 38

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 164/173

for new
deployments

● Testing interaction
with K8s for the
actual deployment

● Testing integration
with K8s for kernel
execution

● Creation and
management of
secure storage
policies

● Testing integration
with HPC for kernel
executions

Resource
Optimization
Toolkit (ROT)

● Execution Engine
registration to
Controller

● Valid and invalid
execution requests
to Controller

● Valid and invalid
termination
requests to
Controller

● Interaction with
telemetry
framework

● Assignment of
requests to
Execution Engine

● Load and execute
selected algorithm

● Forward results to
Controller

● Detect performance
issues on engines

● Execute the three
integrated
algorithms with
valid and invalid
input parameters

24

● ROT REST
● AMQP publisher
● AMQP publisher
● Telemetry REST

17

Message Broker

MQTT service:
● topic creation
● topic subscription
● publish messages
● receive messages
AMQP service:
● setup basic

publisher,

26

● MQTT connector
● MQTT publisher
● MQTT consumer
● AMQP connector
● AMQP publisher
● AMQP consumer

23

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 165/173

consumer, exchange
messages

● setup topic
publisher,
consumer, exchange
messages

● setup fanout
publisher,
consumer, exchange
messages

● setup route
publisher,
consumer, exchange
messages

Telemetry
Framework

● Collection of
resource
characteristics and
monitoring data

● Monitoring probes
registration to
agents

● Update probes’
configuration

● Detect events
related to
operational state of
telemetry
components

● Store collected
information to
operational
databases

● Forward telemetry
data to Central
Handler

● Provision of
monitoring data to
orchestration
mechanisms

● Support of
streaming telemetry

● Store telemetry
data to PMDS

● Retrieve historical
telemetry data from
PMDS

41

● Monitoring probes
REST

● Enhanced Telemetry
Agent REST

● Central Telemetry
Handler REST

● PMDS REST
● Stream Handler

34

AI-enhanced
Service

Orchestrator

● Can identify
application
requirements and
deployment
description

18

● Resource
Orchestrator REST
API calls 12

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 166/173

● Ensures that
Application Model
Constraints are
properly formed

● Application
Constraints are
properly translated
to Resource
Constraints based
on mapping rules
specified

● Possible Application
Deployment
Scenarios are being
developed

● Telemetry Data is
being dynamically
retrieved

● Application is being
properly deployed
through Resource
Orchestrator

● Central Telemetry
Handler REST API
calls

● Incoming requests
from Alien4Cloud

HPC system
hardware
interface

● List of HPC
services

● Infrastructure
model creation

● Infrastructure
telemetry

● Job submission
● Job status retrieval
● Data movement

between S3 and
HPC infrastructure
for input data and
job results

40

● SSH
communication
between the
Gateway and HPC
infrastructure

● REST API calls
● S3 API calls 38

HW Acceleration
abstractions

● Static API function
call

● Dynamic API
application port

● Generic/debug
plugin
functionality

● Custom
CPU/FPGA/GPU
plugins

6

● VM application
execution with
hardware
accelerator

2

Trusted
Virtualization

● Boot process
● K8s integration 2

● Signed kernel
booting & node
joining k8s cluster

1

Secure storage
on-premises

gateway

These features are
provided by the On- 38

These features are
implemented through
integration of the On-

101

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 167/173

premises Storage
Gateway:
● File caching

functionality
● HTTP Range

header, as defined
by IETF RFC 7233

premises Storage
Gateway with the
Skyflok.com backend
and the SERRANO edge
devices:
● Bucket creation,

deletion, list
contents,

● Object creation,
deletion, retrieval

● Multipart upload
process: create,
complete, abort,
upload part, list
parts, list multipart
uploads,

● AWS Boto3 end-to-
end file upload and
download features.

TLS offloading

● TLS handshake
procedure
validation

● HTTP packet
information
inclusion

● TLS status
signalling

10

The features are
integrated into libraries
that are placed under
the DOCA DPU SDK for
developer utilization.

22

Service assurance

● SA configuration
parameters
validation

● SA subcomponent
distributed cluster
configuration
validation

● SA subcomponent
inference
functional tests
(validation,
detection, model
selection etc.)

● SA subcomponent
data bus
connector
validation (stream
handler
connection related
tests)

27

● SA Connector API
● SA Inference API
● SA Data bus

Connector API

32

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 168/173

Table 15: Verification and Validation Results on Use Case Components

Use Case
Components

Component Unit or Functional Test Component Integration Tests

Tested Functionalities
Number of

tests
Tested Interfaces

Number of
Tests

Secure Storage
Use Case

Integrated
Functionality

• Component unit
testing for the
Secure Storage Use
Case has been
performed as part of
the testing for the
Secure storage on-
premises gateway.

38

• Component
integration testing
for the Secure
Storage Use Case has
been performed as
part of the testing for
the Secure storage
on-premises
gateway.

101

Fintech
Analysis Use

Case
Integrated

Functionality

• Activity completion
for data retrieval
from storage

• Activity completion
for investment
strategy application

• Activity completion
for the creation of
investment profiles

• Activity completion
for portfolio
creation

5

• GPU/FPGA
acceleration

• Secure Storage API
interface interaction

17

Anomaly
Detection in

Manufacturing
Settings

Integrated
Functionality

• Validate the correct
sending of data
streaming from the
ball screw sensors to
the MQTT Broker.

• Validate the
services and
microservices
developed for the
detection of
anomalies in ball
screw. Triggering
different
functionalities using
specific topics.

• Control and monitor
the inference
response time in the
classification of the
new incoming data,
as well as the
retraining time of
the new model to be
generated.

12

• Data Broker
connection
(Message Broker
through. MQTT
protocol)

• GPU/FPGA
acceleration

• Secure Storage API
interface interaction

25

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 169/173

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 170/173

7 Conclusions

Deliverable 6.7 reports on the work performed in WP6 to develop the final SERRANO

integrated platform. The WP6 activities related to D6.7 aim to unify the outcomes of the

developed components and services in WP3-5 to release the integrated SERRANO platform.

In particular, the deliverable presents an overview of the SERRANO platform, including the

final release description, the SERRANO platform components and functionalities, the

development and integration environment, the software deployment specifications, and the

verification and validation results on the platform components.

The final platform release described in this deliverable aims to provide the fully fletched

functional prototype that supports the core functionalities of SERRANO’s three use cases. The

final evaluation of these use cases is reported on deliverable D6.8 “Final version of business,

end user and technical evaluation” (M36).

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 171/173

8 References

[1] etcd: https://etcd.io

[2] Slurm workload manager: https://slurm.schedmd.com/

[3] OpenPBS: https://www.openpbs.org/

[4] Flask 2.0: https://flask.palletsprojects.com/en/2.0.x/

[5] FastAPI framework: https://fastapi.tiangolo.com

[6] Pika: https://pika.readthedocs.io/en/stable/

[7] PyQt: https://riverbankcomputing.com/software/pyqt/intro

[8] MinIO: https://min.io

[9] Open source message broker: https://www.rabbitmq.com

[10] MQTT Plugin: https://www.rabbitmq.com/mqtt.html

[11] Apache Kafka: https://kafka.apache.org/

[12] Apache Zookeeper: https://zookeeper.apache.org/

[13] HDFS: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[14] Apache HBase: https://hbase.apache.org/

[15] MongoDB: https://www.mongodb.com/

[16] MySQL: https://www.mysql.com/

[17] Apache Spark: https://spark.apache.org/

[18] Apache Hadoop: https://hadoop.apache.org/

[19] Kafka Streams: https://kafka.apache.org/documentation/streams/

[20] Spark Streaming: https://spark.apache.org/docs/latest/streaming-programming-guide.html

[21] TensorFlow: https://www.tensorflow.org/

[22] Deeplearning4j: https://deeplearning4j.konduit.ai/

[23] H2O.ai: https://h2o.ai/

[24] Amazon S3: https://aws.amazon.com/s3/

[25] Ceph: https://ceph.io/en/

[26] Openstack Swift: https://docs.openstack.org/swift/latest/

[27] Kubernetes: https://kubernetes.io/

[28] Kubernetes Persistent Volumes: https://kubernetes.io/docs/concepts/storage/persistent-volumes/

[29] S3 API Reference: https://docs.aws.amazon.com/AmazonS3/latest/API/Type_API_Reference.html

[30] Scikit-Learn: https://scikit-learn.org/stable/

[31] EDE GitLab Repository: https://gitlab.dev.info.uvt.ro/serrano/EDE-Serrano.git

[32] Pandas: https://pandas.pydata.org/

[33] Dask: https://dask.org/

[34] SonarQube: https://www.sonarqube.org/

[35] SonarLint: https://www.sonarlint.org/

[36] CycloneDX: https://cyclonedx.org/

[37] GitLab: https://about.gitlab.com/

[38] Jenkins: https://www.jenkins.io/

[39] Hetzner: https://www.hetzner.com/

[40] Docker: https://www.docker.com/

https://pika.readthedocs.io/en/stable/
https://riverbankcomputing.com/software/pyqt/intro
https://min.io/
https://www.rabbitmq.com/
https://www.rabbitmq.com/mqtt.html
https://kafka.apache.org/
https://zookeeper.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hbase.apache.org/
https://www.mongodb.com/
https://www.mysql.com/
https://spark.apache.org/
https://hadoop.apache.org/
https://kafka.apache.org/documentation/streams/
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://www.tensorflow.org/
https://deeplearning4j.konduit.ai/
https://h2o.ai/
https://aws.amazon.com/s3/
https://ceph.io/en/
https://docs.openstack.org/swift/latest/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.aws.amazon.com/AmazonS3/latest/API/Type_API_Reference.html
https://scikit-learn.org/stable/
https://gitlab.dev.info.uvt.ro/serrano/EDE-Serrano.git
https://pandas.pydata.org/
https://dask.org/
https://www.sonarqube.org/
https://www.sonarlint.org/
https://cyclonedx.org/
https://about.gitlab.com/
https://www.jenkins.io/
https://www.hetzner.com/
https://www.docker.com/

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 172/173

[41] Harbor: https://goharbor.io

[42] NGINX: https://www.nginx.com/

[43] Trivy: https://aquasecurity.github.io/trivy

[44] Alpine Linux: https://www.alpinelinux.org/

[45] Red Hat Enterprise Linux: https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux

[46] CentOs: https://www.centos.org/

[47] Dependency-Track: https://docs.dependencytrack.org/

[48] DefectDojo: https://www.defectdojo.org/

[49] Kubernetes: https://kubernetes.io/

[50] CNCF: https://www.cncf.io/about

[51] Helm: https://helm.sh/

[52] Swagger UI: https://swagger.io/tools/swagger-ui/

[53] Postman: https://www.postman.com

[54] Insomnia: https://insomnia.rest

[55] PyPI: https://pypi.org

[56] SERRANO GitHub repository: https://github.com/ict-serrano

[57] SERRANO Harbor container registry: https://serrano-harbor.rid-intrasoft.eu

[58] Open-source message broker: https://www.rabbitmq.com

[59] MQTT Plugin: https://www.rabbitmq.com/mqtt.html

[60] Eclipse Paho: https://eclipse.dev/paho/index.php?page=clients/python/index.php

[61] MongoDB: https://docs.mongodb.com

[62] InfluxDB: Open-Source Time Series Database: https://www.influxdata.com/developers/

[63] Grafana: The open observability platform: https://grafana.com

[64] gRPC- high performance, open-source universal RPC framework: https://grpc.io

[65] https://vaccel.org.

[66] https://www.qemu.org/

[67] https://firecracker-microvm.github.io/

[68] https://www.cloudhypervisor.org/

[69] https://katacontainers.io/

[70] https://github.com/cloudkernels/qemu-vaccel/tree/vaccelrt

[71] https://github.com/cloudkernels/firecracker/tree/vaccel-0.23

[72] https://docs.vaccel.org/python_bindings/

[73] https://docs.vaccel.org/tensorflow_bindings/

[74] https://docs.vaccel.org

[75] https://www.openfaas.com/

[76] https://alien4cloud.github.io/

[77] RedHat - https://cloud.redhat.com/blog/signing-and-verifying-container-images

[78] https://docs.sigstore.dev/policy-controller/overview/

[79] https://github.com/sigstore/cosign

[80] Binz, Tobias, et al. "Portable cloud services using tosca." IEEE Internet Computing 16.3 (2012): 80-85.

[81] L. Smith, "Architectures for secure computing systems," MITRE CORP BEDFORD MASS, 1975.

[82] Sigstore - https://www.sigstore.dev

[83] Deliverable D2.3 “SERRANO architecture” – SERRANO Consortium

https://goharbor.io/
https://www.nginx.com/
https://aquasecurity.github.io/trivy
https://www.alpinelinux.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://www.centos.org/
https://docs.dependencytrack.org/
https://www.defectdojo.org/
https://kubernetes.io/
https://www.cncf.io/about
https://helm.sh/
https://swagger.io/tools/swagger-ui/
https://www.postman.com/
https://insomnia.rest/
https://pypi.org/

D6.7 – Final version of SERRANO integrated platform

ict-serrano.eu 173/173

[84] Deliverable D2.4 “Final version of SERRANO use cases, platform requirements and KPIs analysis” –

SERRANO Consortium

[85] Deliverable D2.5 “Final version of SERRANO architecture” – SERRANO Consortium

[86] Deliverable D3.4 “Final release of SERRANO Secure Infrastructure Layer” – SERRANO Consortium

[87] Deliverable D4.2 “Performance Maximization under Maximum Affordable Error for the HW and SW IPs”

– SERRANO consortium

[88] Deliverable D4.3 “Framework for seamlessly integration of heterogeneous workload-aware

performance improvement” – SERRANO Consortium

[89] Deliverable D4.4 “Final Release of the SERRANO Cloud and Edge Acceleration Platforms and Tools” –

SERRANO Consortium

[90] Deliverable D5.1 “Abstraction models and intelligent service orchestration” – SERRANO Consortium

[91] Deliverable D5.3 “Resource orchestration, telemetry and lightweight virtualization mechanisms” –

SERRANO Consortium

[92] Deliverable D5.4 “Intelligent service and resource orchestration mechanisms” – SERRANO Consortium

